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What happened to blood substitutes?

Qu’est il arrivé aux substituts du sang ?
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Abstract

Concerns about the safety and adequacy of the blood supply have fostered twenty years of research into the so-called “blood substitutes”
among them the oxygen carriers based on modified hemoglobin. Although none of these materials has yet been licensed for use in North America
or Europe, the results of research and clinical trials have increased our understanding of oxygen delivery and its regulation. In particular, the
examination of the basis for the vasoactivity observed with some of the hemoglobin based oxygen carriers has led to the insight that several
colligative properties of hemoglobin solutions, such as their diffusion coefficient for oxygen, viscosity and colloid oncotic pressure, are important
determinants of efficacy.
© 2005 Elsevier SAS. All rights reserved.
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1. Introduction

The two major impulses driving the development of blood
substitutes are concerns about the infectious risks of transfu-
sion and the adequacy of the blood supply. Although the inci-
dence of transfusion transmitted HIV, hepatitis B virus and he-
patitis C virus has been greatly reduced since the mid-1980s,
the threat of new or emerging pathogens, such as West Nile
virus and the corona virus responsible for severe acute respira-
tory syndrome, continue to motivate research into an oxygen
carrier which is free of infectious agents. Furthermore, episodic
blood shortages and the gap between the growing transfusion
needs of an aging population expecting access to increasingly
sophisticated medical care, and the shrinking proportion of the
public who are willing and able to donate blood, make a syn-
thetic or semi-synthetic oxygen carrier a desirable adjunct to
banked blood.

Three major classes of materials have been studied as blood
substitutes: perfluorocarbon emulsions, modified hemoglobin
solutions, and liposome-enclosed hemoglobin. Only the per-
fluorocarbon emulsions and the modified hemoglobin solutions
have reached the level of clinical trials; liposome-enclosed he-
moglobin remains in the pre-clinical stage of testing. A number
of reviews have discussed various aspects of blood substitutes
[1–4]. This review will focus on the hemoglobin-based oxygen
carriers (HBOC).

Hemoglobin is an obvious candidate as a blood substitute
with a number of desirable characteristics. It has a high capa-
city for O2; it lacks the numerous and complex antigens of the
red blood cell membrane, hence it is universally compatible; it
is a robust molecule which withstands rigorous purification and
viral inactivation processes; it is stable under ordinary storage
conditions; and its physiology was thought to be well under-
stood, although time has shown that there is more to be
learned. Thus, eight different companies embarked on the de-
velopment of a HBOC in the 1980s and 1990s (see Table 1).
To date, one product, Oxyglobin, has been licensed for veter-
inary use, while its sister product, Hemopure, has been ap-
proved for limited use in humans in South Africa. However,
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only three companies are still actively engaged in clinical trials
of HBOCs (Northfield, Biopure, Sangart).

2. Results of clinical trials

HemAssist—Baxter—HemAssist is a human hemoglobin
tetramer stabilized by a di-aspirin linkage [5]. It was in Phase
III clinical trials in trauma, surgery and acute ischemic stroke
when in 1998 the company halted further development. In both
the stroke [6] and the trauma trial [7] excess mortality was ob-
served among the patients receiving HemAssist compared to
those receiving banked red blood cells. However, mortality
was equivalent among patients receiving HemAssist or banked
red blood cells in a trial in cardiac surgery [8]. A post-hoc
analysis of the trauma trial failed to identify the reason for
the unexpected high mortality rate in the HemAssist treated
patients [9]. Subsequently, however, a study was published
comparing resuscitation with normal saline or the same di-as-
pirin cross-linked hemoglobin tetramer as HemAssist in an an-
imal model of traumatic brain injury [10]. The mean arterial
pressure was higher and the cardiac output was lower in the
hemoglobin-resuscitated animals. In addition, the cerebral O2

saturation was lower suggesting that O2 delivery was impaired,
perhaps the result of a vasoconstrictive response to the HBOC.

Hemolink–Hemosol–This product consists of human hemo-
globin polymerized using an oxidized trisaccharide, O-raffi-
nose, followed by a reduction step [11]. It was studied in Phase

II clinical trials in dialysis and as an oxygen carrying replace-
ment fluid in acute normovolemic hemodilution where it was
noted to have a mild systemic pressor effect [12]. In Phases II
and III studies in cardiac surgery, patients receiving up to 4
units of Hemolink required fewer transfusions of banked red
blood cells up to 5 days after surgery compared to controls
receiving pentastarch [13,14]. However, the company an-
nounced that there were safety concerns in the Phase III study
and has since not initiated any new trials with this product [15].

Hemopure–Biopure–Hemopure, and the veterinary formula-
tion, Oxyglobin, consists of bovine hemoglobin which has
been polymerized with glutaraldehyde and purified to reduce
residual hemoglobin tetramers (< 3%). It has been studied prin-
cipally for perioperative use as a ‘bridge’, deferring the need
for banked red blood cells [16–19]. It has also been noted to
have a pressor effect which correlates with increased systemic
vascular resistance and decreased cardiac index. In a study of
patients undergoing infrarenal aortic aneurysm resection, 27%
of patients randomized to receive Hemopure intraoperatively
avoided allogeneic transfusion compared to none of the pa-
tients receiving banked red blood cells, although the median
number of allogeneic units used was not different [17]. Biopure
also completed a Phase III study in non-cardiac surgery and
submitted the data to the FDA, which requested additional
data. Biopure has since proposed a Phase IIb/III clinical trial
in trauma, although the study design has not yet been approved
by the FDA [20]. Meanwhile, they have begun to explore an-

Table 1
Hemoglobin based oxygen carriers in clinical trialsa

Product

(manufacturer)

Hemoglobin source

(Modification)

Clinical trial level Application

PHP

(Ajinomoto/Apex)

Human

(PEG conjugated)

Phase III

(discontinued)

NO induced shock

HemAssist

(Baxter)

Human

(cross-linked)

Phase II

Phase III

(discontinued)

Septic shock, hemodialysis, hemorrhagic shock, cardio-pulmonary bypass

Acute blood loss-surgery, trauma

Stroke
Optro

(Somatogen/Baxter)

Recombinant

(cross-linked)

Phase II

Phase I

(discontinued)

ANH, surgery

Erythropoiesis in ESRD, refractory anemia

Hemopure

(Biopure)

Bovine

(polymerized)

Preclinical

Phase I

Phase II

Phase IIIb

Erythropoiesis

Radiosensitizer, glioblastoma

Sickle cell crisis, oncology, surgery-orthopedic,

urological, vascular, cardiac, trauma, cardioprotectant

PTCA

Surgery-cardiac, orthopedic
Oxyglobin (Biopure) Bovine

(polymerized)

Approved Veterinary-anemia, acute blood loss

PEG hemoglobin (Enzon) Bovine

(PEG conjugated)

Phase Ib

(discontinued)

radiosensitizer solid tumors

Hemolink (Hemosol) Human

(polymerized)

Phase II

Phase III

(discontinued)

Cardiopulmonary bypass-

ANH, orthopedic surgery

acute blood loss, dialysis

Cardiac surgery
PolyHeme (Northfield) Human (polymerized) Phase III Trauma, surgery
Hemospan

(Sangart)

Human (PEG conjugated) Phase II Surgery

ANH: acute normovolemic hemodilution; ESRD: end-stage renal disease; PTCA: percutaneous transluminal coronary angioplasty.
a Information current to 9/05.
b Approved in South Africa.
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other use for Hemopure as a cardioprotective agent in patients
undergoing coronary artery angioplasty or stent placement and
have completed enrollment in a clinical trial in Europe.

PolyHeme–Northfield–This preparation consists of human
hemoglobin, which has been pyridoxilated to increase the
P50, polymerized with glutaraldehyde, and purified to remove
residual tetramers [21]. It is being developed as an alternative
to banked red blood cells in surgery and trauma [22–24].
Northfield submitted data from its Phase III trial in trauma to
the FDA. They subsequently initiated a new Phase III trial of
PolyHeme in pre-hospital trauma resuscitation and have en-
rolled more than 400 patients out of a planned 720 [25].

Hemospan–Sangart–The newest HBOC in clinical trials is
prepared by conjugating polyethylene glycol (PEG) to human
hemoglobin [26]. This product has been designed with a low
P50, a large molecular diameter, and a high viscosity [27].
Phase I and II trials have been completed in Europe [28] and
another Phase II trial has been initiated in the United States
[29].

3. What have we learned?

Although HBOCs have been in development for almost 20
years, no product has yet been licensed for human use with the
exception of the limited arrangement for Hemopure in South
Africa. Nonetheless, considerable progress has been made in
developing products which meet many of the criteria for a
clinically useful and safe oxygen carrier including: better shelf
stability than banked red cells, universal compatibility, useful
vascular half-life, absence of infectious agents, avoidance of
the known toxicities related to residual stroma, and absence
of renal impairment. The HBOCs under development all have
vascular half-lives in the 18–24 h range, which is adequate for
most acute care applications (i.e. hemorrhage and surgery).
Most can be stored at 4 °C or room temperature for 1–2 years
and none of them require any form of compatibility testing. All
of them have been successfully processed to eliminate the pre-
sence of micro-organisms, although there are very few pub-
lished data on the removal of prions. None of the HBOCs pro-
duce the acute renal injury seen when unmodified hemoglobin
is present in the vascular space.

However, pre-clinical, and is some cases, clinical testing of
the HBOCs have raised other safety concerns related to vasoac-
tivity and cell toxicity, the latter either as a direct effect or one
mediated by oxidative products [30]. Some, but not all of the
various HBOCs under development have shown a systemic
pressor effect [31–33] and in some cases a pulmonary pressor
effect as well [31,34,35] usually accompanied by decreased
heart rate and cardiac output, an indicator of increased systemic
vascular resistance [36]. Although the observed systemic press-
or effect of the HBOCs, which is generally mild, is not neces-
sarily deleterious per se, the possibility that it reflects vasocon-
striction is of concern particularly if it prevents effective
perfusion of capillary beds and eliminates the benefit of in-
creased blood pressure or increased O2 carrying capacity.

HBOCs with systemic pressor effects have been shown to pro-
duce vasoconstriction in animal model systems [37].

The understanding of the mechanisms whereby some
HBOCs exert a pressor effect has progressed considerably in
the past decade. The rapid binding of nitric oxide (NO) to both
oxy- and deoxyhemoglobin [38] and the ability of the HBOCs,
which are very small compared to intact erythrocytes, to move
in the bloodstream into the RBC free zone close to the vessel
wall [39], suggested that they may trigger vasoconstriction by
scavenging the NO produced by the vascular endothelium
thereby releasing its constitutive vasodilatory influence [40–
42]. It was predicted that HBOCs with large molecular
weights, which would not be able to extravasate into the sub-
endothelial space very readily, would exert less of vasocon-
strictive effect. However, the correlation of pressor effect and
molecular weight is weak. Although a substantial pressor effect
was seen with stabilized hemoglobin tetramers, such as the dia-
spirin linked hemoglobin (HemAssist), it was also present in
formulations consisting almost entirely of higher order n-mers
of hemoglobin with very little residual tetramer, such as Poly-
Heme and Hemopure [43–45]. The pressor effect also does not
correlate well with NO affinity [46]. Therefore, NO scavenging
does not seem to be the major mechanism whereby HBOCs
exert a vasoconstrictive effect [47].

Other properties of the HBOCs are emerging as important
determinants of their ability to deliver oxygen to tissues,
among them viscosity. Hemoglobin solutions are much less
viscous than whole blood and insofar as the dilution of the
circulating blood with an HBOC would lower its viscosity
and systemic vascular resistance, it might be expected to im-
prove flow, at least at a systemic level. However, events at the
level of the microcirculation may not necessarily reflect sys-
temic hemodynamics [48]. The endothelial cells lining small
vessels appear to sense shear stress, a property of a moving
fluid, which is directly proportional to viscosity [49]. A drop
in shear stress (viscosity) triggers down-regulation of the pro-
duction of NO by endothelial cells triggering vasoconstriction
[50,51]. This viscosity-dependent regulation of flow in the mi-
crocirculation has been demonstrated in several experimental
systems [52–57].

Shear stress is affected not only by blood viscosity, but by
colloid oncotic pressure (COP) as well:

Shear stress ¼ 4μQ

πðD=2Þ3

where μ = viscosity, Q = net vascular fluid movement which is
a function of COP, and D = blood vessel diameter. HBOCs
with high COP and high viscosity would be expected to main-
tain a high level of shear stress and a vasodilated state. In ad-
dition, HBOCs with high COP would be expected to maintain
intravascular volume and cardiac output, contributing to the
maintenance of normovolemia at a systemic level [58] and per-
haps in the microcirculation as well, by maintaining shear
stress, even in the face of hemodilution [59,60]. When normal-
ized for hemoglobin concentration, HBOCs consisting of poly-
merized hemoglobin tetramers have lower COP than those con-
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sisting of stabilized hemoglobin tetramers or those which have
been surface conjugated, and might not be as effective for
maintaining intravascular volume [60], or flow though the mi-
crocirculation.

Based on the observation that terminal arterioles are inner-
vated, Guyton [61] originally proposed that they may play an
active role in regulating blood flow through the capillary beds
they supply. In recent years, a more detailed autoregulatory
theory has been proposed based on observations in animal ex-
periments and model systems [26]. This theory posits that
terminal arterioles respond to local PO2 by matching flow to
the perceived need. Paradoxically, excessive delivery of O2 at
the level of the arteriole might be expected to trigger vasocon-
striction, thereby impeding flow and oxygen delivery to the
distal capillary beds. Oxygen delivery to the arteriole may be
affected by the O2 content of the blood (which in turn depends
on hemoglobin concentration and its degree of O2 saturation),
the ability of hemoglobin to off-load O2 (determined in part by
the P50 and Hill coefficient) and the ability of O2 to diffuse
from the red cell, or oxygen carrier, to the vascular endothe-
lium.

The autoregulatory theory is supported by several key ob-
servations. The progressive drop in PO2 as blood flows along
the arterial tree and into the capillary bed is well recognized
[62]. However, the loss of O2 is particularly marked at the level
of the vasoactive terminal arterioles, where the PO2 is gener-
ally approximately 20–30 mmHg, corresponding to the steep
portion of oxy-hemoglobin dissociation curve [63].

In addition, extensive experimentation in animal and model
systems has shown that HBOCs which unload O2 at the level
of the pre-capillary arteriole trigger vasoconstriction consistent
with this autoregulatory model [64–66]. Several characteristics
of the HBOCs may affect their propensity to deliver O2 to the
arterial wall. The presence of hemoglobin in solution is known
to enhance the diffusion of O2 as well as its uptake and release
[67–69]. HBOCs are distributed in the red cell free layer of the
plasma close to the endothelium, shortening the diffusion path
for off-loaded O2, as well as facilitating diffusion of O2 from
red blood cells through the plasma toward the endothelium.
Since the diffusion coefficient of a molecule is inversely re-
lated to its molecular radius, a molecule with a small radius,
such as a stabilized hemoglobin tetramer, would have a higher
diffusion coefficient for O2 than a hemoglobin conjugated to
PEG which complexes with water and sweeps a much larger
radius. HBOCs with high diffusion coefficients might be ex-
pected to deliver O2 to the arterial wall more readily. Accord-
ingly, HBOCs with smaller molecular radii, and presumably
higher diffusion coefficients for O2, have been shown to pro-
duce vasoconstriction and limit blood flow to distal capillary
beds in several experimental systems [70–72].

Another factor which could affect O2 delivery to the arterial
wall is the oxygen affinity of the HBOC. It might be expected
that an HBOC with high oxygen affinity (low P50) would un-
load less O2 than one with low affinity and therefore be less
likely to trigger a vasoconstrictive response [46,64]. In one
model system, vasoactivity was found to be greater in an

HBOC with a higher P50 than a similar preparation with a low
P50 [46]. However, experiments in an artificial capillary system
[70] and animals [71,72] indicate that the diffusion properties
of an HBOC make more of a contribution to its vasoactivity
than the P50. Hence, the P50 seems to play only a secondary
role in determining the vasoactivity of an HBOC.

These studies now suggest that an HBOC with high viscos-
ity, high COP and large molecular radius (low O2 diffusion
coefficient) is less likely to trigger a vasoconstrictive response,
improving flow and oxygen delivery to the capillary beds.
Some of the deleterious effects noted in clinical trials, includ-
ing the systemic pressor effect, may have reflected regional
vasoconstriction and impairment of tissue oxygenation.

4. Conclusion

The search for a clinically useful oxygen carrier has proven
to be arduous and time-consuming. However, the studies of the
various HBOCs over the past decade have re-shaped our think-
ing about the mechanisms of oxygen delivery and its regula-
tion. These new insights are paving the way to realizing the
goal of adding a blood substitute to the therapeutic armamen-
tarium.
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