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Background:Deep brain stimulation (DBS) has been proposed as a last-resort treatment

for major depressive disorder (MDD) and has shown potential antidepressant effects in

multiple clinical trials. However, the clinical effects of DBS for MDD are inconsistent and

suboptimal, with 30–70% responder rates. The currently used DBS targets for MDD are

not individualized, which may account for suboptimal effect.

Objective: We aim to review and summarize currently used DBS targets for MDD and

relevant diffusion tensor imaging (DTI) studies.

Methods: A literature search of the currently used DBS targets for MDD, including clinical

trials, case reports and anatomy, was performed. We also performed a literature search

on DTI studies in MDD.

Results: A total of 95 studies are eligible for our review, including 51 DBS studies, and

44 DTI studies. There are 7 brain structures targeted for MDD DBS, and 9 white matter

tracts with microstructural abnormalities reported in MDD. These DBS targets modulate

different brain regions implicated in distinguished dysfunctional brain circuits, consistent

with DTI findings in MDD.

Conclusions: In this review, we propose a taxonomy of DBS targets for MDD. These

results imply that clinical characteristics and white matter tracts abnormalities may serve

as valuable supplements in future personalized DBS for MDD.

Keywords: deep brain stimulation, diffusion tensor imaging,major depressive disorder, whitematter tracks, review

INTRODUCTION

Major depressive disorder (MDD) is a type of mood disorder characterized by significant and
persistent depressed mood with various degrees of cognitive and behavioral changes. According
to the World Health Organization, MDD will be ranked first in disease burden worldwide by
2030 (1). The effectiveness of antidepressant medications is limited, and up to 35% of MDD
cases remain recurrent and resistant to medications (2). Deep brain stimulation (DBS), as a
promising neuromodulation therapy, has shown potential antidepressant effects in otherwise-
refractory MDD.

DBS exerts electric impulse to modulate neuronal activity and dysfunctional brain circuits, and
serves as a therapy for various neurological disorders, including movement disorders, epilepsy,
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pain, and psychiatric disorders. DBS was first tested as a potential
treatment for MDD in a clinical setting in 2005 (3). Since then,
open-label clinical trials are performed via different targets with
response rates varying from 36 to 60% at 1-year follow-up (4).
Recently, two double-blind, randomized, sham-controlled trials
failed to show statistically significant improvement in terms of
antidepressant efficacy of DBS for MDD in stimulation group vs.
sham group (5, 6). As a result, DBS remains an investigational
treatment for MDD. There are many contributing factors, one of
which is the diversity of brain circuits modulated by DBS between
individuals from a group of heterogeneous MDD patients.
Recent studies indicate that white matter tracts (WMT) play a
crucial role in DBS for MDD (7), and DBS alleviates depressive
symptoms by modulating neural network involved via fiber
connections (8). However, currently used DBS targets for MDD
are not based on personalized circuit targeting, which may lead
to inaccurate modulation and suboptimal effects (9).

Diffusion weight imaging (DWI) is a non-invasive technique
sensitive to water movement to quantify the tissue diffusion
rate within imaging voxel. DTI is a specific type of modeling
of the DWI using at least six diffusion measurements and
directions. It can be used for studying WMT microintegrity by
properties, such as fractional anisotropy (FA), mean diffusivity
(MD), apparent diffusion coefficient (ADC), and axial and radial
diffusivity in disease and healthy control. Regions of interest
(ROIs), voxel-based analysis and tract-based spatial statistics
(TBSS) are typically performed for group statistical analysis after
obtaining parametric maps (10). Overall, DTI is a promising
tool for studying in vivo WMT microstructure abnormality and
neural circuit dysfunction, which are implicated in MDD. This
conceptualize new insights into different models of dysfunctional
brain circuits in MDD patients, including default mode, salience,
negative affect, positive affect, attention, and cognitive control,
while suited treatment is proposed for each model (11). DTI can
also be used for tractography based on the primary eigenvector
of diffusion to obtain three-dimensional representations of
WMT. Tractography based on DTI unravels the relationship
between DBS targets and associated WMT, which may elucidate
the action mechanism of DBS for each target, and provide
a practical utility for personalized targeting. There are two
kinds of tractography methods: probabilistic and deterministic.
Deterministic tractography reconstruct one fiber from each seed
based on maximum vector, while probabilistic approaches take
into account the uncertainty of the estimation and provides
probability maps for each seed. Connectomic DBS is gradually
receiving more and more endorsement for its ability to achieve
network-level targeting. Here, we speculate that different DBS
targets forMDDmodulate different dysfunctional neural circuits,
and conduct a systematic review of existing DBS targets for MDD
to present a taxonomy of modulated WMT and dysfunctional
brain circuits.

METHODS

This systematic review was conducted following the 2020
PRISMA guideline (12). To summarize the DBS clinical trials

for MDD, articles and review papers were searched from
January 2005 to June 2021 using PubMed. Combinations of
3 medical subject heading terms (i.e., “depressive disorder,”
“major, treatment-resistant,” and “depression”) and 3 keywords,
including “deep brain stimulation,” “DBS,” and “electrical
stimulation”, were used as search criteria. The reference lists of
relevant articles were also screened. The articles include case
reports, open-label trials and randomized controlled trials, using
DBS treatment for MDD. A total of 51 clinical studies of DBS
for MDD were matched. Then, the latter set of keywords was
replaced by the terms “diffusion tensor imaging,” “DTI,” or
“white matter tracts” in the search process for DTI-relevant
literature from January 2010 to June 2021. The articles using
DTI to study abnormal WMT in MDD were included, and a
total of 44 MDD DTI studies were matched. The search was
limited to articles published in English. Three co-authors (QY,
XXG, and ZLZ) searched and assessed studies independently
to ensure accuracy and completeness, and to reduce selection
bias. Different terminologies are used in different DTI studies
to describe similar WMT (e.g., genu of the cingulate cortex
vs. forceps minor), which remains a source of information bias
despite the co-authors’ best effort to eliminate it.

RESULTS

Review of the DBS Targets and Associated
WMT
DBS is used as a treatment for MDD since 2005 (3). Here
we summarize currently used DBS targets for MDD as well
as its associated WMT through anatomic and connectomic
studies. An overview of DBS targets for MDD is listed in
Supplementary Table 1.

Subcallosal Cingulate Gyrus (SCG)
In 2005, Mayberg et al. first proposed the SCG as an
effective target for treating MDD, with four of six patients
experiencing remission at 6 months (3). A series of open-label
trials followed, with moderately satisfactory effects, showing
expected responder rates between 55 and 75% (13–15). Several
case reports also demonstrated the effectiveness of SCG-DBS
(16–21). In a preliminary, double-blind, randomized, sham-
controlled, crossover trial, 4 out of 5 patients were remitted
after 6 months of stimulation, and none of them experienced
relapse (22). The therapeutic efficacy varies with the length
of stimulation time. An immediate antidepressive consequence
of SCG-DBS was reported in an open-label trial (23). In the
studies by Kennedy et al. and Holtzheimer et al., considerable
responsiveness and remission rates were observed even 3–6
years after DBS implantation (14). Moreover, an open-label
study reported that 28 participants experienced a robust and
sustained antidepressant response to SCG-DBS in a 2–8 years
observation (24). On the other hand, Merkl et al. reported that
merely 33% of participants showed an antidepressive response
within 24–36 weeks, and there was no significant difference
of effectiveness between the active and sham groups (25).
In addition, a randomized, double-blind, sham-controlled trial
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failed to demonstrate significant antidepressant efficacy of SCG-
DBS during double-blind period (6). Similarly, another double-
blind study of 8MDDpatients showed no significant difference in
responder rates in SCG-DBS vs. sham (26). Altogether, these data
suggest that SCG-DBS could be efficacious for themanagement of
MDD, but how to improve the responder rate effectively remains
a challenge for clinicians.

The SCG is located at the center of a rich network
of fiber connections including the cingulum bundle (CB),
forceps minor (FM), and uncinate fasciculus (UF), and projects
to the orbitofrontal cortex (OFC), anterior cingulate cortex
(ACC), thalamus, ventral striatum, hippocampus, amygdala, and
temporal lobe (27). Howell et al. suggested that CB and FM
were the most likely targeted WMT for SCG-DBS (28). Studies
suggested that medial frontal cortex via FM and UF, cingulate
cortex via CB, and subcortical nuclei were the critical activation
volumes for responders (7), and antidepressant responses were
only demonstrated in the patient who had strong connectivity
of the stimulation areas to the medial prefrontal cortex (mPFC)
(29). Riva-Posse et al. and Choi et al. used post-operative and
intraoperative tractography mapping of the “depression switch”
of SCG-DBS and demonstrated that responders showed distinct
activation pathways from the ventromedial prefrontal cortex
(vmPFC) via the FM and UF and the rostral and dorsal cingulate
cortex via the CB (7, 30). For this purpose, Riva-Posse et al.
used tractography-based surgical targeting for CB, UF, and FM,
and reported 9 of 11 patients responding to the treatment at 2
years (31). Lujan et al. used a tractography-activation model tool
and found that the most therapeutic electrode contacts primarily
projected to the brain regions associated with the vmPFC,
nucleus accumbens (NAcc), and CB, and any small differences
in the electrode site may produce substantial differences in the
activated pathways (32).

Medial Forebrain Bundle (MFB)
Schlaepfer et al. first reported the clinical antidepressant effect of
MFB-DBS (33). Fenoy et al. assessed the efficacy ofMFB-DBS and
reported two out of three patients continued to have more than
80% decrease in Montgomery Asberg Depression Rating Scale
(MADRS) scores at 26 weeks. Fenoy et al. further reported that
four out of five patients had a 70% decrease in MADRS scores
relative to baseline at 52 weeks in a longitudinal study (34). An
open-label trial of DBS of the MFB in MDD suggested that 6 out
of 8 participants responded at 1 year, including 4 patients who
achieved total remission (35). Furthermore, the antidepressant
efficacy remained stable for up to 4 years, which suggested acute
and sustained antidepressant efficacy (36). Recently, Coenen
et al. provided long-term data for a small phase I, randomized
controlled clinical trial. They reported that all patients reached
the response criterion, 63% responded within a week, and 50%
were classified as remitters after 12 months of stimulation (37).
No evidence of side effects has yet been reported, but a case
study reported that a patient suffered from blurred vision after
10 months (38).

The MFB incorporates mesolimbic pathways that originate
from the ventral tegmental area (VTA) and projects to
the NAcc and the prefrontal cortex (PFC). It is a central

component of the mesolimbic–mesocortical dopamine reward
system (39, 40). MFB-DBS could activate the mesocorticolimbic
system by increasing neuronal activity through the modulation
of dopaminergic and glutamatergic neurotransmission (41).
MFB serves both as a specific stimulation target and the
center of the reward pathway simultaneously. Nonetheless, the
complex midbrain area contains tightly intertwined myelinated
fibers. There is an ongoing debate about which WMT
actually contributes to anti-depressive mechanism. The VTA
dopaminergic axons do not travel within internal capsule, while
superolateral MFB (slMFB), a branch undercuts the thalamus,
moving laterally toward the internal capsule in its ventral portion,
and then goes profoundly into Nacc and PFC, may contribute to
the antidepressant effect (42–44).

Nucleus Accumbens
The effectiveness of NAcc-DBS has been reported in several trials
(45, 46). An improvement in the Hamilton Depression Rating
Scale (HDRS) was observed in 3 out of 4 patients in an open-label
trial, whose moods improved simultaneously (45). In addition,
an open-label trial with 10 patients reported 50% responder rates
of HDRS scores 1 year after the implantation of NAcc-DBS (47).
Long-term trial reported a sustained antidepressant effect of up to
4 years, with 5 out of 11 patients reaching the response criterion
(46). Meanwhile, the neuropsychological safety of NAcc-DBS for
MDD was demonstrated in a 12-month follow-up study (48).

Anatomically, the NAcc is divided into the core and the shell,
which receive motor and limbic system information, respectively
(49). In general, efferents of the NAcc project to the cingulate
gyrus, ventral pallidum, and thalamus (50). The afferents to
the NAcc are glutamatergic from the PFC, hippocampus, and
amygdala, which excites neurons of the NAcc to establish roles
in the neurocircuitry of pleasure and reward (51). The NAcc
and SCG have close relationships with direct fiber connections,
and the underlying tracts are the CB, FM, and a part of the
UF (52). The strength of the connections between the NAcc
stimulation sites and the medial and lateral PFC significantly
predicted clinical improvement in obsessive-compulsive disorder
(OCD) based on diffusion magnetic resonance imaging (53),
but similar studies have not been reported in MDD yet. As the
clinical effect and mechanism of NAcc-DBS remain a matter of
debate, pilot studies are needed to prove effective stimulation
target localization and possible brain networks in NAcc-DBS.
In anatomical studies, the fiber pathway passing adjacent to or
connecting to the NAcc has eight tracts, including the CB, UF,
and FM, forming a capsule around the sides of the Nacc (52).
Another study combining anatomical structure and tractography
finds NAcc-DBS involves modulation of the anterior thalamic
radiation (ATR), inferior fronto-occipital fasciculus (IFOF), and
inferior longitudinal fasciculus (ILF) (54). MFB pass through the
NAcc, and then the fibers extend toward the OFC and PFC (40).

Ventral Capsule/Ventral Striatum (VS/VS)
The VC/VS is crucial in the cortico-striatal-pallidal neural
circuits and is vital in reward and motivation (55). VC/VS-DBS
was first employed in patients with OCD. During these studies,
it was found that the subjects’ comorbid depressive symptoms
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also significantly improved (56, 57). These results led to an initial
open-label trial of VC/VS-DBS for MDD, and the trials showed
favorable response rates (response rates with the HDRS were 40%
at 6 months and 53.3% at last follow-up) (58, 59). Meanwhile,
a case report described a single responder after VC/VS-DBS
who showed cessation of smoking, which indicated that VC/VS-
DBS might compensate for reward deficits and lead to reduced
smoking (60). These positive results led to randomized controlled
trials. However, the results were contradictory. Dougherty et al.
suggested VC/VS-DBS is not an efficacious therapy for MDD,
as the response rates at 12, 18, and 24 months during the
continuation phase were 20%, 26.7%, and 23.3%, respectively (5).
Additionally, the application of VC/VS-DBS was also referred to
as ventral-ALIC-DBS (a brain structure that is slightly anterior
and ventral to the VC/VS) in some studies (61–63). Bergfeld
et al. showed that ventral-ALIC-DBS resulted in a significant
decrease in depressive symptoms in 10 out of 25 patients and was
well-tolerated (63).

Different targets may modulate the same neural network that
is responsible for clinical improvement. Studies by Li et al. and
van der Vlis et al. showed that a subpart of the ALIC, which
connects areas of the prefrontal cortex with the subthalamic
nucleus and medial nucleus of the thalamus, is associated with
an effective response in VC/VS stimulation for refractory OCD
(64, 65). Previous studies using DTI showed that the ventral
ALIC contains two fiber bundles: the ATR and the slMFB,
which are implicated in reward and punishment functions (42).
slMFB emerged as a target for the treatment of MDD and
provided dopaminergic input from the brainstem. Another study
argued that clinical behavioral improvements with either ventral-
ALIC- or NAcc-DBS result from activation of the slMFB (66).
Our previous tractography study showed that ALIC-DBS also
activated IFOF and FM, which projected to the prefrontal cortex,
ventral striatum, and occipital lobe (54).

Bed Nucleus of the Stria Terminalis (BNST)
To date, only few clinical reports of BNST-DBS for MDD
are available. In a case report, a patient with severe MDD
combined with anorexia nervosa received a DBS implant
in the MFB but treatment was discontinued due to the
side effects of blurred vision after 2 years. BNST-DBS was
then employed, which resulted in profound and persistent
improvement (38). In another case study, the authors had
a longitudinal neuropsychological assessment performed
for an MDD patient following 12 months of BNST-DBS,
and significant clinical improvements in mood and anxiety
were indicated post-stimulation (67). A pilot open-label
clinical study was conducted in five patients, which presented
sustained remission of depressive symptoms in two participants,
substantial antidepressant effects in two patients, but had
minimal therapeutic effects in one patient (68). Neumann et al.
recorded local field potential activity in 7 MDD patients who
received DBS electrode implants in the BNST and proposed that
α-activity in the limbic system may be a biomarker of symptom
severity in MDD (69). BNST is a potential target for MDD,
but further exploration is warranted in larger, well-designed
clinical trials.

The BNST, located in the immediate vicinity of the VC/VS
and NAcc regions, is part of the limbic system (70) and has
projections to many structures associated with reward, stress,
and anxiety processing (71). An in-depth dissection of the
structural connectivity of the BNST is of utter importance to
decipher its role in depression. Avery et al. showed structural
and functional connections with BNST convergence in the
NAcc, thalamus, hippocampus, pallidum, caudate, and putamen
via stria teminalis (72). Moreover, the BNST is connected to
several brainstem structures via the MFB and the periventricular
system. Kruger et al. used probabilistic fiber tracking methods
to examine the connectivity mode of the human BNST in vivo,
and there were three distinct pathways: the stria terminalis as
a posterior pathway to the lateral amygdala, a ventral pathway
toward the hypothalamus, and the medial amygdala via the ansa
peduncularis (73). These findings suggested that BNST-DBS may
produce modulatory effects on the cortico-subcortical and slMFB
reward circuit.

Inferior Thalamic Peduncle (ITP)
Several case reports have described the outcomes of ITP-DBS
in two patients with MDD with favorable outcomes (74–76).
More recently, in a double-blind crossover study, the effects
of DBS at the ITP and ALIC-BNST targets were compared in
patients suffering from MDD. Although both ITP and ALIC-
BNST stimulation may alleviate depressive symptoms, only 1
patient out of 7 preferred ITP over ALIC-BNST stimulation (77).

The ITP is a structure of WM fibers that transmits
bidirectional information from the midline and intralaminar
thalamic nuclei of the non-specific thalamic system to the
OFC (75). The disruption of the thalamo-orbitofrontal system
ameliorates depressive symptoms, and the ITP together with
the nucleus reticularis thalami plays a vital role in the
pathophysiology of MDD (78). The ITP-DBS activate fibers
engaged in ATR, MFB, and IFOF, which are consistent with
the above anatomical structure involved in the thalamo-
orbitofrontal circuit.

Lateral Habenula (LH)
Sartorius et al. firstly reported a significant remission of
depressive symptoms after 4 months of LH-DBS in a patient
with MDD, and an obvious rekindling of depressive symptoms
occurred after erroneous suspension of the stimulation (79).
More precisely, they put electrodes into the main limbic afferent
WMT of the LHb (stria medullaris) for two participants in
the same trial. Both of them had improvements of more than
50% on a depressive symptom scale (80). Recently, a case
report revealed that a patient with DBS of bilateral LH achieved
significant clinical improvement at 12 weeks follow-up (81). They
demonstrated the feasibility LH-DBS forMDD, but larger clinical
trials are necessary to confirm its efficacy.

The LH is a compact nucleus that appears as a triangular
ridge stretching into the third ventricle on the dorsomedial
surface of the caudal thalamus (82). It receives the afferent
pathway of the limbic system via the stria medullaris from
the amygdala, and provides an efferent pathway to the BNST
and dorsal raphe nucleus. Then, these fibers project to several
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target brain regions, such as the hippocampus, hypothalamus,
amygdala, and cerebral cortex, ultimately playing an important
role in emotion regulation.

The halt of a pivotal clinical trial of DBS for MDD marks
the urgent need of understanding the action mechanism of DBS
for MDD (6). Recent studies reveal that WMT connectivity
plays an essential role in the clinical effect of DBS for MDD.
Riva-Posse et al. identify four fiber pathways associated with
antidepressant efficacy in SCG-DBS (7). Similar findings are
reported by Lujan et al. (32). In addition, Coenen et al. propose
that targeting superolateral branch of MFB is critical for effective
MFB-DBS (83). These findings of association between WMT
connectivity and clinical effect form a hypothesis that DBS
for MDD exert antidepressant efficacy via WMT modulation,
especially modulation of the abnormal WMT in MDD. In the
following review, we summarize abnormal WMT in MDD based
on DTI studies to reveal relevant WMT in DBS for MDD.

Review of Abnormal WMT Associated With
MDD
DTI is a variant of diffusion-weighted imaging, which is capable
to assess microstructural changes in the brain using water
molecule degree of anisotropy and structural orientation in each
voxel. It uncovers different fiber connectivity integrity between
diseased and healthy subjects by quantitative power. Voxel-based
analysis and tract-based spatial statistics can be applied to extract
summary measures from brain regions of interest (84). In this
part, we summarize the abnormal WMT in MDD discovered in
previous DTI studies (Supplementary Table 2).

Cingulum Bundle
CB runs through the cingulate gyrus superior to the corpus
callosum, connecting the medial frontal, parietal, occipital, and
temporal lobes, and the cingulate cortex. One previous study
reported increased FA in the left posterior part of the CB (85). The
majority of articles reported reduced FA values in MDD patients.
These fibers are in the left CB (86, 87), anterior CB (85, 88) and
bilateral CB (89–91). Another two studies by Zhang et al. and
Carballedo et al. found that the CB had no alteration in FA and
its subregions (92, 93). In summary, most studies have shown that
FA is reduced in the CB in patients with MDD.

Medial Forebrain Bundle
MFB is an important pathway for connecting the limbic
forebrain, midbrain, and cerebellum, and plays a key role in
the reward circuit (42). The main tract splits into two distinct
directions through the VTA (42). The inferomedial MFB traces
the wall of the third ventricle anteriorly until reaching the
lateral hypothalamus, and the slMFB branches into the NAcc,
and then project out to the OFC and PFC (39, 42). Brache
et al. reported reduced FA in the right VTA-lOFC (lateral OFC)
and VTA-dlPFC (dorsal lateral prefrontal cortex) connections in
melancholic patients (94). In addition, a battery of DTI studies
reported reduced FA in depressed patients in the left (95, 96),
right (97), and bilateral ALIC (98–100). Similarly, decreased FA
values were reported in relevant frontal brain regions (100–103).
These studies may reflect white matter microstructure alterations

of the slMFB. However, one tractography study showed that the
microstructure of the MFB in remitted depressed participants
did not differ from participants without history of depression
(104). Identification of MFB can be technically challenging due
to extensive overlap of different fibers. For instance, the ATR
is located closely and overlaps partially with the slMFB (42).
Thus, further tractography studies should explore the differential
role of ATR and slMFB in depression. Innovative fiber tracking
techniques may provide more accurate fiber identification results
in regions with crossing fibers (105).

Uncinate Fasciculus
UF is a significant bundle that connects the anterior temporal
lobe, including the hippocampus and amygdala, with the medial
and lateral frontal cortex. Several studies have suggested that
the FA value in the UF is reduced in patients with depression,
including the left (106), right (107), and bilateral UF (87, 89,
91, 108, 109). However, increase in FA has also been reported
(110). Further evidence for microstructural changes in the UF
may arise from alterations in the temporal and frontal brain
areas, potentially incorporating the UF. Reduced FA values in
the frontal regions have been reported in the left middle frontal
gyrus (101), right frontal lobe (102, 111), and bilateral frontal
regions (99, 100, 103, 112). Furthermore, reduced FA in the left
middle frontal gyrus and the right inferior frontal gyrus was
found in unipolar depressed patients compared with healthy
controls (113). Likewise, reduced FA values were found in the
temporal lobe, such as the right parahippocampal gyrus (95),
bilateral temporal white matter (103), left limbic lobe uncus (101)
and bilateral temporal lobe (108).

Forceps Minor
FM courses along the anteromedial surface of the NAcc toward
the frontal poles to connect to the prefrontal and medial
orbitofrontal brain regions, and the NAcc from side to side
(52). Given that the vital function of the PFC and the NAcc are
implicated in reward-processing incentives, it is not surprising
that the broken integrity of the FM may lead to the development
of MDD. Specifically, FA alteration in corpus callosumwas found
to be the most common results in a meta-analysis (86, 114). Yang
et al. found that first-episode medication-naive MDD patients
exhibited reduced FA in the left FM compared with healthy
controls, and the mean FA values were significantly correlated
with anhedonia (86). Meanwhile, Seok et al. and Murphy et al.
reported that FA reductions in the bilateral FM, which connected
the medial sides of the PFC, were known to be involved in
depressive symptoms (88, 91). Another study was employed
to demonstrate the abnormalities of the genu of the corpus
callosum, which showed that reduced FA may contribute to
the pathogenesis of treatment-responsive MDD (97). A similar
finding was reported in a study by Lu et al., which showed
diminished integrity within the genu of the corpus callosum and
the FM in young healthy subjects with high-trait anxiety (115).

Anterior Thalamic Radiation
The ATR connects the prefrontal lobe (mainly in the dlPFC)
and the thalamus through the ALIC. It is difficult to identify the
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two fibers in the ALIC, MFB, and ATR, but they have different
functional roles in the pathogenetic mechanism of MDD (42).
Previous studies have found reduced FA in the left ATR, and the
abnormal diffusion portion was primarily located in the dlPFC
area (107). Walther et al. delineated that FA values in MDD in
the left ATR are decreased (116). Bessette et al. and Lai and Wu
reported that white matter integrity in patients with MDD have
lower FA values in the right ATR (99, 117). Moreover, researches
showed that in participants with anxiety-related disorders, the
integrity of the bilateral ATR is diminished (115, 118). Owing
to the difficulty in distinguishing the ATR and MFB among the
ALIC section, some studies suggested that ALIC changes may
also contain areas of the ATR (95).

Inferior Fronto-Occipital Fasciculus
The IFOF, which plays a pivotal role in frontal-subcortical
circuits, projects from the occipital lobe, striatum, and thalamus
into the frontal cortex. A meta-analysis of DTI studies in patients
with MDD showed reduced FA in the IFOF traversing the right
fusiform gyrus of the temporal lobe and the ILF (119). Several
DTI studies demonstrated reduced FA in the IFOF in MDD
patients (8, 87, 89, 99, 120–122). Recently, Sugimoto et al. found
that the FA values of the bilateral IFOF and the genu of the corpus
callosum in MDD patients were significantly decreased and
inversely correlated with IL-1β levels (microstructural changes in
the IFOF and the genu of the corpus callosum are associated with
high IL-1β levels in the early stage of MDD) (8). Compared with
controls, Wang et al. found decreased FA in right IFOF in late-
onset depression. The results from this study also showed that
WMT structural connectomic changes correlated with cognitive
deficits (123).

Inferior Longitudinal Fasciculus
The ILF connects the occipital and anterior temporal lobes and
projects to the lateral and medial anterior temporal regions. The
investigation of the ILF suggested that it may be involved in
facial recognition, visual perception, reading, and visual memory
(124). While the function of the ILF is poorly understood,
several studies found reduced FA in the ILF in MDD patients
(119, 125). Liang et al. reported reduced FA in the bilateral ILF
and part of the left ILF in two MDD subtypes (subgroup 1,
deficits in sustained attention and delayed memory; subgroup 2,
dysfunction in delayed memory) (125). Zheng et al. also reported
reduced FA in the left ILF in MDD (126).

Corticospinal Tract
The CST runs through the internal capsule, which projects into
the basal ganglia and separates the thalamus from the putamen,
globus pallidus, and caudate nucleus, and is associated with
MFB. The CST is involved in the processing and coordination
of sensorimotor information that may be associated with motor
retardation and slower reaction times in MDD (106). Previous
studies reported reduced FA in the CST in adolescents and
children withMDD (89, 99). However, the functional significance
is yet to be revealed. Vilgis et al. found reduced FA in the left CST,
and a significant positive association with anxious-depressed
symptoms by exploratory post-hoc analysis (106). Recently, Liang

et al. reported widespread FA reduction in the superior portion
of the bilateral CST in patients with MDD who suffered more
deficits in sustained attention and delayed visual memory (125).
Reduced FA in the bilateral CST was also reported in drug-naive
patients with MDD (8).

Superior Longitudinal Fasciculus
The SLF connects the PFC, temporal lobe, occipital lobe, parietal
lobe and limbic system, and plays an important role in emotion
regulation and cognitive function (87, 90, 107). Several DTI
studies reported decreased FA in the SLF in MDD compared
to controls (88, 90, 91, 111, 117, 122, 123, 127, 128). Previous
studies showed that increased depression severity was negatively
correlated with decreased integrity in the SLF (129, 130).
Liang et al. revealed widespread disruption in the bilateral SLF
specifically in the subgroup of deficit in attention and memory
(125). Deng et al. reported increased FA in the left SLF of the
frontal lobe inMDD patients compared to healthy controls (107).

Each DBS Target Corresponds to
Dysfunctional Brain Regions and Circuits
Associated With Different MDD Subtypes
The abnormal WMT in MDD causes dysfunctional connections
in multiple brain regions, including medial PFC, dlPFC,
ACC, striatum, thalamus, anterior temporal lobe, parietal lobe,
occipital lobe, and brainstem. Figure 1 shows a schematic
diagram of abnormal WMT and corresponding brain regions
in MDD. The mPFC and striatum are two hub dysfunctional
brain regions in MDD, which correspond to SCG, VC/VS,
BNST, and NAcc target locations. SCG and VC/VS are the
most commonly used DBS targets for MDD in previous studies.
Thalamus and brainstem are also implicated in MDD, which
correspond to MFB, ITP, and LH target locations. Several brain
regions, including occipital lobes, parietal lobes, dlPFC, ACC,
and anterior temporal lobes are not directly targeted by DBS, but
can be modulated by connected WMT.

The abnormal WMT found in DTI studies is inconsistent,
which may due to mixed symptomatology and biotypes, which
are likely to overlap in individuals. Different dysfunctional brain
circuits underlie different biotypes (11). A previous study has
proposed six dysfunctional brain circuits inMDD, namely default
mode, salience, negative affect, positive affect, attention, and
cognitive control (11). Figure 2 is an illustrative summary of
these dysfunctional brain circuits and their associations with
WMT modulated by different DBS targets in MDD. FM and CB
are implicated in the default mode circuit; UF is implicated in the
salience circuit; CB, UF, and FM are implicated in the negative
affect circuit; CB, UF, FM, MFB, and IFOF are implicated in
the positive affect circuit; CB, SLF, and IFOF are implicated in
the attention circuit; CB and SLF are implicated in the cognitive
control circuit. We further present a taxonomy of DBS targets
based on their associated WMT and modulated dysfunctional
brain circuits: SCG, NAcc, and VC/VS modulate default mode,
salience, and negative affect circuits simultaneously; SCG, Nacc,
VC/VS, BNST, ITP, and LH modulate attention circuit; All
of the targets modulate positive affect circuit, and only SCG
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FIGURE 1 | The abnormal WMT and associated brain regions in MDD. The brain region node size represents the number of passing WMT. ACC, anterior cingulate

cortex; ATL, anterior temporal lobe; ATR, anterior thalamic radiation; CB, cingulum bundle; CST, corticospinal tract; dlPFC, dorsal lateral prefrontal cortex; FM, forceps

minor; IFOF, inferior fronto-occipital fasciculus; ILF, inferior longitudinal fasciculus; MFB, medial forebrain bundle; mPFC, medial prefrontal cortex; OL, occipital lobes;

PL, parietal lobes; SLF, superior longitudinal fasciculus; UF, uncinate fasciculus.

FIGURE 2 | The abnormal WMT in MDD and their implications in different DBS targets and dysfunctional brain circuits. ACC, anterior cingulate cortex; AG, angular

gyrus; aIPL, anterior inferior parietal lobule; BNST, bed nucleus of the stria terminalis; CB, cingulum bundle; dACC, dorsal anterior cingulate cortex; dlPFC, dorsal

lateral prefrontal cortex; DPC, dorsal parietal cortex; FM, forceps minor; IFOF, inferior fronto-occipital fasciculus; ITP, inferior thalamic peduncle; LH, lateral habenula;

LPFC, lateral prefrontal cortex; MFB, medial forebrain bundle; mPFC, medial prefrontal cortex; NAcc, nucleus accumbens; OFC, orbitofrontal cortex; PCC, posterior

cingulate cortex; PCG, precentral gyrus; SCG, subcallosal cingulate gyrus; SLF, superior longitudinal fasciculus; TP, temporal pole; UF, uncinate fasciculus; VC/VS,

ventral capsule-ventral striatum; vmPFC, ventromedial prefrontal cortex.

target modulates cognitive control circuit. In summary, SCG are
implicated in all of the dysfunctional brain circuits modulation,
Nacc and VC/VS are implicated in modulating most of the

dysfunctional brain circuits except cognitive control circuit, and
other targets are mainly implicated in modulation of positive
affect and attention circuits. We hypothesize that DTI-based
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personalized targeting strategy will render more favorable clinical
outcome for each subtype of MDD. For example, abnormality is
reported in CB, IFOF, and SLF inMDDwith cognitive deficit, and
SCG, based on DTI studies, may be the optimal target of DBS
for this subtype (123). Abnormality in CB, UF, SLF, IFL, IFOF
is reported in MDD with attention deficit, and multiple DBS
targets are implicated in these networks, including SCG, NAcc,
VC/VS, BNST, ITP, and LH (125). However, the majority of DTI
studies reported mixed results from different subtypes of MDD,
and we are not yet at a stage where we can pinpoint a DBS target
based on individual clinical manifestations. Further DTI studies
underlying different subtypes of MDD is warrant for optimizing
DBS targets.

CONCLUSIONS AND PERSPECTIVES

In this review, we focus on seven currently used DBS targets
for MDD. Most of these clinical trials show that DBS has
potential efficacy in the treatment of MDD, though the
outcomes are inconsistent. Well-documented and well-designed
double-blind RCTs are necessary to provide more powerful
evidence of the efficacy and safety of DBS for MDD. Trials
comparing various combinations of stimulation parameters
and symptoms improvement to identify optimal stimulation
parameters are also required (131). In addition, lack of
personalized targeting is another important factor that should
be taken into account for suboptimal outcomes. A recent study
reported the use of intracranial electrophysiology and focal
electrical stimulation to identify personalized treatment location
(9). In this review, we propose a taxonomy of DBS targets
for MDD that may help clinicians to choose the personalized
DBS target by non-invasive methods, such as functional
magnetic resonance imaging, diffusion tensor imaging, and
positron-emission tomography. Among these techniques, DTI
is important for understanding the network mechanism and

development of MDD, which reveals widespread structural
connectivity dysfunctions in MDD. Recently, a study of WMT
abnormalities in different subgroups of MDD patients suggested
a novel pathway to understanding the heterogeneity of MDD,
andmay shed light on optimization of subtype-specific treatment
approaches (125). Longitudinal study, such as evaluating the
time-dependent changes of WMT structures in MDD before and
after DBS, may lead to a better understanding of the action
mechanisms of DBS. Finally, the identification of individual
clinical characteristics and specific WMT abnormalities could
serve as a biomarker of therapeutic response in future DBS for
MDD studies.
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