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Abstract: Multicentric carpotarsal osteolysis (MCTO) is a rare skeletal dysplasia with osteolysis at
the carpal and tarsal bones. Heterozygous missense mutations in the transcription factor MAFB are
found in patients with MCTO. MAFB is reported to negatively regulate osteoclastogenesis in vitro.
However, the in vivo function of MAFB and its relation to MCTO remains unknown. In this study,
we generated zebrafish MAFB homolog mafbb mutant utilizing CRISPR/Cas9 technology. Mafbb
deficient zebrafish demonstrated enhanced osteoclast cell differentiation and abnormal cartilage and
bone development resembling MCTO patients. It is known that osteoclasts are hematopoietic cells
derived from macrophages. Loss of mafbb caused selective expansion of definitive macrophages and
myeloid cells, supporting that mafbb restricts myeloid differentiation in vivo. We also demonstrate
that MAFB MCTO mutations failed to rescue the defective osteoclastogenesis in mafbb−/− embryos,
but did not affect osteoclast cells in wild type embryos. The mechanism of MCTO mutations is likely
haploinsufficiency. Zebrafish mafbb mutant provides a useful model to study the function of MAFB
in osteoclastogenesis and the related MCTO disease.

Keywords: MAFB; Multicentric Carpotarsal Osteolysis (MCTO); osteoclasts; macrophage and mono-
cytes; zebrafish

1. Introduction

The bZip factor MafB (v-maf musculoaponeurotic fibrosarcoma oncogene ortholog
B) is a member of the large Maf transcription factor family [1]. It is expressed in multiple
tissues including the spinal cord, retina and hematopoietic cells, and plays diverse functions
in tissue development and cellular differentiation [1–5]. MafB is highly expressed in
monocytes and macrophages, and is important for macrophage differentiation [1,4,6]. It
has also been demonstrated that MafB regulates osteoclastogenesis [7].

Osteoclasts are bone-resorbing cells that are derived from the hematopoietic monocyte-
macrophage lineage [8,9]. They are located at or near the bone surface, and degrade the
bone in a specialized extracellular compartment called Howship’s lacunae by secreting
acid and lytic enzymes, like tartrate-resistant acid phosphatase (TRAcP) and Cathepsin
K(CTSK) [10]. Osteoclast cells are indispensable for normal bone development and remod-
eling [11].

The formation of osteoclast cells is regulated by a series of signaling molecules. Two
main factors, macrophage colony stimulating factor (M-CSF) and receptor activator of
NF-κB ligand (RANKL) positively regulate the osteoclast differentiation [12]. After binding
to their respective receptors (M-CSFR or RANK) on the cell surface, they are able to induce
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the expression of nuclear factor of activated T-cells cytoplasmic 1 (NFATc1)—the master
regulator of osteoclastogenesis [7]. Osteoprotegerin (OPG) is an important inhibiting factor
of osteoclastogenesis by blocking RANKL binding to RANK [13]. It is known that MafB
inhibits the expression of NFATc1 and the osteoclast-associated receptor (OSCAR) during
RANKL-mediated osteoclastogenesis, and thereby negatively regulates osteoclastogenesis
in vitro [7]. However, the in vivo function of MafB in osteoclastogenesis has not been
demonstrated.

Mutations in MAFB have been reported to be responsible for the multicentric car-
potarsal osteolysis syndrome (MCTO) [14–16]. MCTO is a rare skeletal and nephropathic
disorder, and the responsible mutations are all missense mutations in the amino-terminal
transactivation domain of MAFB. The patients show aggressive osteolysis, predominantly
in the carpal and tarsal bones [17,18]. It is hypothesized that the patients might have
overproduced osteoclasts, which eventually leads to underdeveloped and deformed bone
formation. However, how MCTO mutation leads to the disease pathogenesis remains un-
known. Understanding the function and mechanism of MAFB in normal and pathological
conditions will help identify novel therapeutic targets.

Animal models are powerful tools to study the function of genetic mutations involved
in disease development. MafB null mutant (MafB−/−) mice and mice containing an MCTO
mutation (MafBMCTO/MCTO) have been generated [6,19]. These mice show nephropathic
symptoms of glomerular sclerosis which is similar to MCTO patients. However, the osteo-
clast formation and bone development defects in these mice have not been reported. As an
alternative animal model, zebrafish has recently been used to study bone development and
bone disease. The osteoclast cells and skeletal physiology are similar between zebrafish
and mammals [20–22]. The biochemical networks and metabolic pathways in zebrafish
and mammals are also largely conserved. Moreover, zebrafish embryos are relatively trans-
parent, and the osteoclast cell and bone development can be easily observed by real-time
live imaging [23].

There are two paralogs of human MAFB in zebrafish, mafba and mafbb, and mafbb
is more preferentially expressed in myeloid lineages during embryogenesis [24–26]. We
generated mafbb mutants by CRISPR-Cas9 technology, and characterized osteoclast and
bone development in the mutants. We then tested the function of MAFB MCTO muta-
tions in mafbb−/− embryos. Our results demonstrated that MAFB negatively regulates
osteoclast differentiation in vivo and MCTO mutation is a loss-of-function of MAFB. Ze-
brafish mafbb mutant provides a useful model to study the in vivo function of MafB and
the MCTO disease.

2. Materials and Methods
2.1. Zebrafish Maintenance and Embryo Handling

The wild type (WT) AB and transgenic zebrafish were maintained, handled, and
bred according to standard protocols from the Institutional Animal Care Committee of
Shanghai Jiao Tong University. Adult zebrafish were raised in a circulating water system
under a 14 h/10 h light/dark cycle at 26–28 ◦C and fed two times per day. Adult male and
female zebrafish were kept separately in the same mating box in the evening and mated the
following morning. The embryos were collected and kept at 28.5 ◦C in E3 medium (5 mM
NaCl, 0.17 mM KCl, 0.33 mM CaCl2, and 0.33 mM MgSO4) with a density of 100 embryos
per 10-cm-diameter Petri dish. Embryos were staged by hours post-fertilization (hpf) and
days post-fertilization (dpf).

2.2. Generation and Analysis of Tg(mafbb:GFP) and Tg(ctsk:mGFP)

To generate Tg(mafbb:GFP), the plasmid (pT2-cryR; mafbbCE1-P1Egfp, from Addgene,
20 ng/µL) and 30 ng/µL Tol2 mRNA were co-injected into WT embryos at the one-cell
stage. The embryos showing a positive expression of GFP were raised to adults (F0 founder).
F0 fish were outcrossed to WT fish, and GFP positive embryos were raised to adults (F1).
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F1 fish were outcrossed WT again to obtain stable transgenic lines. Transgenic lines were
established from two different F0 founders.

The plasmid (ctsk:mGFP) was generously provided by Dr. C. Winkler from National
University of Singapore. The plasmid (20 ng/µL) with 10 ng/µL I-SceI (#R0694S, NEB,
Ipswitch, MA, USA) was co-injected into WT embryos at the one-cell stage. The stable
Tg(ctsk:mGFP) line was generated similar to Tg(mafbb:GFP).

For analysis, the embryos were mounted in 1% low-melt agarose and imaged under a
confocal microscope Leica SP8 microsystems (Leica, Heidelberg, DE, Germany).

2.3. Generation of mafbb Knockout Mutants

mafbb knockout mutants were generated through the CRISPR-Cas9 system and per-
formed following the protocol as described in [27]. Two mafbb specific guided RNAs (as
in Figure 1B) were designed to target the beginning site of the exon. One-cell stage WT
embryos were injected with 1 nL of the solution containing 100 ng/µL Cas9 mRNA and
20 ng/µL gRNA. Injected F0 fish were grown to adulthood and outcrossed to WT fish.
F1 mutant offsprings were identified with T7 endonuclease I (T7E1) assay (M0302S, NEB,
Ipswitch, MA, USA) using primers around the target loci. Each target loci was amplified
by PCR from the genomic DNA and the mutation was revealed by DNA sequencing. F1
fish were outcrossed to WT to obtain stable F2 mutant lines. Primers used in T7E1 assay
and PCR amplification are listed in Table A1 (Appendix A).

2.4. Synthesis of Antisense Probes and Whole-Mount In Situ Hybridization (WISH)

We searched the NCBI genebank for sequences of ctsk (Cathepsin K) (Source: ZFIN;
Acc: ZDB-GENE-001205-4) and rank/tnfrsf1b (tumor necrosis factor receptor superfamily,
member 1B (Source: ZFIN; Acc: ZDB-GENE-070410-133). Briefly, the total RNA extracted
from 6 dpf AB larvae was reverse transcribed to cDNA. The cDNA was then used to get a
1 kb fragment of ctsk/rank through PCR. The PCR products were cloned into the Ecor1/Xbal
site of the pCS2 (+) backbone vector. SP6 RNA-polymerase (P1088, Promega, Madison, WI,
USA) was used to synthesize the digoxigenin-labeled RNA probes. PCR primer sequences
are from the literature [28] and listed in Table A2. The PCR products were confirmed
by sequencing.

Whole-mount in situ hybridization was performed using digoxigenin-UTP labeled
RNA probes (pu.1, runx1; cmyb; mpx; rag1; hbbe1; mfap4; apoe; ctsk; rank). Embryos at the
desired time point were fixed overnight in 4% paraformaldehyde (PFA) at 4 ◦C, bleached
and dehydrated in methanol at −20 ◦C for at least two hours. Further processing of
embryos was conducted according to the previous protocol [29]. The stained embryos were
imaged under SZX16 stereomicroscope or BX53 microscope (Olympus, Tokyo, Japan).

2.5. Neutral Red Staining and Benzidine Staining

Optimal staining of macrophages in live embryos was obtained by incubating 3 dpf or
5 dpf embryos in 2.5 µg/mL neutral red/E3 medium (A600652, Sangon Biotech, Shang-
hai, China) at 28.5 ◦C in the dark for 6–8 h according to the protocol in [30]. Benzidine
staining was done according to [31] with some modification. Larvae were incubated in
benzidine (B108444, Aladdin, Shanghai, China) staining solution (2 mL 5 mg/mL benzi-
dine/methanol, 16.7 µL 3 M NaOAc solution, 100 µL H2O2 and 2.483 mL H2O) for 30 min
in dark, then washed by PBT and fixed in 4%PFA overnight. The stained embryos were
imaged under SZX16 stereomicroscope or BX53 microscope (Olympus, Tokyo, Japan).
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Figure 1. The expression of mafbb during embryogenesis and generation of mafbb mutants. (A) Tg (mafbb:GFP) shows mafbb 

expression in primitive myeloid (pm) cells, hindbrain (hb), otic vesicle (ov), spinal cord (sc), posterior cardinal vein (pcv), 

caudal hematopoietic tail region (CHT) (A1–4). A2–4 are enlarged images of A1. The white arrowheads in A2 and A3 point 

to pm cells. The double Tg(mafbb:GFP;mpeg1:mCherry) shows the expression of GFP in mCherry+-macrophages in the CHT 

(A5–7, lateral views) and in the head region (A8–10, ventral views). The white arrows in (A7 and A10) point to the over-

lapped expression of mafbb and mepg1. The arrowheads in (A9–10) mark the eyes from -crystallin-mCherry in the plasmid 

of mabb:GFP [32]. (B) The schematic diagram of mafbb cDNA and the targeted regions of two guide RNAs. The target DNA 

sequences are shown in purple or blue rectangles. (C) Sanger sequencing analysis of PCR fragments containing gRNA1 

and gRNA2 targeted regions from mafbb deficient homozygotes. The deleted nucleotides are replaced by -, and the inserted 

nucleotides are in red. (D) Schematic representation and amino acid sequence of the wild type MafBb and two predicted 

truncated proteins. (E) The mortality rate of embryos at 24 hpf (n = 315–688 per group). Results are expressed as mean ± 

SEM, (* p < 0.05, ** p < 0.01, t test). The statistical significance was displayed as (F) Images of embryos at 3 dpf. The black 

arrow points to the curved tail. (G) Images of adult zebrafish at 9 mpf. The projecting lower jaw (green arrows), the curved 

spine (black arrows) and the asymmetric caudal fin (red arrows) are shown in mafbb−/− mutants. WT, wild type; HET, 

mafbbd11/+; HOM, mafbbd11/d11; mpf, month post fertilization. 

Figure 1. The expression of mafbb during embryogenesis and generation of mafbb mutants. (A) Tg (mafbb:GFP) shows mafbb
expression in primitive myeloid (pm) cells, hindbrain (hb), otic vesicle (ov), spinal cord (sc), posterior cardinal vein (pcv),
caudal hematopoietic tail region (CHT) (A1–4). A2–4 are enlarged images of A1. The white arrowheads in A2 and A3 point
to pm cells. The double Tg(mafbb:GFP;mpeg1:mCherry) shows the expression of GFP in mCherry+-macrophages in the
CHT (A5–7, lateral views) and in the head region (A8–10, ventral views). The white arrows in (A7 and A10) point to the
overlapped expression of mafbb and mepg1. The arrowheads in (A9–10) mark the eyes from α-crystallin-mCherry in the
plasmid of mabb:GFP [32]. (B) The schematic diagram of mafbb cDNA and the targeted regions of two guide RNAs. The
target DNA sequences are shown in purple or blue rectangles. (C) Sanger sequencing analysis of PCR fragments containing
gRNA1 and gRNA2 targeted regions from mafbb deficient homozygotes. The deleted nucleotides are replaced by -, and the
inserted nucleotides are in red. (D) Schematic representation and amino acid sequence of the wild type MafBb and two
predicted truncated proteins. (E) The mortality rate of embryos at 24 hpf (n = 315–688 per group). Results are expressed as
mean ± SEM, (* p < 0.05, ** p < 0.01, t test). The statistical significance was displayed as (F) Images of embryos at 3 dpf. The
black arrow points to the curved tail. (G) Images of adult zebrafish at 9 mpf. The projecting lower jaw (green arrows), the
curved spine (black arrows) and the asymmetric caudal fin (red arrows) are shown in mafbb−/− mutants. WT, wild type;
HET, mafbbd11/+; HOM, mafbbd11/d11; mpf, month post fertilization.
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2.6. Tartrate-Resistant Acid Phosphatase (TRAcP) Staining

TRAcP staining on zebrafish and zebrafish scales was performed as described previ-
ously by using ACID PHOSPHATASE, LEUKOCYTE (Procedure No. 387, Sigma-Aldrich,
St Louis, MO, USA) with modification [32]. Briefly, adult zebrafish were fixed in 4% PFA at
4 ◦C overnight. The fish were then eviscerated to collect the scales for TRAcP staining. For
some fish, the rest parts were used to do alizarin red staining. For TRAcP staining on 2 mpf
zebrafish, the muscular tissue near the spine was removed first with blades and forceps
after fixation.

Scales or whole zebrafish were preprocessed for 2 h at room temperature in tartrate
buffer [0.2 M acetate buffer (pH 5.2) with 50 mM L(+)-Tartrate buffer (pH 4.9)] and then
incubated in TRAcP staining solution (70 µg/mL Fast Garnet GBC Base Solution; 1 mM
Sodium Nitrite Solution; 125 µg/mL Naphthol AS-BI Phosphoric Acid Solution; 0.1 M
Acetate Solution; 6.7 Mm L(+)-Tartrate buffer) in the dark for 2 h. The samples were washed
three times by PBT before taking images. For quantification of scale TRAcP staining, weak
staining means little or no staining at the scale border as in Figure 2I1, and strong staining
means a large area of staining as in I2-3 or more at the scale border.

2.7. MicroCT Scans

10-mpf (months post-fertilization) were fixed in 4% PFA O/N, then stored in ethanol
and scanned with a Skyscan 1176 microCT system (Bruker, Billerica, MA, USA) at 45 kV and
450 µA. We used a voxel size of 18um as resolution. The 3D evaluation was conducted using
CTAn (Bruker, Billerica, MA, USA). Quantification of bone morphology was performed
on the hypural bone next to the caudal fin, similar to the studies in [33,34]. Determined
parameters were bone volume density (BV/TV) and the mean value of grey-level intensity
which is corresponded to the relative bone density.

2.8. Alcian Blue Staining and Alizarin Red Staining

Cartilage was stained by alcian blue (AB) solution (015-13805, Wako, Osaka, Japan)
according to the protocol described in [35]. 5 dpf embryos were fixed in 4% PFA at 4 ◦C
overnight and bleached in 1% KOH/3% H2O2 solution until the pigments were cleared.
After that, embryos were incubated with acid alcohol (1% HCl in 70% ethanol) for 20 min
before transferred into a 0.1% alcian blue in acid alcohol for 2 h. The specimens were
mounted in 70% glycerol and photographed after washed three times, 30 min per time by
acid alcohol.

For larvae teeth staining, 8 dpf larvae were fixed and bleached as for alizarin red
staining, following the procedure in [35]. The larvae were incubated with 1 mg/mL
Alizarin red S (71001954, China National Medicines Corporation Ltd., Beijing, China) in 1%
KOH for 1 h and digested for several hours in 1 mg/mL trypsin (A100260-0250, Sangon
Biotech, Shanghai, China) in 2% borax (10020808, China National Medicines Corporation
Ltd., Beijing, China).

Adult zebrafish bone staining was similar to larval bone staining. Briefly, 9-month old
zebrafish were anesthetized with 0.02% tricaine and sacrificed on ice before fixed in 4% PFA
at 4 ◦C overnight. The specimens were bleached for 1 day and transferred to 30 % saturated
sodium tetraborate overnight. Afterwards, the specimens were placed in 1% KOH with
1 mg/mL Alizarin Red overnight and 1% trypsin and 2% borax were added until 85%
of the soft tissue was dissolved. The specimens were transferred through a series of 1%
KOH/glycerol solutions until they settled at the bottom. The specimens were transferred
to 70% glycerol for long-term storage and photographing.

2.9. Whole Kidney Marrow Cell Collection and Cytology

The adult fish kidney marrow was dissected and placed into tubes containing 400 µL
FBS solution. The single hematopoietic cells from kidney marrow were generated by
pipetting and filtration through 40-µm filters. Single-cell suspensions were diluted to
15,000-30,000 cells/mL and cytocentrifuged at 400 rpm for 4 min with cytospin 4 (Sigma-
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Aldrich, St Louis, MO, USA). Blood smears were processed by May-Grünwald and Giemsa
double stain (63590/48900, Sigma-Aldrich, St Louis, MO, USA) for morphological analysis
and differential cell counts.

2.10. Flow Cytometry and Cell Sorting and Counting

We sorted ctsk+ cells from Tg (ctsk:mGFP) in WT and mafbb+/− embryos at 3 dpf
and 5dpf. Embryos were anesthetized with 0.02% tricaine and washed with sterile E3
solution. Single cells were collected by shredding larvae with a blade and incubated for
20 min (37 ◦C) with 38 µg/mL Liberase (05401119001, Roche, Basel, Switzerland). 10%
FBS was added to stop the reaction, followed by filtration (40 µm filter) and centrifugation
(5000 rpm, 4 ◦C, 15min). The supernatant was removed, and cells were resuspended with
800 µL 2% FBS. GFP negative and positive cells were sorted with FACS AriaII (Becton,
Dickinson and Company, NJ, USA).

We counted mpeg1+ cells from Tg (mpeg1:mCherry) in WT and mafbb−/− embryos,
and ctsk+ cells from Tg (ctsk:mGFP) in WT and mafbb−/− embryos at 5 dpf. The procedure
was conducted as cell sorting. mCherry+ or GFP+ cells were counted using LSRFortessa
(Becton, Dickinson and Company, Franklin lakes, NJ, USA).

2.11. Gene Expression by Real-Time qPCR

Gene expression was evaluated using real-time qPCR. Briefly, total RNA was extracted
from embryos with TRIzol reagent (10296028, Thermo Fisher Scientific, Waltham, MA,
USA). cDNAs were synthesized from total RNA using the PrimeScriptTMRT reagent Kit
with gDNA Eraser (RR047A, Takara, Shiga, Japan). TB Green Premix Ex TaqTM ii (RR820A,
Takara, Shiga, Japan) was used for qPCR analysis. Each target gene was calculated using
the 2−∆∆CT method [36]. The primers for different target genes and β-actin (the reference
gene) are listed in Table A3.

2.12. Alendronate Treatment

24-hpf embryos were continuously exposed to 100 µM Alendronate (129318-43-0,
Absin, Shanghai, China) for 2-4 days [37]. The control groups were treated with DMSO.
3-dpf embryos were used for WISH (ctsk). 5-dpf embryos were used for AB staining and
confocal imaging.

2.13. mRNA Injection

Human MAFBWT, MAFBP59L, MAFBP63R, MAFBS70L cDNA was separately cloned
to the PCS2(+) plasmid. mRNA was transcribed using mMESSAGE mMACHINE SP6
Transcription Kit (AM1340, Thermo Fisher Scientific, Waltham, MA, USA). 1 nL of WT or
mutant MAFB mRNA (50 ng/µL) was, respectively, injected into WT or mafbb−/− embryos
at one-cell stage.

2.14. Statistical Analysis

GraphPad Prism 8.0.2 (GraphPad Software, San Diego, CA, USA, 2019, https://www.
graphpad.com, accessed on 21 March 2021) was used to analyze all data. The values of
all triplicate experiments are presented as mean ± SEM. The statistical significance was
displayed as “ns” for no statistical significance, “*” for p < 0.05, “**” for p < 0.01, “***” for
p < 0.001, and “****” for p < 0.0001. The unpaired 2-tailed student t-test was used for data
analysis. For statistical analysis with WISH and other staining results, the groups with
strong stainings are used in t-test.

https://www.graphpad.com
https://www.graphpad.com
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Figure 2. Overproduction of osteoclast cells in mafbb mutants. (A,B) WISH of ctsk and rank in embryos at 2–3 dpf. Black
boxes indicate the pharyngeal arches; white boxes indicate the pectoral fins. (C,D) Quantification of the ctsk and rank
expression during the early stages of development. 30–50 embryos were examined for each group. (E) Fluorescent images
of Tg(ctsk:mGFP) at 5 dpf (E1–3) and 1 mpf (E4–6) in WT embryos, and at 1 mpf in HOM embryos (E7,8). E1, the ventral
view of the head; Meckel’s cartilage (mk), ceratohyal (ch), hyosymplectic (h); E2, the lateral view of the tail; E3, overlay of
E2 and transmitted light brightfield image; E4, the lateral view of 1 mpf Tg (ctsk:mGFP); E5–8, higher magnifications of
boxed area in E4, neural arch (na); hemal arch (ha); E6 and E8, overlay of fluorescence and transmitted light brightfield
image; E5,6, WT; E7,8, HOM. (F) Quantification of ctsk-GFP+cells in embryos by flow cytometry in Tg (ctsk:GFP) embryos at
5 dpf. (G) Mean grey value of GFP fluorescence intensity in the white boxes in E5 and E7. 3 fish were analyzed for each
group. (H) Relative expression of genes involved osteoclast development (fosab; nfatc1; ctsk; acp5a; ocstamp; opg) in ctsk-GFP+

cells sorted from WT and HET embryos at 3–5 dpf. (I) Representative images of TRAcP histochemical staining on scales
from adult zebrafish. The arrows and arrowheads point to the increased TRAcP activity, and the arrowheads point to the
scale border. (J) Summary of the scales from different adult zebrafishes with TRAcP staining (n = 296–488 scales from 3
zebrafish per group; weak staining as in I1, strong staining as in I2,3 with increased TRAcP coloring along the scale border).
(K) TRAcP staining of 2 mpf zebrafish. Vertebral columns (K1&K1′) and caudal fins (K2&K2′). 3 zebrafish were examined
for each group with a consistent phenotype. WT, wild type; HET, mafbbd11/+; HOM, mafbbd11/d11. Results in C, F, G, H and J
are expressed as mean ± SEM, (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, t test, ns, not significant).

3. Results
3.1. Generation of Zebrafish mafbb Mutants Using the CRISPR/Cas9 System

Zebrafish contains two mafb genes, mafba and mafbb. The two genes are expressed in
distinct and overlapping areas during development. Previous studies have suggested that
MafB is highly expressed in myelomonocytic lineages of hematopoietic cells in mice [3]. In
zebrafish, mafbb is highly expressed in myeloid lineages and macrophages, we therefore
focused on mafbb. To further explore the expression of mafbb in zebrafish, we generated
a transgenic line using the construct (mafbbCE1-P1E:GFP) in which an enhancer and a
cognate promoter element of mafbb gene are used to drive the expression of the enhanced
green fluorescent protein [38]. At 24 hpf, transgenic embryos showed good GFP expression
in primitive myeloid (pm) cells, the caudal hematopoietic tissue (CHT), posterior cardinal
vein (pcv), hindbrain (hb) and otic vesicle (ot) during the early stages of development
(Figure 1A,A1–4), similar to the analysis from whole-mount in situ hybridization (WISH)
in zebrafish embryos [24], and to the GFP expression in mouse transgene containing MafB
5′-upstream fragment fused to GFP [3]. Tg(mafbb:GFP) was crossed to Tg(mpeg1:mCherry)
which directs mCherry expression in macrophages [39]. We observed that a large number
of mCherry+ macrophages co-expressed GFP in the head and the CHT region at 3 and 5 dpf
(Figure 1A,A5–10). These data support the robust expression of mafbb in macrophages, and
indicate a potential function of mafbb in macrophage and osteoclast cells.

To study the role of mafbb in zebrafish osteoclast differentiation and bone development,
we generated mafbb mutant utilizing CRISPR/Cas9 technology. The 318 aa protein Mafbb
is encoded by the 1612 bp gene mafbb, which contains one exon (Figure 1B). A guide RNA
that targets the N-terminal region of mafbb exon (Figure 1B) was designed and co-injected
with Cas9 mRNA into one-cell stage WT embryos. After screening several founders that
transmitted to F1 progeny, we established a stable line named mafbbd11/d11 that has a
frameshift mutation caused by a deletion of 11 bp. We also used a second gRNA with a
different target site and obtained a second mutant line named mafbbd4/d4 with a deletion of
4 bp (Figure 1C,D). The two mafbb mutant lines demonstrate the same phenotypes. Here,
we show the results from mafbbd11 allele for the rest of the paper.

The mortality rates in mafbb+/− and mafbb−/− were 15% and 40%, respectively, at 24 hpf,
which were significantly increased compared to wild type (WT) embryos (Figure 1E). At
3 dpf, 20–40% of mafbb−/− embryos exhibited abnormal tail bending (Figure 1F). For
mafbb−/− embryos that survived to the adults, many of them showed morphological defects.
Around 50% of the fish have the protruding lower jaw, 50% show asymmetric caudal fin
and, 10% demonstrate curved spine. These defects may occur together or independently.
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In contrast, WT and mafbb+/− zebrafish rarely showed similar abnormalities at the stages
examined (Figure 1F,G).

3.2. Osteoclast Cell Development Is Enhanced in mafbb Deficient Embryos

To investigate whether mafbb is involved in osteoclastogenesis, we first examined the
osteoclast-like cells in zebrafish embryos through WISH of two osteoclast makers, ctsk
and rank [29]. The WISH results showed that ctsk (Figure 2A) and rank (Figure 2B) were
expressed in the pharyngeal arches and the pectoral fin, as in the previous report [28].
At 2 dpf, the expression of ctsk and rank in mafbb+/− and mafbb−/− showed no difference
compared to WT. However, at 3 and 4 dpf, the expression of ctsk and rank increased
significantly in mafbb+/− and mafbb−/− (Figure 2C,D).

To analyze the osteoclast formation through the development course of mafbb mu-
tants, we generated zebrafish Tg (ctsk:mGFP) using the plasmid expressing membrane
bound EGFP (mEGFP) under the control of a medaka cathepsin K (ctsk) promoter [40].
Stable transgenic fish showed GFP expression comparable to the medaka transgenic line
from the same plasmid [40], and to the zebrafish bacterial artificial chromosome (BAC)
recombineering-based YFP labeled ctsk transgenic line [28]. At 5 dpf, GFP is expressed
in the head (including the pharyngeal arches) and the tail region (likely in the caudal fin)
(Figure 2E,E1–3). At this stage, GFP expression was increased in mafbb−/− embryos com-
pared to WT siblings. The percentage of GFP-expressing osteoclast-like cells in mafbb−/−

was significantly expanded in comparison to WT (7.8 ± 0.4% vs. 3.5± 0.01%, Figure 2F).
At later stages, GFP expression was found in the vertebrate column, around the neural
and haemal arches (Figure 2E4), similar to the expression shown in [40]. In 1-month-old
mafbb−/− zebrafish, GFP expression along the neural and haemal arches was strongly
increased compared to WT siblings (Figure 2E8,G).

To further analyze the effects of mafbb on osteoclast differentiation, we sorted ctsk+

cells from Tg (ctsk:mGFP) in WT and mafbb+/− embryos, and examined the relevant gene
expression related to osteoclastogenesis by RT-PCR (Figure 2H). The results showed that
osteoclast differentiation genes fosab and nfatc1, osteoclast maturation genes ctsk, acp5a
and ocstamp [41] were all upregulated in ctsk+ cells sorted from mafbb+/− compared to
WT at 3 and 5 dpf. However, the inhibitor factor opg (also known as tnfrsf11b) [13] was
downregulated in mafbb+/− at 3 and 5 dpf (Figure 2H). These data support that osteoclast
differentiation is enhanced when mafbb is down-regulated.

To evaluate osteoclast cells in adults, we used TRAcP enzyme staining on adult
zebrafish scales, which are part of the dermal skeleton and contain both osteoblasts and
osteoclasts. The results showed significant enhancement of TRAcP activity in mafbb+/−

and mafbb−/− scales, particularly at the scale border compared to the WT (Figure 2I,J).
We also performed TRAcP staining on adult zebrafish, and found enhanced osteoclast
activity in the spine and caudal fin of mafbb−/− fish compared to WT siblings (Figure 2K).
Thus, the development and maturation of osteoclast cells are persistently increased in
mafbb-deficient zebrafish.

3.3. mafbb Deficiency Results in Abnormal Cartilage and Bone Development

To explore whether mafbb mutation causes any bone development defects, we per-
formed alcian blue (AB) staining on 5 dpf embryos to visualize the cartilages of the pha-
ryngeal skeleton [42]. The results showed that Meckel’s cartilage (mk) in 15% of mafbb+/−

embryos is bent ventrally compared to WT (Figure 3A). In 75% of mafbb−/− embryos, mk,
basihyal (bh), and ceratohyal (ch) are all bent ventrally (Figure 3A). In a small portion (5%)
of mafbb−/− embryos, only three ceratobranchial pairs (cb) were clearly stained instead of 5
as seen in WT (Figure 3A3). We measured the ceratohyal angel (CHA) to quantify the cartil-
iage abnormality [43]. The CHA widens from 60◦ to around 100◦ (Figure 3B). Hence, mafbb
mutation leads to an abnormal arrangement of pharyngeal skeleton. We used Alizarin red
(AR) to stain for the bone mineralization in the larvae at 8 dpf. Although mafbb+/− embryos
do not show changes in AR staining of bone and teeth compared to WT (data not shown),
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the mafbb−/− embryos demonstrate a strong reduction in the mineralization, and 10% of
the embryos have a reduced number of mineralized teeth (Figure 3C).
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Figure 3. Abnormal cartilage and bone formation in mafbb mutants. (A) Alcian Blue staining of embryos at 5 dpf. A1-A3,
ventral views; A1′-A3′, lateral views. Ceratobranchial pairs (cb); ceratohyal (ch); Meckel’s cartilage (mk); basihyal (bh),
CHA (ceratohyal angel). (B) Summary of CHA in embryos at 5 dpf (n = 15 embryos per group). (C) Ventral views of
Alizarin Red (AR) staining of larvae at 8 dpf. C1′ and C2′ are the enlarged images of the teeth region (n = 30 embryos per
group). (D) MicroCT scans of adult zebrafish at 10 mpf. The hypurals in the red boxed area are used for analysis in E. (E)
Summary of BV/TV for the bones in the boxed area in D (n = 3 zebrafish per group); mean grey-level intensities of the
boxed area in D. (F) AR staining of adult zebrafish at 9 mpf. F1′–F3′” are higher magnifications of boxed area in F1–F3.
Mouths (F′), vertebral columns (F”) and caudal fins (F′”). The black arrows in F1′–F3′ point to the lower jaw; the black
arrowheads in F2”-F3” point to the neural arches; the blue arrowheads in F1′”–F3′” point to hypurals 3–5 (H3–5); The blue
arrows point to H1,2; N = 3 zebrafish per group. WT, wild type; HET, mafbbd11/+; HOM, mafbbd11/d11; BV, bone volume; TV,
total tissue volume. Results in B and E are expressed as mean ± SEM, (* p < 0.05, **** p < 0.0001, t test).

To evaluate the bone formation at later stages, we stained 9 mpf adults with AR. The
overall bone structure in the majority of mafbb+/− fish was comparable to WT, except for
the lack of small holes frequently seen in hypural 1 and 2 next to the caudal fin in WT
(Figure 3F). About half mafbb−/− zebrafish displayed the protruding lower jaw, curved
spine and the corresponding abnormal bone structure. The shape of haemal and neural
arches are more irregular and the hypurals are frequently fused in mafbb−/− (Figure 3F).
Thus, zebrafish mafbb deficiency leads to defective cartilage and skeleton development.
We further used micro-computed tomography(microCT) to examine the bone quality in
adult fish [33,34]. As bone volume fraction (BV/TV, bone volume/total tissue volume) is
a useful parameter for osteoporotic changes [33], we evaluated BV/TV for the hypural
bones (Figure 3D). BV/TV is decreased in mafbb−/− compared to WT (Figure 3E). Moreover,
the mean grey-level intensity in the hypural bones, as assessed by microCT [44], is also
decreased in mafbb−/− compared to WT. These results are consistent with the phenotypes
involved in osteoporosis, supporting the enhanced activation of osteoclast cells in the
mafbb−/− mutants.

3.4. Macrophage Differentiation Is Altered in mafbb Mutants

Osteoclast cells are developed from the monocyte/macrophage precursors through a
multistep process. While repressing osteoclastogenesis, MafB might enhance macrophage
differentiation [6]. Similar to mammalian systems, zebrafish macrophage generation occurs
in distinct waves during primitive and definitive hematopoiesis. The Ets transcription
factor PU.1/Spi-1 is a master regulator of myeloid cell development. It is critical for
macrophage differentiation, and also critical for the induction of NFATc1, Ctsk, and TRAcP
during osteoclast differentiation [45]. We first examined the primitive macrophage devel-
opment in mafbb mutants. The expression of pu.1 and the macrophage specific marker
mfap4 in the rostral blood island and the ventral tail region are both significantly decreased
in mafbb−/− mutant embryos compared to WT from 22–24 hpf (Figure 4A,B).

We then stained the embryos with pu.1 and mfap4 at later stages for definitive macrophage
development. Surprisingly, pu.1 and mfap4 expression in the ventral trunk region (the circu-
lating macrophages) in mafbb−/− is increased compared to WT at 3 and 5 dpf (Figure 4A,C).
Similarly, neutral red (NR)-stained macrophages were increased in the tail of mafbb mu-
tants. However, NR-stained macrophages in the brain (microglia) were significantly de-
creased in the mutants. A microglia specific marker apoe is also strongly reduced in
mafbb−/− (Figure 4B,C). It is known that the embryonic microglia uniquely derive from
primitive macrophages [46]. The reduced microglia development supports the reduc-
tion of primitive macrophages. To further characterize the macrophage development,
we used Tg(mpeg1:mCherry) and performed flow cytometry to analyze the total number
of mCherry+-macrophages in different embryos. At 5 dpf, the percentage of mCherry+

macrophages in mafbb−/− was significantly increased in comparison to WT (0.75 ± 0.02%,
vs. 0.18± 0.01%, Figure 4D). Thus, mafbb mutants lead to expanded definitive macrophage
differentiation and inhibit the primitive macrophage development.
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Figure 4. Macrophage development in WT and mafbb mutant embryos. (A) WISH of pu.1, mfap4 and apoe in embryos at
22–24 hpf. WISH of pu.1, mfap4 and apoe, neutral red (NR) staining in embryos at 3–5 dpf. The white arrows point to the
rostral blood island and yolk sac, the black arrows point the ventral tail region. (B) Quantification of WISH results in
embryos at 22–24 hpf (n = 50–100 embryos per group). (C) Quantification of WISH and NR staining in embryos at 3–5 dpf
(n = 50–100 embryos per group). (D) Quantification of mCherry+ macrophage cells from Tg(mpeg1:mCherry) embryos at
5 dpf by flow cytometry. WT, wild type; HOM, mafbbd11/d11. Results in B-D are expressed as mean ± SEM, (* p < 0.05,
** p < 0.01, *** p < 0.001, **** p < 0.0001, t test).

3.5. Expansion of Definitive Myelopoiesis in mafbb Mutants

Previous studies suggest that MafB might be involved in the development of mul-
tiple hematopoietic lineages in addition to macrophages [47]. To check whether lack
of mafbb leads to preferential hematopoietic lineage differentiation, we examined the
hematopoiesis in mafbb−/− by analyzing the development of various blood cells at different
stages (Figure 5A,B). The results showed that the hematopoietic stem and progenitor cells
(HSPCs), as stained by runx1 and cmyb, were decreased in mafbb−/− at 24 hpf and 3 dpf, and
were slightly decreased by 5 dpf. rag1+-T lymphocytes were slightly decreased at 5 dpf. The
hbbe1+ and benzidine stained erythrocytes are also decreased in mafbb−/− from 3–5 dpf. In
contrast, mpx stained neutrophils were significantly increased in mafbb−/− compared to WT
(Figure 5A,B), similar to the increased staining of myeloid progenitors and macrophages in
mafbb−/− mutant during the definitive hematopoiesis. We then examined mpx expression
in the primitive neutrophils, but did not see visible changes in mafbb−/− compared to WT
(Figure 5A,B).
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Figure 5. Expansion of definitive myeloid lineages in mafbb mutants. (A) WISH of runx1, cmyb, mpx, rag1 and hbbe1, and
benzidine staining of embryos during the early development stages. (B) Quantification of WISH and benzidine staining
results in embryos (n = 50–100 embryos per group). (C) Images of the kidney in adult zebrafish. May-Grunwald and Giemsa
(MGG) staining of the whole kidney marrow (WKM) blood smears from zebrafish at 9-month-old. Myelomonocytes (blue
arrows); lymphocytes (red arrows); precursors (black arrows). (D) Summary of various hematopoietic cells from adult
WKM. 3 zebrafishes and about 2000 cells in total were analyzed for each group. WT, wild type; HOM, mafbbd11/d11. Results
in B and D are expressed as mean ± SEM, (* p < 0.05, ** p < 0.01, t test, ns, not significant).

To study the myeloid lineages in adult zebrafish, we analyzed the hematopoietic
cells from the whole kidney marrow (WKM) via cytological assay. The overall kidney
morphology between WT and mafbb−/− are similar (Figure 5C,D). For the hematopoietic
cells, the population of lymphoid cells, and of the precursors were all slightly decreased in
mafbb−/−, but the population of myelomonocytes was expanded in mafbb−/−, consistent
with the phenotypes during embryogenesis (Figure 5C,D). Thus, mafbb loss of function leads
to selective expansion of definitive myelopoiesis including macrophages and neutrophils,
and a small reduction of lymphoid and erythroid differentiation.

3.6. MCTO Mutant MAFB Does Not Rescue Osteolysis in mafbb−/− Embryos

MCTO individuals carry heterozygous missense mutations in MAFB with a dominant-
inheritance pattern [14–16]. Whether the mutation in MCTO is haploinsufficiency or a
dominant negative effect remains unclear. mafbb−/− zebrafish is a null mutant and has
increased osteoclastogenesis, and Mafbb protein has 52% amino acid sequence identity
with human MafB. We thus used this as a model to determine whether MCTO mutations
could rescue the defects. The mafbb−/− embryos were injected with either WT or P59L
mutated human MAFB mRNA. The WT MAFB mRNA reduced the overproduced ctsk+-
cells, while the P59L MAFB mRNA did not (Figure 6A,B). Similarly, the P63R and S70L
MAFB mRNA were not able to reduce ctsk expression in mafbb−/− (Figure 6C,D). In addition,
the P59L MAFB mRNA injection in WT embryos did not interfere with the ctsk expression
(Figure 6A,B). These results support that the MAFB MCTO mutations are loss-of-function
mutations, and the heterozygosity of MCTO patients might be haploinsufficiency.

Currently, there are no effective treatments for MCTO patients [48]. Bisphosphonates
may be effective by interrupting the osteoclast activity and formation [49]. A previous
report suggested that bisphosphonates may slow down the progression of bone destruction
in MCTO [16]. We exposed WT, mafbb+/−, mafbb−/− embryos to alendronate (AL), a type of
bisphosphonate, and then examined the osteoclastogenesis and the cartilage development
by ctsk expression and AB staining after the treatment. AL treatment reduced the increased
ctsk+ expression in mafbb−/− embryos at 3 and 5 dpf (Figure 6E–H). More importantly,
the cartilage abnormalities such as the jaw protrude, in mafbb−/− mutants were almost
completely recovered after 4-day treatment of AL (Figure 6I,J). Thus bisphosphonates
are capable of inhibiting the excessive osteoclastogenesis in mafbb mutants. The mafbb−/−

mutant is a valid model to understand the pathophysiology of MCTO, and aid in the
identification of novel therapies.
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Figure 6. Rescue of mafbb−/− embryos by WT and MCTO mutant MAFB and alendronate. (A) WISH of ctsk expression at
3 dpf in WT uninjected embryos, WT embryos injected with human P59L mutant MAFB mRNA, HOM uninjected embryos,
and HOM embryos injected with human WT or P59L mutant MAFB mRNA. (B) Quantification of the ctsk expression
in A. (C) WISH of ctsk expression at 3 dpf in HOM uninjected embryos, HOM embryos injected with human WT, P63R
or S70L MAFB mRNA. (D) Quantification of the ctsk expression in C. (E) WISH of ctsk expression at 3 dpf in untreated
and alendronate (AL)-treated embryos. (F) Quantification of the ctsk expression at 3 dpf in E. (G) Fluorescent images of
Tg(ctsk:mGFP) at 5 dpf in WT and HOM embryos (the ventral view of head). (H) Mean grey value of fluorescence intensity
of the images in G (n = 5 zebrafish per group). (I) AB staining of cartilages at 5 dpf in untreated and AL-treated embryos.
Arrows indicate the lower jaw protrudes. (J) Quantification of AB staining in I. N = 50–100 embryos per group for A–F and
I–J. WT, wild type; HET, mafbbd11/+; HOM, mafbbd11/d11; AL, alendronate. Results in B, D, F, J and H are expressed as mean
± SEM, (* p < 0.05, ** p < 0.01, *** p < 0.001, t test, ns, not significant).



Biomolecules 2021, 11, 480 16 of 20

4. Discussion

Osteoclasts are produced from monocyte/macrophage lineage through a differen-
tiation process induced by M-CSF and RANKL [12]. In bone marrow-derived mono-
cyte/macrophage lineage cells, knockdown of MafB enhances RANKL-mediated osteoclas-
togenesis, while overexpression of MafB decreased the process [7]. Thus, MafB negatively
regulates RANKL-induced osteoclastogenesis in vitro. However, the MafB function in vivo
remains unclear. Mice with a homozygous deletion in the MafB gene or transgenic mice
containing MCTO mutation (MafBMCTO/MCTO) have been generated, but their osteoclast
development and bone formation defects have not been demonstrated.

In our studies, zebrafish MafB homolog mafbb deletion leads to consistently increased
osteoclastogenesis and the subsequent bone growth defects, supporting that MafB also
inhibits osteoclast development in vivo. The inhibition of osteoclastogenesis by mafbb might
be dosage-dependent, as the mafbb heterozygotes also manifested considerable osteoclast
cell overgrowth and bone development problems. Given the presence of an additional
MafB homolog, mafba in zebrafish, mafbb homozygous mutants might not represent a MafB
knockout, but are probably relevant for the autosomal dominant MCTO. mafba could play
a compensatory role in osteoclastogenesis, it will be important to evaluate the function of
mafba and the combined function of mafba and mafbb in osteoclastogenesis and bone growth
to better reveal the conserved roles of MafB across different species.

In MCTO patients, only heterozygous missense mutations in MAFB are observed, and
the mutations have a dominant inheritance pattern. Whether the pathogenesis of MCTO
involves haploinsufficiency or a dominant-negative effect remains unknown. MCTO
mutations all lie within a short region of the transcriptional activation domain of MAFB
(amino acids 54–71), and map to the phosphorylation sites that determine MAFB protein
stability [50]. It was hypothesized that MCTO mutations increase the MAFB protein stability
and the individual might have enhanced MAFB expression [50]. Using zebrafish mafbb
null mutants, we demonstrated MAFB MCTO mutations failed to reduce the excessive
osteoclastogenesis in the mutant embryos. This provides evidence that MCTO mutations
resemble loss of functions. Our findings are consistent with the finding showing the
reduced transactivation activity of the mutated MAFB proteins [50]. We also injected
mutant MAFB mRNA in WT embryos, and did not see noticeable effects on ctsk staining.
Thus, MCTO mutations are likely haploinsufficiency. In the future, analysis of osteoclast
differentiation in zebrafish or mice containing the MCTO mutations will help elucidate the
precise pathogenesis of MCTO osteolysis.

While repressing osteoclastogenesis, MafB might enhance macrophage differenti-
ation. Indeed, overexpression of MafB induced macrophage differentiation in chick
myeloblasts [4]. However, in MafB-deficient mice, the number of macrophages was not
impaired [6]. It was also found that combined knockout of MafB and C-Maf increases
self-renewal of macrophages [51]. These discordant results highlight that the complex
functions MafB in macrophages. Our studies indicate that MafB likely affects macrophage
development differently at different stages. During the early developmental stages, the
primitive myeloid progenitors and macrophages are strongly decreased in mafbb mutants.
In support of this, the embryonic microglia, which exclusively derive from primitive
macrophages, remain decreased in mafbb mutants. To our surprise, starting from 3 dpf,
pu.1 expression in myeloid cells, mfap4+-, NR stained- and Tg(mpeg1:mCherry) labeled-
macrophages (circulating macrophages) are all expanded in mafbb mutants. Thus, mafbb
deficiency leads to increased differentiation of definitive macrophages. Further studies
using conditional and/or inducible deletion of MafB will help to dissect MafB function in
macrophages during different stages and in different populations.

In mafbb mutants, HSPCs, the lymphoid cells and erythroid cells are all decreased
or slightly decreased. However, the myeloid cells, including neutrophils in addition to
macrophages, are significantly expanded, and the myeloid expansion remains till the adult
stage. Our findings are consistent with the results by Sarrazin et al. [52]. They demonstrate
that MafB deficiency leads to activation of myeloid master regulator Pu.1 and enhanced
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myeloid commitment in hematopoietic stem cell (HSC) reconstitution. Considering that
osteoclast cells also originate from myeloid cell lineage, our result support that mafbb
restricts definitive myeloid differentiation in vivo.

5. Conclusions

Here, we report that zebrafish mafbb deficiency leads to enhanced osteoclastogene-
sis and bone growth defects resembling MCTO. In addition, loss of mafbb in zebrafish
reduces the primitive macrophage development, but expands definitive macrophage and
myeloid lineage differentiation. Using mafbb mutants, we further demonstrate that MCTO
missense mutations are loss of function mutations, and the pathogenesis of MCTO is
likely haploinsufficiency.
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Appendix A

Table A1. Nucleotide sequence of primers used for mafbb mutants genotyping.

Primer Nucleotide Sequence 5′-3′

DET F GCGACGACAAACAGGCTAAT
DET R GGGTGTGCATGCATGAGATT

Table A2. Nucleotide sequence of primers used for the probe.

Primer Nucleotide Sequence 5′-3′

rank F AAAA TCTAGA TGGGACTTTGCTGCAGTAGA
rank R AAAA GAATTC GCCGTGATGCTGAGATTGAG
ctsk F AAAA TCTAGA CTGGCTCACTCTCTGGACAA
ctsk R AAAA GAATTC AGCTCTCACATGACGGGAAA
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Table A3. qPCR primers.

Primer Nucleotide Sequence 5′-3′

ctsk F ACCCAAACTGCAACAAGG
ctsk R TAGCCCTTCTTTCCCCAC
fosab F GGAGCAAAGACCTCCAACAA
fosab R TCTTGTTTCGTTCACGACGTA
nfatc1 F CCGAGAGCAACATGAGAGC
nfatc1 R AGCTCGATGTCTGAGTTACGC

opg F GTGAGTGTGAGGAGGGCTTC
opg R TGTCACTGTACGGCGTTCC

acp5a F CCATGTAGGAAACGTCAAAGC
acp5a R GAATGCGGAAGTTCATCTCAT

ocstamp F TCAGGTGGTCCTTGGATTTC
ocstamp R AATGGGTACTTTTGTTCCAACCT
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