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Introduction
Ultrasound Analysis, as one of the most commonly used examination methods, has been 
recognized as a powerful screening and diagnostic tool for physicians and radiologists 
[1, 2]. Recently, Deep Learning (DL) based Automatic Ultrasound Analysis (AUA) [3] 
methods, such as Disease Screening (DS) [4–6], Lesion Detection (LD) [7–9], Automatic 
Diagnosis (AG) [10–12], etc, have attracted attention from academics and practitioners 
[13]. As a powerful auxiliary tool to analyze the conditions of patients, AUA methods 
can help doctors to reduce their workloads.

In applications, the demands of medical workers for AUA also include Automatic 
Treatment Recommendation (ATR), a less studied field that automatically generates 
treatment recommendations without the intervention of doctors. Researchers proposed 
many DL models to address ATR tasks, which can be used to replace the doctor’s work 
to some extent [14–19]. These models can be categorized into internal and external 
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methods. Internal methods adopted elaborately designed backbone structures to extract 
informative features. By virtue of powerful structures and skillful training tricks, such 
as deep structures, residual connections, dropout layers, etc, internal methods could 
extract representative features and soon achieved the dominant position [20–23]. Exter-
nal methods adopted a shared training policy that pre-trains the model on public data-
sets firstly, and then fine-tune its parameters on the ultrasound dataset. With the help 
of public knowledge, external methods can ensure the model to be sufficiently trained 
[24–27].

However, there are two limitations in existing methods, insufficient training data 
and mismatched knowledge fields [28]. On the one hand, the main way to improve the 
performances of internal methods is to design more complex structures and use larger 
training sets. But it is difficult to acquire labeled large-scale medical datasets due to the 
high labeling costs, which will constrain the performances of internal models. On the 
other hand, ultrasound data are full of professional knowledge and may not have the 
same semantic distribution with pre-training datasets. Furthermore, how to build a 
highly related pre-training dataset for the ATR task is also a problem.

To address the aforementioned limitations, we propose the Multi-Objective Data 
Enhancement (MODE) method, which is capable of expanding the limited dataset with-
out extra labeling costs and external datasets. In addition, we present an ultrasound 
dataset of thyroid nodules, which contains not only Findings and Impressions, the 
results that average ultrasound reports should have, but also Treatment Recommenda-
tions and Severity Scores labeled by clinicians, to validate the feasibility of MODE.

Specifically, we define a main task and two auxiliary tasks on the ultrasound dataset, 
each task has its own training objective and model. The main task is the ATR task that 
generates Treatment Recommendations according to Findings and Impressions, we con-
struct a Transformer model to handle this task. The First auxiliary task is a Summary 
task that generates Impressions for given Findings, we construct a Long-Short term 
Memory (LSTM) model to handle this task. The second auxiliary task is a Regression 
task that computes Severity Scores according to Findings and Impressions, we construct 
a Convolution Neural Network (CNN) model to handle this task. Meanwhile, we present 
the Soft Parameter Sharing (SPS) method specially for sharing the learned knowledge 
from the two completely different types of auxiliary tasks to the main task. In the train-
ing process, we first train the two auxiliary tasks to learn different aspects of the ultra-
sound data, and then train the main model with the learned auxiliary knowledge as prior 
information.

With the presented ultrasound dataset as an example, Fig. 1 illustrates the comparison 
between MODE and existing methods. In Fig. 1a, an internal method directly trains the 
model to generate the Treatment Recommendations, which may suffer from the limita-
tion of insufficient training samples. In Fig. 1b, an external method pre-trains the model 
on public datasets to avoid over-fitting, but the learned common knowledge may not 
be compatible with the ultrasound dataset. In Fig. 1c, we define multiple tasks on the 
same dataset and share knowledge among models. For the first limitation, the multiple 
training objectives can force the models to learn different aspects of knowledge from the 
same dataset, and to indirectly increase the training samples. For the second limitation, 
the parameter sharing method can be used to share learned knowledge of auxiliary tasks 
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to the main task, to function like external datasets. Consequently, the proposed frame-
work can fully optimize their parameters within less training samples and little external 
knowledge.

The main contributions of this paper are listed below.

•	 A Multi-objective data enhancement method which can expanding the ultrasound 
dataset without extra labeling costs and external datasets.

•	 A Soft Parameter Sharing method used to share the learned knowledge among mod-
els.

•	 An ultrasound dataset of thyroid nodules, which contains Findings, Impressions, 
Treatment Recommendations and Severity Scores.

The rest of this paper is organized as follows. The second section briefly introduces the 
related work of this paper. In the third section, we introduce and analyze the details of 
MODE. In the fourth part, the method is applied to ultrasonic dataset, and the experi-
mental results are analyzed in detail. Finally, we summarize the work of this paper in the 
fifth part.

Related work
DL models have deeply influenced some areas of medical informatics, especially NLP-
based tasks [29]. Researchers proposed many DL models to handle different kinds of 
medical tasks, such as Automatic Diagnosis, Disease Screening, Lesion Detection (LD), 
etc. ATR is a less studied area that needs both elaborately designed structures and 
enough training samples. According to the demand of input–output formats and model 
structures, two kinds of methods, viz. internal and external methods, can be used to 
solve ATR problems.

Complying with the former category, some researchers held the opinion that extract-
ing abundant and high-quality semantic features are key factors [30], thus they have 
worked on representation models for a long time and proposed many elaborately 
designed structures and training tricks [31]. Specifically, [32] proposed an LSTM based 
model to identify text order of medical data. Borjali et al. [33] proposed a DL-NLP model 
for efficient and accurate hip dislocation medical adverse events detection. Liu et al. [34] 
proposed to use hierarchical CNN and LSTM models to handle negations and numeri-
cal values that exist in medical text. Prabhakar et al. [35] proposed to use quad-channel 
features to enhance the performance of LSTM.

Fig. 1  The comparisons between MODE and existing methods, in which orange blocks denote the main 
tasks and blue blocks are auxiliary tasks
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In the latter domain, knowledge distribution is regarded as the engine room of 
DL models, and it will be more solid with a larger scale dataset. Following this idea, 
researchers used extra datasets to pre-train the model and to expand its knowledge field. 
Rebane  et  al.  [36] used large scale diagnosis and drug records as the external dataset 
to instruct the process of medical knowledge extraction. Qin  et  al.  [37] proposed an 
orthogonal wrapper to enhance the differences between datasets and thus to extract dis-
tinguishable and informative features. To take full advantage of external knowledge, a set 
of super-large scale Internet data was pre-trained firstly to learn word embeddings, and 
then a fine-tuning stage is adopted to take advantage of these representation vectors to 
fit specific data [38, 39].

Generally, deep and complex structures have stronger feature-selecting abilities. But 
in medical related tasks, insufficient training samples may be an obstacle for internal 
models to understanding the professional knowledge, and lead to over-fitting. Using 
external dataset to pre-train the model is an intuitive method to address the over-fitting 
problem since it can provide abundant training samples. However, it may lead to mis-
matched semantic distributions if we use non-related common datasets in the pre-train-
ing processes.

We present a data enhancing method, MODE, to scale up the ultrasound dataset with-
out extra labeling costs. We define a main task and two auxiliary tasks on the ultrasound 
dataset, each task has its own training objective and model. According to the distinctive 
training objectives, auxiliary models can learn different aspects of semantic distribution. 
For example, Findings are descriptions of examination results, Impressions are corre-
sponding conclusions. The Summary task is then defined to help the model learn the 
relations between lesions and clinical symptoms. The Regression task is trained to select 
the most related factor to identify the disease. With the help of the SPS method, the 
learned knowledge of auxiliary models corresponding to different aspects of ultrasound 
analysis can be concentrated to the main task, to indirectly scale up the dataset and pro-
vide solid semantic distribution. Consequently, MODE is capable of enlarging the scale 
of professional datasets with the same domain instances.

Multi‑objective data enhancement
We introduce the structure of MODE as well as the main and auxiliary tasks in “The 
structure of MODE”–“Using transformer to handle the ATR task” sections. We propose 
the SPS method in “Soft parameter sharing” section, which is used to share the learned 
knowledge of auxiliary tasks to the main task. Finally we present the training process of 
MODE in “Training process” section.

The structure of MODE

The main idea of MODE is to reuse limited dataset by defining multiple tasks. Since all 
training objectives are defined on the ultrasound dataset, the MODE does not use any 
external data to train the models. Specifically, we define a main and two auxiliary tasks on 
the proposed ultrasound dataset, each of which has its own training objective. The main 
task, ATR, is a generation task that transforms Finding and Impression into Treatment 
Recommendation. The first auxiliary task is a Summary task that transforms Finding into 
Impression, the second auxiliary task is a Regression task that computes the Severity Score 
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according to Finding and Impression. By taking the learned knowledge of auxiliary tasks 
into account, the main task can learn different aspect of knowledge and achieve better 
performance.

We train a specific DL model for each task respectively and propose the SPS method 
to share knowledge among models. Figure 2 illustrates the topology of MODE, in which 
orange and blue blocks, as well as corresponding lines, represent the main and auxiliary 
tasks. As shown in Fig. 2a, we use an encoder–decoder LSTM to handle the Summary task 
since it can satisfy the input–output data format that converts Findings into Impressions. 
As shown in Fig. 2b, we use a CNN model to handle Severity task since it can satisfy the 
input–output data format transformation that converts Findings and Impressions into 
Severity Scores. As shown in Fig. 2c, we use an encoder–decoder Transformer to handle 
ATR task since it can satisfy the input–output data format transformation that converts 
Findings and Impressions into Treatment Recommendations.

Using long‑short term memory to handle the summary task

Since LSTM is a powerful model to detect the sequential information, we use a Bi-direction 
LSTM model to handle the Summary task. Equation (1) illustrates the computing process 
of the Summary task.

(1)
Z = [LSTM(F ), LSTM(inv(F ))]c,
I = FFN(LSTM(z)).

Fig. 2  The structure of MODE
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where F ∈ R
|F |×n is the Finding text, inv(F ) denotes the inverse order of F  , Z is the 

intermediate variable, I ∈ R
|I |×n is the Impression text, “ [∗]c ” denotes the concatenate 

operation in the channel dimension, |F| and |I| denote text lengths.
An LSTM module adopts recurrent steps to iteratively load and save historical infor-

mation to update its hidden states. Equation  (2) illustrates the updating process of 
LSTM.

where h and c ∈ R
n are hidden and cell states, superscripts denote the recurrent index, 

X t ∈ R
n is the target word of the t th recurrent step.

In the recurrent process, LSTM trains a group of gates to control what information of 
X t should be add into ct and ht . Equation (3) illustrates the definitions of gates and the 
states updating process.

where g tf , g
t
d , g

t
i , g

t
o ∈ R

n are LSTM gates, W ∗,U∗ ∈ R
n,n are trainable parameters, 

b∗ ∈ R
n are bias, × denotes matrix multiplication, “ · ” denotes Hadamard Product.

Although an LSTM model has such a complex computing process, each of its gates can 
be viewed as the combination of two linear modules. Equation (4) provides an equiva-
lent implementation of an LSTM gate in Eq. (3).

In “Soft parameter sharing” section, we propose the SPS method to share the learned 
knowledge of the LSTM model to the main task.

Using convolution neural network to handle the severity task

CNN is a powerful model which is good at transforming sequential data into a single 
value, which can be used to handle the Severity task. We use two CNN modules to 
extract important features in Findings and Impressions respectively. Equation (5) illus-
trates the computing process of CNN.

where s is the Severity Score of the ultrasound report, “ [∗]t ” denotes the concatenation 
operation in the temporal dimension.

Obviously, a CNN model mainly contains convolution and linear modules. In “Soft 
parameter sharing” section, we propose the SPS method to share the learned knowledge 
of the CNN model to the main task.

(2)ct ,ht = LSTM(ct−1
,ht−1

,X t).

(3)

g tf = X t ×W f + ht−1 ×U f + bf ,

g td = X t ×W d + ht−1 ×Ud + bd ,

g ti = X t ×W i + ht−1 ×U i + bi,

g to = X t ×W o + ht−1 ×Uo + bo,

ct = ct−1 · g tf + g td · g ti ,

ht = g to · tanh(h
t).

(4)g t = LinearW (xt)+ LinearU (x
t).

(5)s = FFN([Conv1d(F ),Conv1d(I)]t).
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Using transformer to handle the ATR task

We use a Transformer model to generate Treatment Recommendation from Finding and 
Impression since it is good at searching relations among sequences. Equation (6) illus-
trates the computing process of Transformer.

where SelfAttn(F ) = Attn(F ,F ,F ) is a special version of Attention module, Z is inter-
mediate variable, MaskAttn() has the same structure of SelfAttn except it uses a mask 
attention matrix to prevent the module from seeing future words, T  is Treatment Rec-
ommendation. Equation (7) illiterates the definition of Attn.

Similar to LSTM and CNN, a Transformer model is mainly controlled by three linear 
modules. Equation (8) illustrates the relation between linear module and the Attention.

where X is input data.
In “Soft parameter sharing” section, we propose the SPS method to share the learned 

knowledge of the Transformer model to the main task.

Soft parameter sharing

To enable the main task to take different aspects of the ultrasound dataset in to account, 
we need a cross-model parameter sharing method to share the learned knowledge of 
auxiliary tasks to the main task. As we discussed earlier, although models have different 
structures, their fundamental bricks are CNN and Linear blocks. Considering that CNN 
and Linear blocks incorporate fixed size matrices as their parameters, it is plausible to 
indirectly share knowledge across models by letting all modules use the same parameter 
matrix. However, it is difficult to use a fixed size matrix as their parameters since the 
models have different parameter shapes, a CNN model needs 3-dimension matrices as 
its kernels, but a Linear model usually uses 2 dimension parameter matrices. To address 
this problem, we propose the Soft Parameter Sharing (SPS) method, which is capable of 
transforming the global shared parameter matrix into different parameter matrices.

SPS is a CNN based algorithm that utilizes the unsymmetrical character of convolu-
tion operations to tailor matrix into specific shapes. First, we define a parameter matrix, 
called template, as the global parameters. Then, we assign a SPS kernel to each CNN, or 
Linear, module. Last, we compute the shared parameters through Eq.  (9), and use this 
parameter matrix to replace the original parameters.

(6)
Z = [FFN(SelfAttn(F )), FFN(SelfAttn(I))]t ,
T = FFN(Attn(FFN(MaskAttn(T )),Z,Z)).

(7)Attn(Q,K ,V ) = softmax(
QKT

√
n

)× V .

(8)
Q = LinearQ(X),

K = LinearK (X),

V = LinearV (X).

(9)SPS(M) = σ(E ⊗M + b).
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where E is the global template, M is the SPS kernel used to control the output size, b is 
bias.

As shown in Fig.  3, the shape of shared parameter matrix can thus be revised by 
simply adjusting the SPS kernel. For example, given the source matrix E ∈ R

r×c×p 
and a target matrix W ∈ R

r0×c0×p0 , we simply need to set the shape of M with 
[r − r0 + 1, c − c0 + 1, p0, p].

With the SPS method equipped, the CNN modules in Eq.  (5) can be replaced by 
Eq. (10), the linear modules in Eqs. (4) and (8) can be replaced by Eq. (11).

where X denotes the input data, W c ∈ R
n×n×k is the kernel of convolution module, k 

denotes the kernel size, W l ∈ R
n×n is the parameter matrix of linear module. b∗ are bias, 

⊗ denotes convolution operation.
The SPS method only replace the trainable parameters of CNN and Linear modules 

with the global template, their structures and training processes are unchanged. There-
fore, the SPS method can share knowledge among models while maintain the structural 
advantage of the original model.

Training process

In the training process, we set a specific training order to ensure the main task can take 
different aspects of the dataset knowledge into account. Specifically, we first train the 
auxiliary tasks to store the learned knowledge into the global template, and then we use 
this informative template as the initial parameter matrix of the ATR task to share knowl-
edge. Figure 4 illustrates the training order of MODE.

At the very first, the template is initialized with random values. Then, the template will 
learn different aspects of knowledge by driving the model to train auxiliary tasks. Last, 
the ATR task can inherit the learned knowledge of auxiliary tasks by using the same 
template as the initial parameters.

(10)Conv1D(X) = X ⊗W c + bc,W c = SPS(Mc).

(11)Linear(X) = X ×W l + bl ,W l = SPS(Ml).

Fig. 3  The progress of soft parameter sharing



Page 9 of 20Piao et al. BMC Bioinformatics          (2022) 23:438 	

For each task, we use the SPS model to compute the shared parameter matrices 
and to replace the original parameters of the model. Meanwhile, we use forward–
backward steps to compute the gradients and update the template. With the Sum-
mary task as an example, Algorithm 1 illustrates the training process of a task.

Experiment
In this section our goal is to showcase benefits of modeling multiple objectives in the 
same medical dataset, for which we define three tasks. We begin with two auxiliary 
tasks of Impression-generating and Severity-computing to learn different knowledge 
aspects from the dataset. Then, we define a main task of ATR. Finally, we train a spe-
cific model for each task and share the parameters of auxiliary tasks to the main task 
through SPS for which capability to share parameters would allow us to indirectly 
add more training samples to the limited dataset.

Fig. 4  The training process of MODE
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Dataset

We collect a group of 513 ultrasound reports from clinical patients, each report has two 
sequences of texts, Findings and Impressions. In addition, each report is labeled with a 
sequence of Treatment Recommendation and a severity score by a group of professional doc-
tors, at least deputy chief physicians. We extract the sentences and corresponding labels from 
the unprocessed data. The only pre-processing operation of these sentences is to tokenize 
them into character level. The dataset is partitioned randomly into training set (70%), devel-
opment set (10%) and test set (20%). The statistic of the dataset is listed in Table 1.

We define three tasks on the Ultrasound dataset. Specifically, Impression-generat-
ing is a summary task that generates Impression text for a given Finding. This task 
can alleviate the clinic doctors’ workload during the ultrasound inspections. Sever-
ity-computing is a regression, or classification, task that computes the severity of the 
disease. To emphasis MODE is compatible with multiple loss functions, the Severity-
computing is viewed as a regression task. This task can help the doctor to identify the 
patient’s situation. ATR is a Question-Answering task that generates the Treatment 
Recommendation for an ultrasound report. This task can partly replace the doctor’s 
work and make contributions to Auto Inspections of Artificial Intelligence Medical.

Competitor methods

Previous works have proposed various methods but not all of them can be applied to 
our tasks. We chose 4 most related sequence-to-sequence models for related tasks 
and implemented them as competitor methods.

•	 We used Medical LSTM [19] as the baseline of Internal LSTM. It is an alternative to 
the conventional sentiment analysis approaches in analysing large volumes of data in 
a potential flow.

•	 We used Memory-driven Transformer (MDT) [22] as the baseline of internal Trans-
former. It used a relational memory module and a memory-driven conditional layer 
normalization to record key information of the generation process of Transformer.

•	 We used Symptoms Frequency Position Attention (BiLSTM-SFPA) [20] as the base-
line of external LSTM. It used adaptive weight assignment techniques and positional 
context to address APT task. Meanwhile, it used word2vec and the Chinese Ci-Lin as 
external knowledge.

•	 We used Bidirectional Transformer [26] as the baseline of external Transformer. It 
used Bidirectional-Transformer based architecture to generate encoded representa-
tions from external datasets firstly, and then use the learned knowledge to handle 
specific tasks.

Table 1  Statistics of the ultrasound dataset

Item Type Avg. len Token Label

Finding Sequence 60 353 –

Impression Sequence 31 263 –

Treatment Sequence 53 277 –

Severity Value – – 6



Page 11 of 20Piao et al. BMC Bioinformatics          (2022) 23:438 	

Hyper‑parameters

We used random initialized vectors as word embeddings. All weights were randomly ini-
tialized by the Xavier Uniform Initializer. Dropout [40] rate, batch size and other hyper-
parameters were set according to datasets and the memory capability. All texts in the 
same batch were padded to the same length. All models were optimized using the Adam 
optimizer [41]. Particularly, to select useful features, we used FP-net to extract features 
in an anti-gradient direction. Furthermore, Eq. (12) gives an epoch related learning rate 
updating policy with an initial learning rate of 0.01.

where lr denotes the learning rate, i is the current epoch index, epochmax is the max 
epoch, 40 in our experiments.

The experiments were conducted on a NVIDIA 3090 GPU with 24 GB memory and an 
Intel 10900x CPU with 64 GB memory.

Training settings

Table 2 shows the MLLs with various training settings on the development set, where 
Time refers to training time per epoch, Param represents the number of trainable 
parameters of the model. In the Preference column, Summary and Severity denote 
using corresponding auxiliary tasks. Independent and Collaborate denote whether 
the auxiliary tasks are trained separately or integrated in the main task. In the former 
method, each task is trained one-by-one and the training order is Summary-Severity-
ATR. In the latter method, auxiliary tasks and the main task are trained simultaneously, 
the training order in each epoch is the same as Independent’s and their losses are added 
up to perform backward steps. Flags denote adding start and end flags, < start > and 
< end > , on a sequence. Since there are multiple training objectives, we use Minus Log 
Loss (MLL), MLL(loss) = −log(loss) , to represent the performance. A better model will 
produce larger MLL score.

As shown in the table, the MLL of ATR task drops to 1.49 without the help of Sum-
mary task or the Severity task, demonstrating the necessity of auxiliary knowledge. With 
the help of two auxiliary tasks, both independent and collaborative training policy can 
improve the performance of the ATR task. Although the performances of two methods 

(12)lri+1 = 0.8 ∗ lri ∗ 0.01
i+0.01

epochmax+0.01 .

Table 2  Training settings of ATR task

Preference Time (ms) Dev. MLL Param (M)

None 557 1.49 3.78

Summary 1380 1.51 3.97

Severity 602 1.54 3.93

Both 1390 1.57 4.12

Independent 557 1.56 3.78

Collaborate 1390 1.57 4.12

Non-flags 1390 1.57 4.12

Flags 1390 1.60 4.12
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are similar, they have different advantages in applications. Specifically, the independent 
training policy utilizes auxiliary tasks as pure external knowledge. It is convenient to 
transfer this method to other tasks since adding models does not affect its structure. Col-
laborative training policy treats auxiliary tasks as not only external knowledge but addi-
tional training samples. Scaling up the dataset can fully train the model and decrease the 
risk of over-fitting. Consequently, the former method can be deployed in cross-domain 
areas while the latter one is more likely to perform well in disease-specific environments. 
Furthermore, without using start and end flags, the performance drops from 1.6 to 1.57, 
showing the effectiveness of having these additional nodes.

Ablation study

Influence of model size

Figure 5 illustrates the MLLs with different hidden sizes and auxiliary tasks on the test 
set. “None” denotes the ATR task was trained independently, “Impression” and “Sever-
ity” denote corresponding tasks were used to share their knowledge to the ATR task, 
“Both” denotes ATR task was trained with the help of both auxiliary models. When the 
hidden size increased from 128 to 1024, all methods reported increasing performance 
trends, which is consistent with the fact that a larger model usually has better repre-
sentative ability. The performances generally increased before reaching a peak value, and 
then reported a decrease trend, although larger hidden sizes are adopted, which is con-
sistent with the fact that too large models won’t benefit the model. In comparison, few 
significant differences are observed over the peak performance with the help of auxiliary 
tasks. On the one hand, this shows reusing training samples can help the model to avoid 
over-fitting. On the other hand, this can be explained by the intuition that information 
exchange between auxiliary tasks and the main task can help the model to extract repre-
sentative features and learn solid semantic distribution.

Influence of layers

Figure 6 illustrates the MLLs with different layers on the test set. The trend of results 
are similar with Fig. 5. When the number of layers increased from 1 to 10, all methods 

Fig. 5  Comparisons of different hidden size
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reported increasing performance trends. This shows the model capability is proportional 
to its fitting ability. The performances of all models decreased after their peak value, 
which implies that stacking more layers does not extract more useful features, although 
the number of parameters and running time increase accordingly. Consequently, the 
model scale should match the dataset, using a large model to fit small datasets might not 
be a feasible solution. In addition, Multi-object MODE reported superior performances 
than its original versions. This shows that multi-objective structure can indirectly scale 
up the dataset and extract more useful features.

Influence of template size

Figure 7 illustrates the MLLs with different template settings on the test set. The tem-
plate size is controlled by three hyper-parameters, r, c and k. The former two param-
eters affect the hidden size and the last parameter affects the template size. We fix r 
and c as 261 and adjust k from 1 to 10. In multi-objective training mode, the trend of 
MLL increases with k. This shows the template capability of MODE is coherent with 
NN models, and larger Template will produce higher performance. To validate whether 
multi-objective or the template contributes to the improvement, we trained the main 
task itself, without auxiliary tasks, with the Template. As expected, in single-task mode, 
MODE reports a relatively inferior performance than its multi-objective version. Con-
sequently, multi-objective can indeed help the model to learn extensive knowledge and 
solid semantic distribution from auxiliary tasks, and improve the performance of the 
main task.

Case study

To further investigate the effectiveness of our method, we selected some cases and visu-
alized their representation matrices. Figure 8 shows the data visualization results of an 
ultrasound report.

Figure 8a and b are the visualizations of Finding and Impression texts in the Sever-
ity task, Fig. 8c and d are the visualizations of predicted recommendations in the ATR 

Fig. 6  Comparisons of different layers
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task, with and without the help of auxiliary tasks. In each figure, rows and columns 
represent words and semantic distribution respectively. It is observed in Fig. 8a and b 
that the representation vectors of some words are obviously different from the oth-
ers, indicating that these words may have special relations and are critical to analyze 
the conditions of patients. As shown in Fig.  8c, the ATR task inherits these impor-
tant words, which will benefit the generation of recommendation. In opposite, with-
out the help of auxiliary tasks, shown in Fig.  8d, the visualization of the predicted 

Fig. 7  Comparisons of different template settings

Fig. 8  The visualization of an ultrasound report
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recommendation tends to be evenly distributed, indicating that ATR task cannot 
find informative words and lead to the insufficient performances. Consequently, the 
learned knowledge of auxiliary tasks can be used to increase the performance of the 
main task.

Space cost

It is intuitive that the space complexity of MODE is larger than existing models since 
MODE adopts multiple NN models. However, with the help of SPS, MODE has 
fewer parameters than a Multi-Task method should have. To illustrate this conclu-
sion, we use the parameter size to show the impacts of multiple training objectives 
on space cost. Figure  9 illustrates the number of parameters of MODE, as well as 
its competitors, with different layers. In general, more layers will lead to high com-
plexity, and the memory cost grows in proportion to the number of layers. Still, too 
large memory may introduce redundant and invalid information so as to negatively 
affect the generation process and lead to over-fitting. In comparison, the number 
of parameters of MODE grows slower than existing models, for most of the param-
eters are stored as the Template, and MODE only stores kernels and bias, which has 
much fewer parameters than the linear modules. It is worth noting that each model 
of LSTM, CNN and Transformer contains only one task, but MODE contains all of 
the three tasks. Although MODE has multiple tasks, its parameters are much fewer 
than existing models and have a relatively flatten increase trend. It is demonstrated 
that merely small amount of parameters are introduced when adding tasks and mod-
els in the memory. This observation suggests that the proposed MODE is effective 
and efficient in space cost. Similarly, Fig. 10 shows the number of parameters with 
different hidden sizes, which reaches the same outcome with the situation of differ-
ent layers.

Fig. 9  The number of parameters with different number of layers



Page 16 of 20Piao et al. BMC Bioinformatics          (2022) 23:438 

Interpretability

We explore the parameter distribution of MODE to study its interpretability. To make 
clarity representations, we set template size with [10, 105, 105] and the slices of the Tem-
plate are illustrated in Fig. 11. In the figure, we use heat-maps to visualize the param-
eters, the red dots represent positive values and blue dots represent negative values. At 
the first glance, there are three kinds of parameter distributions, in which the 0th and the 
9th indices have little distinguishable information, the 1, 4, 6, 7th slices and the remains 
have similar structures but opposite values. The first and the last slices may store com-
mon knowledge or unimportant features, while other slices may store semantic features 
related to different training objectives. Each slice in the 2–8th slices has two notable ver-
tical lines and a set of distributed clusters, and the second line has the same sign with the 
corresponding clusters. Obviously, red and blue lines, as well as clusters, indicate that 
the corresponding slices would like to pay more attention to these areas, which may be 
the key factors or important context words.

To further explain how MODE utilizes the Template, we present the distribution of 
SPS kernels. Figure 12 illustrates an example of a SPS kernel which is used to generate 

Fig. 10  The number of parameters with different hidden sizes

Fig. 11  Differences among template slices
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parameters for the last Attention module of the Transformer. Corresponding to the 
Fig. 11, we set the hidden size of Transformer with 100, and the kernel size should be set 
with [10, 1, 6, 6]. In the figure, the first term of indices {0, 1, 2} denote the kernels of W q , 
W k and W v respectively, the second term of indices {0 ∼ 9} denote the weights of each 
slice in Fig. 12. At the first glance, we can see that the SPS kernels of W q and W k have 
relatively large values in the 4 and 9th slices and small values in others. W v has a similar 
situation but the 4, 5, 8th slices are large (both positive and negative). It can be noting 
that, in Fig. 11, the vertical line of the 4th slice is positive, which has the same sign of the 
4th kernel. This indicates that the 4th slice is strongly enhanced by the kernel. In oppo-
site, although the parameters of the 5th kernel of W v is large, the corresponding kernel 
of W q has small values, near to zero, indicating that the 5th slice is suppressed by the 
kernel. The similar situation also happens in other kernels and slices. Consequently, each 
module will weight specific areas of the Template, and activating different areas of the 
Template will produce various semantic features.

Final results

The final results on the test set are shown in Table 3. In addition to training time per 
epoch, test times are additionally reported. We use the best settings on the development 
dataset for all models.

As shown in Table 3, the final results on the Ultrasound dataset are consistent with 
the development results. Internal and external methods have their own merits in 
handling the ATR task. Specifically, internal methods [19, 22] have fewer parameters 
and test time while external methods [20, 26] have better performance. The reason 
is external methods have to learn a large scale of dataset in their training stages, and 
more complex structures are needed. In comparison, internal methods have relatively 
small structures since too large models will lead to over-fitting in limited datasets. 

Fig. 12  Parameter distribution of SPS kernel

Table 3  Statistics of the final results

Preference Time (ms) tst. MLL Param (M)

LSTM [19] 875 1.49 14.1

Transformer [22] 545 1.52 9.6

LSTM [20] 993 1.56 14.5

Transformer [26] 568 1.54 10.2

MODE 557 1.60 4.12
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These results illustrate that the scale of model structure should match the dataset 
scale, a larger model can extract abundant and highly qualified features but need 
more training samples. From this viewpoint, many existing methods have tried trade-
off, not essential solutions, to solve small-scale and professional datasets.

MODE gives highly competitive results when compared with existing methods in 
the literature and reports relatively less parameters and test times. To improve the 
performance, MODE adopted a larger and more complex structure. To fully train 
MODE, we indirectly scale up the dataset by defining multiple training objectives 
to learn different aspects of knowledge. Meanwhile, we use SPS to take advantage of 
learned knowledge and decrease the space cost. Consequently, MODE has the merits 
of both internal and external methods, and achieved superior performance.

Conclusion
This paper tackles the contraction between insufficient training samples and profes-
sional knowledge in medical datasets. We propose the Multi-Objective Data Enhance-
ment framework for learning and sharing various aspects of knowledge in the limited 
dataset. Compared with existing methods, MODE has two merits, (1) having the 
ability to scale up the dataset without external knowledge and (2) concentrating its 
parameters into a global parameter matrix to decrease the space cost.

The limitation of this paper would be that we only used text data in the experi-
ments. Intuitively, using multi-modal information, such as signal and image data, to 
train the MODE will achieve better performance. But in applications, there is a qual-
ity problem in different data sources. An ultrasound report is a detailed description 
of a patient’s condition, which is a formal document in clinical diagnosis and has a 
set of specific writing specifications. In opposite, ultrasound signal or video data are 
the records of clinical diagnosis, which contains much irrelative information to the 
report. It is difficult for an NN model to handle such irregular, or even vague data. 
Considering these two situations, we decided to use text data in the experiments. In 
addition, the MODE is theoretically a language-insensitive method, and it will func-
tion normally in different languages. But we only conducted the experiments in a sin-
gle-language dataset. The reason is the ultrasound reports were collected and labeled 
by the cooperative clinicians, which are not familiar with English terms.

In the future work, we will try to utilize multi-modal information and seek for more 
multilingual datasets.
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