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Pancreatic islet transplantation as a therapeutic option for type 1 diabetes mellitus is gaining widespread attention because this
approach can restore physiological insulin secretion, minimize the risk of hypoglycemic unawareness, and reduce the risk of
death due to severe hypoglycemia. However, there are many obstacles contributing to the early mass loss of the islets and
progressive islet loss in the late stages of clinical islet transplantation, including hypoxia injury, instant blood-mediated
inflammatory reactions, inflammatory cytokines, immune rejection, metabolic exhaustion, and immunosuppression-related
toxicity that is detrimental to the islet allograft. Here, we discuss the fate of intrahepatic islets infused through the portal vein
and propose potential interventions to promote islet allograft survival and improve long-term graft function.

1. Introduction

Insulin deficiency caused by autoimmune injury of islet
β cells is the primary cause of type 1 diabetes mellitus
(T1DM). Islet replacement therapy (insulin-secreting pan-
creas transplantation or islet transplantation) enables the
physiological regulation of blood glucose and precise mainte-
nance of glycemia, which is not attainable by other modern
interventions, including insulin pumps and/or continuous
blood glucose monitoring therapies. Compared with pan-
creas transplantation, islet transplantation exhibits great
promise due to its safe and minimally invasive process and
is a sought-after option for the treatment of T1DM.

Over the past 20 years, significant progress has been
made in the management of islet cells and the outcome
of clinical islet transplantation. In some leading islet transplant
centers, it is possible to achieve 5-year insulin independence
rates of 50–70%, onaparwithwhole-pancreas transplantation
inT1DMpatients [1–5]. However,many challenges remain in
clinical islet transplantation. In this review, we focused on the
fate of the islets infused through the portal vein, which are
subjected to multiple insults, including anoxia/ischemia-
reperfusion injury, instant blood-mediated inflammatory

reaction (IBMIR), potent autoimmune and alloimmune rejec-
tions, metabolic exhaustion, and immunosuppression-related
toxicity (Figure 1). We also propose protective strategies to
circumvent these adverse events to alleviate the loss of islets
and improve the long-term outcomes of transplantation.

2. Hypoxia

Due to their high oxygen dependence and lack of ability to
scavenge free radicals, islets are particularly vulnerable to
hypoxia [6]. Revascularization is imperative for long-term
survival of dispersed islets in the hepatic vascular network.
This process usually takes 10–24 days [7], and vascular
remodeling can take up to three months [8].

Before the vessels grow into the islets, the survival of the
islets primarily depends on the passive diffusion of nutrients
and oxygen; thus, the larger the islet diameter, the more
susceptible the central cells are to hypoxia.

Cultured islets in vitro often appear darkened in the cen-
tral region when observed under an inverted microscope.
This phenomenon is defined as central cell necrosis, which
is often associated with reduced islet function [9]. Smaller
islets are therefore favorable for transplantation and might
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lead to better graft survival [10]. Even after vascularization is
complete, the vascular density, oxygen tension, and blood
perfusion of the engrafted islets remain in an anoxic state
compared with native islets [11–13]. Prolonged hypoxia dur-
ing islet transplantation initiates a cascade of biochemical
reactions causing the production of reactive oxygen species
and the induction of apoptosis and necrosis via intracellular
pathways [14]. Additionally, hypoxia and reperfusion of
oxygen induce the release of multiple proinflammatory
mediators from islets, such as high mobility group box-1,
regulated upon activation of normal T cell expressed and
secreted, tumor necrosis factor-α (TNF-α), interleukin-1β,
interferon gamma, monocyte chemoattractant protein-1,
tissue factor (TF), and macrophage inflammatory protein
1α [15, 16], which amplifies inflammation that, in turn,
impairs islet survival.

2.1. Strategies to Overcome Islet Hypoxia. A variety of
methods have been proposed to promote the survival and
improve the function of islets in an anoxic environment.
These methods can be divided into two categories: (1) protec-
tion of islets from hypoxic injury and (2) increased oxygen
supply to islets to prevent hypoxia.

Some studies have shown that gene modification can
endow islets with resistance to hypoxia by inhibiting apopto-
tic triggers. For example, heme oxygenase-1 [17, 18], A20
[19–21], B cell lymphoma 2, and X-linked inhibitor of
apoptosis [22] have been identified to prevent/alleviate islet
apoptosis and improve islet survival under in vitro and
in vivo experimental conditions but remain to be validated
in clinical studies.

Detrimental oxidative products released by hypoxia, such
as inducible nitric oxide synthase and reactive oxygen spe-
cies, promote the expression of proapoptotic genes (i.e., Fas
and Bax), resulting in rapid apoptosis or necrosis of β cells
[23]. Treatment of islet grafts with potent antioxidants can
mitigate oxidative stress. Enicostemma littorale methanol
extract can protect islets from oxidative stress-induced cell
death in vitro [24]. A redox-active metalloporphyrin,
BMX-001, was shown to enhance islet viability, reduce apo-
ptosis in vitro, and improve marginal islet mass engraftment

in diabetic mouse models [25]. Controlling oxidative stress
may improve islet survival.

The second category includes accelerating the islet vascu-
larization process posttransplantation and increasing oxygen
content at the transplant site. High levels of vascular endo-
thelial growth factor (VEGF) expression in islets and vascular
endothelial cells contribute to neovascularization [8, 26]. The
addition of VEGF to islet grafts has both positive and
negative effects, as VEGF also expedites and amplifies inflam-
mation, which is harmful to the survival of the islets. Lee et al.
reported that VEGF-transfected islets could enhance islet
vascularization and graft function in STZ-induced diabetic
mice [27]. Hepatocyte growth factor, fibroblast growth fac-
tor, epidermal growth factor, and biomaterials can also favor
isolated islet angiogenesis [28]. Uematsu et al. used a novel
scaffold, recombinant peptide to optimize prevascularization
procedures to augment subcutaneous islet function in mice
[29]. A 3D-printed vascularized device has been invented
and has enabled the long-term survival of human islets sub-
cutaneously in immune-deficient mice [10]. Oxygen feeding
to the transplanted islet is an intuitive means to overcome
hypoxia. In this case, the islets are usually stored in a bioarti-
ficial pancreas device and the de novo generated oxygen is
produced by electrochemistry [30]/photosynthesis [31] or
exogenous oxygen and is delivered into the device for islet
use. Hyperbaric oxygen therapy has been used for islet trans-
plantation in mice [32–35] and for autologous stem cell infu-
sion in patients with type 2 diabetes mellitus [36], providing
therapeutic potential for human islet transplantation. Most
of the abovementioned techniques are still at different stages
of preclinical trials.

3. IBMIR

Thus far, intraportal islet infusion remains the optimal
approach for clinical transplantation. A large number of
islets are innately destroyed by an event termed IBMIR on
contact with the recipient’s blood. It is estimated that approx-
imately 60–70% of islets are lost prior to hepatic engraftment,
which is the main cause of “primary nonfunction” and the
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Figure 1: Time frame of detrimental factors leading to early injury and late loss of function after islet transplantation is shown. Massive tissue
loss due to IBMIR early during transplantation reduces successful engraftment. Islets endure a severely hypoxic environment in the first
several days and rely only on passive oxygen diffusion for survival.
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need for 2–3 pancreas donors to achieve euglycemia in the
initial period following transplantation [37, 38].

The thrombotic/inflammatory reaction is a cascade reac-
tion that start with the coagulation and complement system
activation, activated platelet adhesion to the islet surface,
and abundant leukocyte infiltration into the islets with struc-
ture integrity disruption [39, 40].

The functional impairment and death of pancreatic islets
by IBMIR is usually ascribed to multiple pathological effects.
First, the infiltrating cells (neutrophils and macrophages) are
directly cytotoxic to the islet cells [41, 42]. Second, inflamma-
tory cytokines lead to apoptosis and necrosis of the islet cells
[43]. Finally, IBMIR potentiates and amplifies the subsequent
cell-mediated immune response (Figure 2) [42, 44, 45].

3.1. Strategies forAlleviating IBMIR.According to the reaction
characteristics, coagulation, complement activation, and
inflammatory processes can be taken as individual and/or
combined intervention targets. Potential approaches to relieve
stress and protect islets can be achieved through pretreatment
of islets in vitro and systematically administered with antico-
agulants, complement inhibitors, anti-inflammatory reagents,
or islet surface engineering (Table 1). We will discuss these
measures briefly below.

Both pretreatment and gene modification are capable of
weakening the procoagulant and proinflammatory status of
pancreatic islets to minimize the deleterious outcomes of
IBMIR. TF serves as the main trigger of IBMIR and can
inhibit blood coagulation by reducing the expression level
of TF. Islets pretreated with nicotinamide in vitro can
downregulate TF, monocyte chemoattractant protein-1,
and other inflammatory cytokines dramatically [46]. Due
to the extensive nature of events associated with IBMIR,
multiple genetic modifications may be required to provide
adequate graft protection.

The main purpose of gene manipulation in human islets
in vitro is to introduce antiapoptotic genes and antioxidant

genes to enhance the resistance of transplanted islets to
inflammation-induced injury, which constitutes a major
component of IBMIR. For example, B cell lymphoma
2-transfected human islets were obviously protected from
cytokine-induced dysfunction in vitro [47].

Multiple genes are modified simultaneously in an indi-
vidual islet to resist the harmful effects of the coagulation
and complement system, and the use of a transgenic donor
is the best solution. In this respect, pig islet xenotransplanta-
tion presents remarkable advantages and significant progress
has been made. Pigs without TF and pigs expressing a human
“antithrombotic” or “anticoagulant” gene, such as thrombo-
modulin, TF pathway inhibitor, or CD39, are available to
minimize IBMIR and coagulation dysfunction [48].

Systematic application of heparin or low-molecular-
weight dextran sulfate and soluble complement receptor-1
can improve islet survival by downregulating allogeneic
IBMIR in experimental settings but remains to be validated
in clinical studies [38, 49–51]. Controlling the inflammatory
response can also alleviate IBMIR. Gala-Lopez et al. have
shown that double blockade of interleukin-1β and TNF-α
can significantly improve the efficiency of clinical islet trans-
plantation, particularly in single-donor islet transplantation
[52]. Recent studies demonstrated that both the CXC che-
mokine receptors 1/2 inhibitor reparixin [53] and serine
protease inhibitor α1-antitrypsin [54] improved intrahepatic
islet transplantation outcomes in mice and human trials, fur-
ther confirming the efficacy of anti-inflammatory strategies,
e.g., peritransplantation, that have been an essential compo-
nent of current clinical islet transplantation. Surface engi-
neered islets have been proven to ameliorate islet survival
after islet transplantation by portal vein. For instance,
heparin-coated islets attenuate the IBMIR and lead to more
islets survived both in vitro loop model and in vivo pig
model mimicking allogeneic intraportal islet transplantation
[55]. Urokinase-, thrombomodulin-, and soluble comple-
ment receptor 1-coated islets can attenuate coagulation and
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Figure 2: Coagulation, complement, and immune cells interact to orchestrate IBMIR, the primary cause of early massive loss of transplanted
islets. Figure modified from Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1030.
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Table 1: Selected treatment options for islet graft and islet transplant recipient on targets associated with IBMIR.

Donor (in vitro pretreatment) Recipient (in vivo treatment)
Agent Mechanism Agent Mechanism

Coagulation

Anti-TF mAb Anti-TF Anti-TF mAb Anti-TF

Nicotinamide
Downregulation of TF expression on

isolated islets
Heparin Anticoagulation

Surface engineering
of islets
(i) Heparin coating
(ii) PEG coating
(iii) Composite
islet-endothelial cell
graft

Covering of islets to prevent direct
exposure to blood

LMW-DS Anticoagulation

Melagatran
Anticoagulation via thrombin

inhibition

Nacystelyn
Anticoagulation, anti-inflammatory,

& antioxidant effects

Activated protein C
Anticoagulation, fribrinolysis, NF-κB

inhibition

Thrombomodulin
Anticoagulation via thrombin

inhibition

Glycoprotein IIb/IIIa inhibitors
Inhibiting fibrinogen binding to the

receptors to prevent platelet activation
and aggregates

Complement

α-Antitrypsin Complement inhibition

LMW-DS Complement inhibition

Compstatin Complement inhibition

Cobra venom factor Depleting the complements

sCR1 (TP10)
Negative regulator of the complement
cascade that inhibits both the classic

and alternative pathways

C5a inhibitory peptide (C5aIP)

Blocks the deleterious effects of C5a to
reduce complement activation, the

chemotactic effect, and inflammatory
reactions

Proinflammatory mediators

α-Antitrypsin Blockade of PIC production α-Antitrypsin Blockade of PIC production

Antioxidant
Scavenging of reactive oxygen species

produced the isolation process
15-DSG

Blockade of PIC production via NF-κB
inhibition

Statins
Protection against ischemia-

reperfusion injury
Inhibition of proapoptotic pathways

Anti-TNF-α mAb
Binding to TNF-α prevents the

stimulation of its receptor

Heme oxygenase-1
induction

Anti-inflammatory effects via p38
MAPK-dependent pathway

IL-1 receptor antagonist
Prevention of IL-1β from binding to the

IL-1 receptor

A-20 induction
Anti-inflammatory effects via NF-κB
inhibition potent antiapoptotic gene

Reparixin
Binding to CXCR1/2 to block the

CXCL8/IL-8 axis

Active vitamin D
Anti-inflammatory effects by induction

of protective gene expression
zVAD-FMK

Pan-caspase inhibitor that suppresses
cell apoptosis

Withaferin A
Anti-inflammatory effects via NF-κB

inhibition
IDN-6556

Pan-caspase inhibitor that suppresses
cell apoptosis

JNK inhibitor

Anti-inflammatory effects by reduction
of PIC production

Antiapoptotic effects via JNK
inhibition

JNK inhibitor
Anti-inflammatory effects by reduction

of PIC production
Antiapoptotic effects via JNK inhibition

GLP-1 R agonist
(i) Exenatide (short half-life)
(ii) Liraglutide (long half-life)

Reducing apoptosis due to oxidative
stress & enhancing insulin release
Anti-inflammatory & antioxidative

properties

IBMIR = instant blood-mediated inflammatory reaction; PIC = proinflammatory cytokines; TF = tissue factor; LMW-DS = low-molecular-weight dextran
sulfate; TNF-α = tumor necrosis factor-α; sCR1 = soluble complement receptor type 1; 15-DSG= 15-deoxyspergualin; GLP-1R = glucagon-like peptide-1
receptor; IL = interleukin; JNK = c-Jun N-terminal kinase; MAPK =mitogen-activated protein kinase; CXCL = CXC chemokine ligand; CXCR= CXC
chemokine receptor.
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complement activation when exposed to blood [56–58].
Human aortic endothelial cells conjugated to the islet surface
significantly reduce all of the deleterious reactions of the
IBMIR [59]. Although these techniques exhibit the greatest
potential for islet preservation under experimental condi-
tions, further investigation and evaluation are needed in
clinical therapy.

4. Autoimmunity Recurrence and Alloimmunity

The islet allografts implanted in patients with T1DM are sub-
jected to at least two separate categories of immune responses:
(1) autoimmune T cell response and (2) conventional host
antigraft immune response.

4.1. Autoimmunity. The pathogenesis of T1DM similarly
affects the newly implanted islet grafts. The silent original
autoreactive T cells with immune memory are reawakened
by identical antigen reexposure after islet transplantation
and trigger an attack on the graft, which could be supported
by the fact that syngeneic β cells were damaged in autoim-
mune diabetic recipients [60]. The precise role of autoanti-
bodies against β cell autoantigens, such as insulin-specific
autoantibodies, glutamic acid decarboxylase, insulinoma
antigen, and zinc transporter-8, in the pathogenesis of type
1 diabetes is unclear but of great significance to the prediction
and diagnosis of T1DM [61]. People with 2 or more autoan-
tibodies are more likely to develop T1DM than those with a
single autoantibody [62]. However, the predictive ability of
these antibodies in patients with islet transplantation
remains controversial. Early studies of the immune response
after islet transplantation have shown no correlation between
preexisting autoreactive antibodies and graft dysfunction
[63, 64], but later evidence demonstrated that patients
with preformed autoantibodies have earlier islet graft loss
than recipients without antibodies [65]. In contrast, auto-
reactive T cells (including CD4 and CD8 T cells) represent
crucial players in the destruction of β cells and are the
active intervention targets for therapy.

4.2. Alloimmunity. Alloimmunity is another major cause of
transplanted islet destruction. Genetic diversity between the
donor and the recipient determines the occurrence of
immune response, which focuses primarily on human leuko-
cyte antigen molecules in humans and major histocompati-
bility complex (MHC) in mice. T cell-mediated rejection
constitutes the most important component in islet allotrans-
plantation. The difference in human leukocyte antigen-1
antigens is the target of recipient CD8 T cells, and the
difference in MHC-2 antigens is the target of recipient
CD4 T cells [66].

Whether the antigen is presented directly or indirectly,
the activation of T cells is a critical step in rejection
and requires the coordination of three signal systems
(Figure 3(a)). That is, the first signal (peptide-MHC complex
on the antigen-presenting cells), the second signal (costimu-
latory molecules such as B7-CD28 and CD40-CD154), and
the third signal (cytokines) further amplify the proliferation

of T cells [67]. The ultimate biological effect is the recruit-
ment of immune cells to the grafts with function loss.

Patients undergoing allogeneic transplants can have
humoral immunity, an antibody-mediated immune response,
involved in the rejection process. Alloreactive antibodies are
mainly directed towards MHC class I and MHC class II
molecules. They include nonspecific antibodies called panel-
reactive antibodies (PRAs) and donor-specific antibodies
(DSAs). Both are recognized as predictive prognostic markers
related to islet transplantation outcomes despite paradoxical
and uncertain roles. Early studies have shown that pretrans-
plant allogenic antibodies measured as PRA are a negative
predictor of islet transplantation outcomes [68]. Pretrans-
plantation PRA> 15% is associated with increased risk of
C-peptide loss after islet transplantation [63, 69]. Islet
transplantation outcomes in sensitized patients are often
worse than those in nonsensitized patients [69]. Later, evi-
dence did not support such a correlation between preformed
PRA and islet function posttransplantation [70]. In contrast,
there exists evidence that posttransplant-positive PRA
levels and de novo DSA cannot predict islet transplantation
outcomes [71].

4.3. Strategies for the Prevention of Auto- and Alloimmune
Rejections. It is clear that both autoimmunity and alloimmu-
nity contribute to the loss of islet function, which can occur
separately or simultaneously in a single transplant process.
Although remarkable progress in understanding the immune
response mechanisms have occurred, it remains an impor-
tant challenge to circumvent these response mechanisms in
clinical settings. To date, suppression of T cells with globally
immunosuppressive agents is the most widespread and prac-
tical approach (Table 2), as both production of antibodies
and proliferation of B cells required the help of T cells. Inhi-
bition of T cells, to some extent, can decrease the humoral
immunity, although not completely. We will focus on cellular
immunity in the following section.

Various immunosuppressive strategies have been exam-
ined in preclinical mouse models and are applied in the clin-
ical setting; these therapies are divided into the induction and
the maintenance of immunosuppression (Figure 3(b)). The
principle of induced immunosuppression is to use preemp-
tive means to maximize the consumption of T cells or inhibit
the activation of T cells, including anti-CD3, antithymocyte
globulin, or interleukin 2 receptor blockade prior to islet
transplantation. Potent induction therapy with anti-CD3
Ab or T cell-depleting antibodies plus TNF-α inhibition is
significantly associated with 5-year insulin independence of
approximately 50% in islet transplant alone, comparable to
outcomes in pancreas transplant alone, regardless of the
choice of maintenance immunosuppression [1]. The mainte-
nance of immunosuppression is more dependent on lifelong
inhibition of T cell activation and proliferation, including
tacrolimus, mTOR inhibitors, and mycophenolate mofetil
[72], with the obvious drawbacks that most of these drugs
exhibit liver and kidney toxicity and have direct toxicity
to β cells. Of particular interest, costimulatory blockade
represents a potential therapy that promotes immune toler-
ance, which has been demonstrated by several groups. For
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instance, short-term use of anti-CD154 monoclonal anti-
bodies can lead to allograft tolerance when Balb/c islets are
transplanted into STZ-treated C57BL/6 mice [73]. Moreover,
anti-CD154 antibody plus other interventions, especially
LFA-1 blockade, is highly effective [74]. Anti-CD154 anti-
body and LFA-1-induced tolerance in CD4 T-lymphocyte
subsets can transfer to multiple islet transplant recipients
[74]. Unfortunately, thrombotic events caused by anti-
CD154 antibody hinder its clinical use. Newly developed
anti-CD40 mAbs such as Chi220, ASKP40 (4D11), 3A8,

and 2C10 may be equipotent but safe. Chi220 has been
shown to extend allogenic islet survival time to more than
200 days in combination with belatacept (CTLA4-Ig) in
MHC-mismatched rhesus macaques [75]. ASKP40 exhibits
promise in retarding renal allograft rejection and antibody
production in NHPs [76]. Badell et al. reported that 3A8 plus
CTLA4Ig prevented DSA formation and potentially confers
long-term islet allograft survival in alloislet nonhuman pri-
mate models [77]. NHP experiments with 2C10 also con-
firmed prolonged islet survival, with median graft survival
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time for animals receiving 2C10 of 280 days compared to 8
days for control animals [78]. The abovementioned results
suggest the possibility that blockade of B7/CD28 signals and
anti-CD40 mAb constitutes a promising immunosuppressive
strategy to circumvent inadvertent thrombotic events caused
by anti-CD154. Additional investigations are required to val-
idate these findings in clinical human islet transplantation.
Another option is to promote the expression of T cell inhibi-
tory receptors on the islet. An example of such an approach
is that surface engineered Ba/c islet grafts with the expression
of FasL in conjunction with rapamycin treatment led to
tolerance that was maintained by CD4(+) CD25(+)
Foxp3(+) regulatory T cells (Tregs) in 100% of C57BL/6
recipients [79]. However, there exist contrary claims that
the expression of the Fas ligand does not provide protec-
tion for grafts but instead exacerbates transplanted islet
rejection [80, 81] and native islet autoimmune destruction
[82]. In this way, its role in islet transplantation remains
controversial [83]. Another example is a recently pub-
lished report showing that enforced PDL-1 and CTLA-4

expression significantly prevented the development of
autoimmune diabetes and delayed the rejection of the
MHC-matched alloislet in STZ-induced diabetic mice >120
days (from Balb/c to DBA2), providing a potential strategy
for immunosuppression-free islet transplantation [84].

Whether autoimmunity or alloimmunity represents a
greater obstacle to islet transplantation success remains an
elusive mystery. In clinical islet transplantation, the success
of the Edmonton protocol was at least partly attributable to
combined immunosuppressive regimens simultaneously
blocking both auto- and alloimmune responses [85]. Other
methods, including the use of biomaterials to encapsulate
the islet, the infusion of donor bone marrow stem cells
into recipients to produce hematopoietic chimeras [86],
inducing Treg expansion in vitro and in vivo to alter the
immune balance of Th1/Th2 [87], and combined infusion
of donor mesenchymal stem cells [88] to enhance trans-
plant efficacy may represent a path to induce immune tol-
erance or host nonresponse in autoimmune and allogeneic
situations that, although experimental, is highly desirable.

Table 2: Selected immunosuppressive and anti-inflammatory agents used in islet transplantation.

Generic name Trade name Mechanism of action Reference

Induction (depletion of T cell or inhibition of T cell activation)

Antithymocyte globulin (ATG) Thymoglobulin Polyclonal antibody, profound T cell depletion [100]

Muromonab-CD3 Orthoclone OKT3 Anti-CD3 mAb, T cell depletion [101]

Alemtuzumab
Campath
Lemtrada

Anti-CD52 mAb, T cell depletion [102]

Basiliximab Simulect Anti-CD25 mAb IL-2 receptor antagonist [103]

Daclizumab Zenapax Anti-CD25 mAb IL-2 receptor antagonist [104]

Maintenance (inhibition of T cell activation and proliferation)

Azathioprine Imurel
Purine synthesis inhibitor

Inhibition of T/B cell proliferation
[105]

Cyclosporine
Sandimmune

Neoral
Calcineurin inhibitor

Inhibition of T cell proliferation
[106]

Tacrolimus
Prograf
Advagraf

Calcineurin inhibitor
Inhibition of T cell proliferation

[94]

Mycophenolate mofetil (MMF) CellCept
Purine synthesis inhibitor

Inhibition of T/B cell proliferation
[107]

Sirolimus Rapamune mTOR inhibitor, inhibits T/B cell proliferation [108]

Everolimus Zortress/Certican mTOR inhibitor [106]

Etanercept Enbrel TNF-α inhibitor [106]

Anti-CD154-mAb Blockage of CD40/CD154 T cell costimulation [109]

Abatacept (CTLA4-Ig) Orencia (1st generation) Blockage of B7/CD28 T cell costimulation [110]

Belatacept (CTLA4-Ig) Nulojix (2nd generation) Blockage of B7/CD28 T cell costimulation [111]

Leflunomide
Arava
Lunava

Pyrimidine synthesis inhibitor, blockage of the
proliferation of T/B cells

[112]

Anti-inflammation

Adalimumab Humira Anti-TNF α-mAb (human) [113]

Infliximab Remicade Anti-TNF α-mAb (chimeric human-mouse) [114]

Etanercept Enbrel Soluble TNF receptor fusion protein [106]

Anakinra Kineret IL-1β receptor antagonist [115]

A1AT (alpha-1 antitrypsin) Reduction in inflammatory cytokines [54]

SP600125 (JNK inhibitor) Inhibition of the production of PIC [116]

PIC = proinflammatory cytokines; mAb =monoclonal antibody; TNF = tumor necrosis factor; IL = interleukin.
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5. Metabolic Exhaustion and Drug Toxicity

After the initial loss of a large number of islets, the residual
islets may suffer progressive dysfunction. It is unclear
whether the late progressive loss of function is due to
immune factors or physical exhaustion.

However, for recipients undergoing autologous pancre-
atic islet transplantation following total resection of the pan-
creas, the fact that some recipients develop diabetes over time
after achieving blood sugar homeostasis points to the possi-
bility that the chronic islet dysfunction is likely due to phys-
iological exhaustion rather than immune factors, especially
in hosts harboring a marginal islet mass [89–91].

The metabolism of β cells is exceptionally high, con-
stantly producing insulin-secreting granules. The fewer islets
available for insulin production, the greater the metabolic
pressure on each individual islet is, making the originally
marginal islet grafts more dangerous. In addition, a major
concern is the regeneration of transplanted islets. There is
@little experimental data available to demonstrate how the
islets change after transplantation. Whether β cells are regen-
erated from existing β cells or transdifferentiation by alpha
cells or derived from islet intrinsic stem cells remains an open
question. In any case, the isolated islets are deprived of
nutrients and support from the surrounding cells and lose
their primordial environment (the islets are scattered in the
pancreas with surrounding exocrine tissue), which is detri-
mental to the regeneration and resistance of β cells and
may explain why islet grafts are more vulnerable than the
pancreas after transplantation.

Antirejection drugs can effectively suppress the immune
response to the alloantigen but also increase the risk of life-
threatening infections or malignant tumors. Furthermore,
most immunosuppressive drugs, such as tacrolimus and
mycophenolate mofetil, are detrimental to β cells, with direct
toxicity, inhibition of insulin secretion, or the proliferation of
β cells [92–95]. Thus, chronic use of these drugs will have
negative impacts on grafts. Islet transplants can be deemed
to be a “true cure” for diabetes only if no immunosuppressive
drugs are applied.

With respect to reducing the metabolic load of islets,
promoting the regeneration of β cells, reducing apoptosis,
and improving the function of islets will be beneficial to the
long-term survival of islets [96–99]. For drug-related toxicity,
the development of new immunosuppressive drugs with less
toxicity or the establishment of specific immune tolerance or
immunomodulatory therapymay change the future treatment
pattern in transplantation.

6. Concluding Remarks

Although insulin regimen, continuous insulin infusion, and
strict blood glucose monitoring have made great progress in
the treatment of diabetes mellitus, it remains difficult to
achieve physiologically precise regulation of blood glucose.
The replacement of permanently destroyed β cells with islet
transplantation is the most logical treatment for T1DM and
has proven to be very beneficial to patients. Islet transplanta-
tion can prevent severe hypoglycemia, improve haemoglobin

A1C, prevent/reverse complications, and in many cases even
achieve sustained periods of insulin independence. However,
the prolonged use of immunosuppressive drugs increases the
risk of infection, hepatorenal toxicity, and tumorigenesis,
making the treatment less attractive and limiting it to
patients with severe blood sugar instability in whom other
therapies have failed. Successful islet allograft via the portal
vein is hampered by limited islet survival after transplanta-
tion resulting from persistent anoxia, innate immunity
attacks through IBMIR, recurrent autoimmune destruction
or alloimmune rejection, sustained metabolic pressure, and
drug toxicity. Optimizing islet revascularization with better
control of angiogenesis, inhibiting inflammation, reducing
oxidative stress, and promoting the regeneration of islet
β cells can further improve the outcomes of islet survival.
If these problems are properly addressed, hurdle limiting
the wider use of islet transplantation in T1DM and partial
type 2 diabetes mellitus will be the insufficiency of islet
allograft donors.

The search for alternative sources of islets is therefore
necessary. Efforts to improve islets from xenogeneic sources
are ongoing, and remarkable progress has been made in
the science and application of pluripotent stem cells, which
are now in the early stages of clinical trials. New approaches
such as the induction of specific immune tolerance and
immune regulation with Treg infusion, mesenchymal stem
cell cotransplantation, and innovative biological materials
to protect islets from the immune system provide one feasi-
ble possibility for this therapy. The combination of geneti-
cally engineered porcine islets or pluripotent stem cells
with immune isolation can solve both the organ shortage
and immune rejection problems. Although the task remains
challenging, success is possible. The ultimate goal of all
attempts is to advance islet transplantation from glycemic
control to a truly complete cure.
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