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Recent studies have shown that physical activities can prevent aging-related

neurodegeneration. Exercise improves the metabolic landscape of the body.

However, the role of these differential metabolites in preventing neurovascular

unit degeneration (NVU) is still unclear. Here, we performed single-cell analysis

of brain tissue from young and old mice. Normalized mutual information (NMI)

was used to measure heterogeneity between each pair of cells using the non-

negative Matrix Factorization (NMF) method. Astrocytes and choroid plexus

epithelial cells (CPC), two types of CNS glial cells, differed significantly in

heterogeneity depending on their aging status and intercellular interactions.

The MetaboAnalyst 5.0 database and the scMetabolism package were used to

analyze and calculate the differential metabolic pathways associated with aging

in the CPC. These mRNAs and corresponding proteins were involved in the

metabolites (R)-3-Hydroxybutyric acid, 2-Hydroxyglutarate, 2-Ketobutyric

acid, 3-Hydroxyanthranilic acid, Fumaric acid, L-Leucine, and Oxidized

glutathione pathways in CPC. Our results showed that CPC age

heterogeneity-associated proteins (ECHS1, GSTT1, HSD17B10, LDHA, and

LDHB) might be directly targeted by the metabolite of oxidized glutathione

(GSSG). Furthermolecular dynamics and free-energy simulations confirmed the

insight into GSSG’s targeting function and free-energy barrier on these CPC age

heterogeneity-associated proteins. By inhibiting these proteins in CPC, GSSG

inhibits brain energy metabolism, whereas exercise improves the metabolic

pathway activity of CPC in NVU by regulating GSSG homeostasis. In order to

develop drugs targeting neurodegenerative diseases, further studies are needed

to understand how physical exercise enhances NVU function and metabolism

by modulating CPC-glial cell interactions.
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Introduction

The number of people living with dementia worldwide has

doubled since 1990, from nearly 21 million to 44 million (Nichols

et al., 2019). Alzheimer’s disease and associated dementia

(ADRD) is a general term for irreversible and progressive

neuronal damage. ADRD is a common symptom of various

neurodegenerative diseases and one of the major causes of

disability and death in the elderly (Gonzales et al., 2022).

Even in older adults without dementia, cognitive decline and

neurodegenerative changes with age are evident even in those

without a history of dementia, suggesting a common

pathophysiological mechanism for ADRD (Gonzales et al.,

2022). With age, brain glucose metabolism deteriorates,

leading to problems with energy supply. In AD, glucose

metabolism is perturbed even before symptoms appear

(Cunnane et al., 2020). Dysregulation of synaptic signaling

and ion transport across membranes is caused by impaired

brain glucose metabolism (Cunnane et al., 2020). Cerebral

glucose hypometabolism in ADRD-related neurodegenerative

diseases results from various complex causes, including

impaired neuronal glucose uptake, impairment of aerobic

glycolysis, impaired tricarboxylic acid cycle, dysfunctional

axonal transport, and lack of glial cell energy supply

(Cunnane et al., 2020; Li et al., 2022a). In recent years,

scientists have been exploring therapeutic strategies to combat

ADRD by improving brain energy metabolism (Cunnane et al.,

2020; Scariot et al., 2021). Previous studies have shown that

exercise may improve brain energy metabolism by improving

growth and development, the body’s ability to work, and the

overall fitness of the individual (Camandola and Mattson, 2017;

Mattson and Arumugam, 2018; Okamoto et al., 2021; Li et al.,

2022a).

Exercise increases blood flow to the brain and improves

macroscopic hemodynamics and microscopic neurovascular

functions (Kosmala et al., 2013; Yuan et al., 2015; Seidel et al.,

2019; Hafez et al., 2020; Burma et al., 2021). Numerous studies

have shown that exercise has a protective effect on cerebral

vascular function as it protects the blood-brain barrier,

promotes the formation of new blood vessels, and reduces

neuronal apoptosis, contributing to improved neurological

function after cerebral ischemia (Hafez et al., 2021; Zhang

et al., 2022a). Cerebrovascular disease-related ADRD could be

improved with exercise (Nation et al., 2011; McGough et al.,

2017). Research has also shown that exercise interventions can

prevent ADRD and stroke-related neurovascular disease in

the aging brain (Lucas et al., 2015). With advances in

neuroscience research, neurovascular unit injury has gained

increasing attention as a contributing factor to ADRD

pathogenesis (Liu et al., 2019). A neurovascular unit

(NVU) comprises neurons, astrocytes, microglia, vascular

endothelial cells, perivascular cells, basement membrane,

and extracellular matrix. We speculated that exercise

prevents AD by improving NVU function (McGough et al.,

2017).

Exercise improves the metabolic landscape of vascular

cells and prevents diseases associated with vascular

dynamics (Teuwen et al., 2019; Wang et al., 2019; Beckman

et al., 2020; Hasan and Fischer, 2022; Khoramipour et al.,

2022). Metabolites have a neurovascular remodeling function

in humans that is critical to brain function (Smith and Ainslie,

2017; Mirzahosseini et al., 2022). In recent studies, small

molecule metabolites have been shown to target key

enzymes in the NVU microenvironment to improve the

treatment of neurological diseases via metabolically

targeted interventions (Wang et al., 2021; Mirzahosseini

et al., 2022). It has been shown that the endogenous ketone

body beta-hydroxybutyrate facilitates the recovery of peri-

infarct neurovascular function and metabolism (Bazzigaluppi

et al., 2018). In contrast to traditional ab initio drug design,

molecular dynamics simulation (MDS) can accurately predict

the binding patterns of small molecule metabolites to target

proteins (Aci-Sèche et al., 2016; Al-Qattan et al., 2018; Do

et al., 2018). We propose to use MDS to identify potential

patterns of metabolite targeting of key proteins that may shed

light on how exercise improves cerebrovascular metabolism

(Do et al., 2018; Liu et al., 2018; Pradiba et al., 2018Pradiba

et al., 2018).

Exercise prescription improves the metabolic profile of the

body’s microenvironment, and these metabolites prevent

neurodegeneration by targeting NVUs. However, the

mechanism behind this is not well understood. To correct the

abnormal microenvironment in neurodegenerative diseases, we

use a single-cell and bioinformatic approach to identify key

cellular subtypes and metabolic pathways involved in the

development of neurodegenerative diseases. We also aim to

conduct pharmaceutical studies and develop drugs to treat

neurodegenerative diseases.

Methods

Data acquisition

Datasets were downloaded from Gene Expression Omnibus

(GEO, http://www.ncbi.nlm.nih.gov/GEO/) (Barrett et al., 2012).

The keywords “single-cell”, “blood-brain barrier”, and “aged”

were used to retrieve age-related studies and scRNA-seq
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transcriptome datasets in the GEO database. The

GSE147693 dataset included single-cell transcriptome

sequence data from young and old cerebrovascular cells with

NVU, with 3 replicates of each group (Zhao et al., 2020). Two

groups of male mice were included in this dataset: those

2–3 months old and 18–20 months old. As described in

previous studies, there were 63,300 cells in the single-cell

master count matrix [http://cells.ucsc.edu/?ds=aging-brain].

This dataset can be visualized, and is also available online

[https://singlecell.broadinstitute. org/single_cell/study/SCP829/

aging-mouse-brain-kolab]. Our study examined the

relationship between age and the transcriptional profile of

NVU using the GSE147693 dataset.

Analyzing metabolic pathways associated
with exercise

Koay YC et al. identified metabolites that differ in circulating

blood after exercise in their study. They demonstrated the effects

of regular exercise, which could be used as a new treatment

strategy for metabolic conditions associated with vascular disease

(Koay et al., 2021). Supplementary files from this study showed

metabolic adaptation to an 80-days exercise intervention after

regulating the lifestyle factors like diet, sleep, and physical

activity. Exercise-regulated metabolites were explored in this

study. The metabolic substances regulated by physical exercise

were identified in this study.

The MetaboAnalyst database, a comprehensive suite of web-

based tools, was used in this study for metabolomics data

analysis, visualization, and functional annotation (Chong

et al., 2019). MetaboAnalyst results were further visualized

using Hiplot, a free web service (Li et al., 2022b).

scRNA-seq quality filtering, dimensionality
reduction, and clustering

ScRNA-seq data from the GSE147693 dataset were

analyzed using the “Seurat” package for cellular integration,

dimensionality reduction, clustering, and cellular annotation

(Stuart et al., 2019; Lin et al., 2021; Chen et al., 2022a). Data

from scRNA-seq was first checked for quality. Quality control

criteria were as follows: 1. Genes expressed in fewer than three

cells were removed, leaving a total of 19,746 genes; 2. Cells

containing less than 400 genes or more than 12,000 genes were

removed; 3. Cells containing more than 10 unique molecular

identifiers (UMIs) from the mitochondrial genome were

removed; 4. Cells expressing more than 5 hemoglobin-

related genes were removed; 5. Gene features expressed by

no more than 10 cells were excluded. Finally, 44,860 cells and

19,029 gene signatures were obtained. With Seurat, the

canonical correlation analysis (CCA)-based integration

function was used to eliminate batch effects. The number

of clusters was determined using the “FindNeighbors” and

“FindClusters” functions, with a resolution value of 0.6.

Seurat’s FindVariableFeatures function was used to identify

genes with a high variance. For further clustering analysis,

UMAP was applied to the cells following the “RunUMAP”

command (Becht et al., 2019). The final cell annotation was

then completed using the cell lineage marker genes applied

previously (Zhao et al., 2020). Proportions of each cell type in

the two groups were visualized using the “ggplot2” package.

Seurat’s “FindMarker” function was also used to extract target

cells from the scRNA-seq data. Differentially expressed genes

(DEGs) were calculated between the older and younger groups

at the single cell level. |log FC| greater than 0.25 and p-value

less than 0.05 were considered statistically significant

differences.

Non-negative matrix factorization
clustering

NMF is a soft clustering method that extracts features in

matrices well without needing a priori knowledge. By further

analyzing the features, NMF can give the probability of a

sample belonging to a particular class and is particularly

useful for analyzing continuous developmental processes in

a single cell. Combining this approach with traditional

clustering analysis allows defining more complex sets of

cell states and corresponding gene features. This study

used Consensus Non-negative Matrix factorization (cNMF)

to solve the problem of not having unique results after

decomposing NMF. High variance genes derived from the

above analysis were selected. Hyperparameters were selected

based on the following: 1. Firstly, the lithotripsy map of PCA

and the diagnostic map given by the authors were combined

to determine the components that should be selected; 2. The

components with extreme distributions were removed after

combining with the cell score distribution of the Usage

matrix. Finally, the cosine distances were calculated on

NMF, and the K-NearestNeighbor (kNN) was used to

stabilize the optimization map and perform the clustering

analysis.

Estimating heterogeneity

Previous studies have examined the heterogeneity of single

cell profiles in the mouse brain vasculature by examining the

average Normalized Mutual Information (NMI) between

different cell types (Marjanovic et al., 2020). Each subtype

cluster consisted of 100 differentially expressed genes, whose

expression was discretized by equal width intervals. The median

NMI of the sampled pairs within each time point was calculated
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by sampling 100 cells from each class 100 times and accounting

for differences in the number of cells between samples. NMI was

calculated between each pair of cells. p-value was calculated for

the difference in NMI value between the two groups by

comparing the number of sub-samples in the A group to

those in the B group.

Cell-cell communication analysis

Cell-cell communication was analyzed to identify cellular

interactions across cell subtypes and other cells in the cerebral

vasculature at different ages (Kumar et al., 2018; Maia et al., 2018;

Shao et al., 2020; Chen et al., 2022b). CellChat was used to infer

ligand-receptor crosstalk between single cells (Jin et al., 2021).

Identified ligands or receptors were then projected onto a

network of protein-protein interactions, and a permutation

test was performed to infer biologically meaningful cell-cell

communication. Intercellular communication network senders,

receivers, mediators, and influencers were also identified with

CellChat. “CellChat”, “Seurat”, “ggplot2”, and “ggalluvial” were

used for statistical analysis and mapping.

Single-cell metabolic analysis

Metabolic activity was quantified in single cells using

scMetabolism, a software developed by Fudan University

Institute, to implement the scRNA-seq metabolic analysis.

Based on a conventional single-cell matrix file, the software

utilizes the vision algorithm to determine the activity score of

each cell in every metabolic pathway (Wu et al., 2022).

scMetabolism software was pre-populated with 85 KEGG

pathways and 82 Reactome entries. The metabolic activity was

analyzed after transforming the altered data set homologously.

And the metabolic score was calculated by the Vision algorithm

(DeTomaso et al., 2019). Finally, the metabolic activity of various

pathways among different groups was determined to obtain

pathways with significant differences (McDavid et al., 2013).

CytoTRACE analysis

CytoTRACE is a computational method that predicts cell

direction and differentiation status from single-cell RNA

sequencing (Gulati et al., 2020). CytoTRACE predicts

differentiation status in scRNA-seq data without any a priori

knowledge. CytoTRACE captures gene count features by

summing the total number of genes expressed greater than

zero in every cell. By exploiting local similarity between cells

and applying a two-step smoothing procedure, the estimation of

the GCS vector was improved iteratively. Finally, the graphs were

saved with the “plotCytoTRACE” code.

Gene ontology functional enrichment
analysis and kyoto encyclopedia of genes
and genomes pathway analysis

As in previous studies, GO enrichment analysis was

performed using the molecular function (MF), biological

processes (BP), and cellular components (CC) (Chen et al.,

2017; Chen et al., 2022b; Zhang et al., 2022b; Zhang et al.,

2022c; Feng et al., 2022; Kang et al., 2022). To determine the

best functional and in vivo pathways significantly enriched by the

active ingredient targets, the significance of the KEGG pathway

was set at p < 0.05. ClusterProfiler and ggplot2 in R were used to

plot bar graphs of the GO and KEGG pathways (McDavid et al.,

2013; DeTomaso et al., 2019).

Docking of small molecules and proteins

ECHS1 (P30084), GSTT1 (P30711), HSD17B10 (Q99714),

LDHA (P00338), and LDHB (P07195) Protein Data Bank (PDB)

files were obtained from the uniport database (https://www.

uniprot.org/uniprot) (Cramer, 2021). Quercetin quantum

chemical optimization, including correction of bond length,

bond angle, and dihedral angle, and calculation of RESP2.

0 fixed charge, was carried out using Quantum Chemical

Software, Orca. (Neese et al., 2020). Using the software smina,

docking of the ligand with hydrogen was performed on the

protonated protein. The lowest energy conformation was

selected as the final conformation for kinetic simulation

(Masters et al., 2020).

Molecular dynamics simulation

GROMACS 2019.4 software was used to perform MD

simulations, Amber14sb was chosen as the protein force

field, Gaff2 was chosen for small molecules, and the TIP3P

water model was used to build a water box and add sodium

ions to balance the complex system. Particle-mesh Ewald

(PME) uses the steepest descent method for energy

minimization of the maximum number of steps (50,000) in

the elastic simulations by Verlet and CG algorithms,

respectively (Van Der Spoel et al., 2005). The Coulomb

force cutoff distance and van der Waals radius cutoff

distance were both 1.4 nm, and the system was equilibrated

using the regular system (NVT) and isothermal isobaric

system (NPT). The MD simulation was performed for

100 ns at room temperature and pressure. The LINCS

algorithm constrained the hydrogen bonds with a 2 fs

integration step in MD simulations. Particle-mesh Ewald

(PME) was calculated with 1.2 nm as the cutoff value. NVT

and NPT equilibrium simulations were conducted at 300 K for

30 ps, and the MD simulations for the protein-ligand complex
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were performed for 100 ns. In order to evaluate the tightness

of the system structure, the radius of rotation (Rg) was used.

Calculation of free energy of binding
between proteins and metabolites

Molecular mechanics [MM] with Poisson--Boltzmann [PB]

and surface area solvation (MM/GBSA) method was used to

calculate the free binding energy between receptor and ligands

(Valdés-Tresanco et al., 2021). The equilibrium MD trajectory

(20–30 ns) was calculated using the following equation:

ΔGbind � ΔGcomplex – (ΔGreceptor + ΔGligand)

� ΔEinternal + ΔEVDW + ΔEelec+ΔGGB + ΔGSA

The above equation represents internal energy, van der

Waals interaction, and electrostatic interactions. The internal

energies included Ebond, Eangle, and Etorsion, collectively

referred to as the free energy of solvation. GGB is the polar

solvation free energy, and GSA is the non-polar solvation free

energy. For this paper, the GB model developed by Nguyen et al.

was used for the calculation (igb = 8). The non-polar solvation

free energy (GSA) is calculated based on the product of surface

tension (γ) and solvent accessible surface area (SA), GSA =

0.0072 × SASA (Weiser et al., 1999).

Statistical analysis

R software version 4.1.1 was used to create all plots, and the

Venn diagrams were drawn using the “VennDiagram” R

package. Chi-square tests were used to compare the

proportions of cell types between the two groups, and p <
0.05 was considered statistically significant.

FIGURE 1
A schematic diagram showing the study flow. Firstly, single-cell analysis was performed on young and old mouse brain tissues from the
GSE147693 dataset. Then the non-negative matrix factorization (NMF) method was used to measure heterogeneity between each pair of cells.
Among the two types of glial cells in the CNS, astrocytes and choroid plexus epithelial cells (CPC), the heterogeneity of astrocytes changes more
markedly with age and there are several interesting intercellular interactions. Age-related differential metabolic pathways in CPCwere analyzed
and calculated using the scMetabolism package. Based on molecular dynamics simulations, oxidized glutathione targets CPC proteins that exhibit
age heterogeneity.
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Results

Single-cell analysis and clustering of brain
tissue in young and old mice

Figure 1 shows the flow chart for this study. First, mouse

cerebrovascular tissues from the GSE147693 dataset were

subjected to single-cell analysis and quality control

(Supplementary Figure S1A,B). A total of 44,860 cells and

19,029 genetic features were obtained after removing cells that

did not meet the inclusion criteria (see Methods). UMAP plots

clustered cells in the older and younger groups (Figure 2A). Koay

YC et al. identified 14 cell types in old and young groups,

including astrocytes (AC), choroid plexus epithelial cells

(CPC), brain endothelial cell (EC), endothelial progenitor cells

(EPC), endothelial cells (EC), macrophages (MAC), microglia

(MG), midbrain neuron cells (MNC), mature neuronal cells

(mNeur), neuron-restricted precursor cells (NRP),

oligodendroglia cells (OLG), oligodendrocyte precursor cells

(OPC), pericytes (PC), and smooth muscle cells (SMC,

Figure 2B) (Koay et al., 2021). Each cell cluster’s top ten

marker genes were listed (Supplementary Figure S2). The bar

graphs show the proportion of each cell type in the old and young

groups (Figure 2C). We analyzed and clustered the single brain

cells based on those information. Finally, we mapped the

distribution of different cell types and saved the relevant

parameters as NMF profiles (Figure 2D).

Differences between older and younger
groups in choroid plexus epithelial cells

Since we obtained different cell types in the mouse

cerebrovascular tissue, we used non-negative matrix

factorization (NMF) to explore crucial genes of the cellular

transcriptional program (see Methods). A total of

16 components were selected in the NMF (Supplementary

Figure S3A). After filtering the spectra at 0.2, 14/160 (9%) of

crucial genes were removed before clustering (Supplementary

Figure S3B). The heat map showed that the cells clustered well

after NMF analysis (Supplementary Figure S3C). Next, NMI was

used to examine the heterogeneity in the single-cell profiles of the

mouse cerebral vasculature (Marjanovic et al., 2020). We found

significant differences in AC, CPC, EC, EPC,MG and glial cells of

the CNS between the older and younger groups according to the

analysis of transcriptional heterogeneity (Figure 3A). CPC

FIGURE 2
Single-cell clustering and sub-clustering of mouse brain tissue. (A) Uniform Manifold Approximation and Projection (UMAP) plot shows the
clustering of cells in the old and young groups. Different colors distinguish different subgroups. (B) The UMAP plot shows the 14 cell types identified
in the old and young groups (including: AC, CPC, EC, EPC, hb EC, MAC, MG, MNC, mNeur, NRP, OLG, OPC, PC, and SMC). (C) The bar graphs show
the proportion of each cell type in the old and young groups. (D) PHATE maps the distribution of different cell types based on the scRNA-seq
profile of GSE147693. The colored dots indicate the specified cell types, and gray dots represent other cells.
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showed the most significant heterogeneity between the older and

younger groups. We performed gene differential analysis at the

single cell level to calculate DEGs between the older and younger

groups (Figure 3B).

These genes are enriched in the KEGG pathways associated

with Parkinson’s disease, phagosome, and tuberculosis in the

young CPC group (Figure 3C). These genes were also enriched

in GO-functional MF (ribonucleoprotein complex binding,

MHC class I protein binding, and cell adhesion molecule

binding), CC (endocytic vesicle, phagocytic vesicle, and

ficolin-1-rich granule), and BP (neutrophil degranulation,

neutrophil-mediated immunity and neutrophil activation

involved in immune response) (Figure 3C). The genes

upregulated in the young CPC group were enriched in the

human T-cell leukemia virus 1 infection, osteoclast

differentiation, and ribosome KEGG pathways (Figure 3D).

These genes are also enriched in GO-functional MF (RAGE

receptor binding, mRNA 5′-UTR binding, and structural

constituent of ribosome), CC (cytosolic part, ribosomal

subunit, and cytosolic ribosome), and BP (cotranslational

protein targeting to membrane, nuclear-transcribed mRNA

catabolic process nonsense-mediated decay, and SRP-

dependent cotranslational protein targeting to membrane)

(Figure 3D). CellChat was used to identify the primary

senders, receivers, mediators, and influencers in the

intercellular communication network, including secreted

signaling, ECM receptors, and cell-cell contact

(Supplementary Figure S4A–C). We found that OLG plays

the role of an influencer and mediator in the collagen signaling

pathway network, while AC, EPC, MAC, MNC, and SMC play

the role of receiver in the collagen signaling pathway network,

and finally, CPC functions as an influencer (Figure 3E and

Supplementary Figure S4B). Through cellular interactions,

CPCs are involved in altering cerebrovascular cells’

biological functions during the aging process. The

heterogeneity of CPC, a neuroglial cell, differed most

significantly from one level of aging to another and was

influenced and regulated by intercellular signaling.

FIGURE 3
Heterogeneity and differential analysis of single cells in mouse brain tissue. (A). Box plot showing transcriptional heterogeneity between older
and younger cells for each cell subtype using Normalized Mutual Information (NMI). * p < 0.05, ** p < 0.01, *** p < 0.001. (B) The heatmap shows the
main DEGs in CPC obtained by applying the “FindVariableFeatures” function. (C,D) Downregulated and upregulated GO (C) and KEGG pathways (D)
in the younger group. (E). CellChat-based results show the association of OPC cell populations with other cell populations in the collagen
signaling pathway network.
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FIGURE 4
Metabolic differences in mouse brain CPC in the older versus younger groups. (A)Heat map showing CPCmetabolic pathway scores based on
scMetabolism. (B)Venn diagram showing 29metabolic pathways in CPC (shown in Figure 1) enriched byMetaboAnalyst’s Joint-Pathway Analysis and
18 intersections of 51 metabolic pathways from KEGG based on scMetabolism. (C) Blister plots showing 7 of the 18 intersecting pathways (Figure 4B)
are upregulated in the activity of aged mouse CPC. (D) Sankey plots showing the seven metabolic pathways regulated by five CPC age-related
differential genes (Ldhb, Echs1, Hsd17b10, Gstt1, and Ldha) and the differential metabolites they affect. (E) Demonstrates the rank of the five age-
related differential CPC genes (Ldhb, Echs1, Hsd17b10, Gstt1, and Ldha) downregulated in the younger group.
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Differential metabolic pathways and key
genes of CPC in the older and younger
groups

With scMetabolism, scRNA-seq metabolic analysis was

performed to investigate the effects of aging on CPC

metabolic pathways. Based on scMetabolism, 51 differential

metabolic pathways were identified (Figure 4A). According to

Koay YC et al., there were differences in circulating metabolites

after exercise (Koay et al., 2021). MetaboAnalyst’s Joint-Pathway

Analysis was used to enrich and reveal 29 metabolic pathways

that exercise might affect in CPC. Based on Joint-Pathway

FIGURE 5
Exercise metabolites targeting aging-related metabolic differential proteases in mouse brain tissue CPC may affect the relative differentiation
status of cells. (A) Sankey plots show the sevenmetabolic pathways regulated by the five CPC age-related differential genes (Ldhb, Echs1, Hsd17b10,
Gstt1, and Ldha) and the associatedmetabolites upregulated by exercise. (B)Dot size indicates the percentage of cells expressing each gene, and dot
color represents each group’s average expression level. The vertical axis lists CPC’s keymetabolic enzyme genes, respectively. (C)CytoTRACE is
used to show the relative differentiation status of CPC. (D) Expression of five CPC age-related differential genes (Ldhb, Echs1, Hsd17b10, Gstt1, and
Ldha); (E) Cells of young and old CPC cells are shown in a violin plot according to their CytoTRACE scores; (F) Five genes with CPC age-related
associations (Ldhb, Echs1, Hsd17b10, Gstt1 and Ldha) are shown in the heatmap; (G) Heat map showing the binding free energy of DE-proteins and
motility-associated DE-metabolites after molecular docking.
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analysis and KEGG enrichment analysis of scRNA, 18 metabolic

pathways were obtained (Figure 4B). In the CPC of aged mice,

seven of these metabolic pathways (including: Aminoacyl-tRNA

biosynthesis; Valine, leucine, and isoleucine biosynthesis;

Arginine biosynthesis; Alanine, aspartate and glutamate

metabolism; Butanoate metabolism; Citrate cycle (TCA cycle);

and Glutathione metabolism) were significantly upregulated

(Figure 4C). The gene expression of these seven CPC

metabolic pathways regulated by exercise was presented in a

heat map (Supplementary Figure S5A–F). The multi-omics

analysis revealed five CPC age-related differential genes (Ldhb,

Echs1, Hsd17b10, Gstt1, and Ldha), and their differential

metabolites regulated seven exercise-related metabolic

pathways (Figure 4D). These differential genes were

downregulated in the younger group and upregulated in the

older group (Figure 4E). Therefore, Ldhb, Echs1, Hsd17b10,

Gstt1 and Ldha may constitute key enzymes that alter CPC

metabolism in old age and may be affected by exercise.

Exercise metabolites target CPC
differential proteases involved in cell
differentiation

By binding to a target protein, small molecule compounds

could inhibit its biological activity. Exercise may increase

levels of some metabolites that target binding to key enzymes,

which may prevent aging. Five CPC age-related differential

proteins (Ldhb, Echs1, Hsd17b10, Gstt1, and Ldha) regulate

these seven metabolic pathways, and their associated

metabolites were upregulated by exercise (Figure 5A). The

expression levels of selected marker genes were highly

expressed in the older group and low in the younger group

in CPC (Figure 5B). The higher the score in the CytoTRACE

plot, the lower the differentiation status of the cells. We found

that high expression of these five CPC age-related differential

genes (Ldhb, Echs1, Hsd17b10, Gstt1, and Ldha) was

associated with a lower differentiation status

(Figure 5C,D). Exercise-related small molecule metabolites

(including: (R)-3-Hydroxybutyric acid, 2-Hydroxyglutatate,

2-Ketobutyric acid, Fumaric acid, 3-Hydroxyanthranilic acid,

and oxidized glutathione) are shown in Supplementary

Figure S6. CytoTRACE scores were higher in older CPC

cells, and five age-related genes (Echs1, Hsd17b10, Gstt1,

Ldha, and Ldhb) correlated strongly with CytoTRACE

scores (Figures 5E,F). This suggests that higher

CytoTRACE scores are positively associated with aging

and high expression of Echs1, Hsd17b10, Gstt1, Ldha, and

Ldhb. The free energy of binding of the small metabolic

molecule GSSG to those key enzymes were less than

−6.5 kcal/mol (Figure 5G). Exercise increases GSH levels in

the blood while the GSSG levels decrease. GSSG is a

metabolite of glutathione (GSH). Thus, physical exercise

might reduce CPC aging-related metabolism by reducing

GSSG targeting to ECHS1, GSTT1, LDHA, and LDHB.

MDS of GSSG targets ECHS1, GSTT1, LDHA
and LDHB

MDS is an important method for studying the stability and

kinetics of complexes in aqueous solutions. Based on the RMSD

values of MDS, all systems can be stabilized after MDS (Figure 6A).

Rapid stabilization of ECHS1, GSTT1, and LDHA suggests that their

docking results aremore suitable, and they finally stabilize at 0.2, 0.2,

and 0.4 nm (Figure 6A). After the fluctuation at 17 ns, the distance

between LDHB and GSSG converged to 1 nm, and the distance

between HSD17B10 and GSSG converged to 0.3 nm (Figure 6A).

LDHB demonstrated only a slight fluctuation at 10 ns in the Rg

analysis (Figure 6B). There are solvent-accessible surfaces on

proteins, and the solvent accessible surface area (SASA) of the

protein is very stable from 0 to 30 ns, indicating favorable

binding and progressive protein tightening (Figure 6C). The

variation of hydrogen bonding curves showed that the number

of hydrogen bonds formed by binding to GSSG was ranked as

ECHS1 > HSD17B10 > LDHA > GST1 > LDH (Figure 6D).

GSSG-ECSH1 secondary structure analysis
and MM/GBSA

After MDS, the secondary structure of the GSSG-ECSH1

complex changed, with a greater amount of turn, bend, A-helix,

and lesser number of 3-helix (Supplementary Figure S7A). GSSG-

ECSH1 fluctuation sites are 31–32, 101–102, 281–290 and eight

amino acids were involved in the interaction of the GSSG-ECSH1

complex, namely ASP121, MET-148, ASO-150, ALA-173, ARG-

178, LYS-185, GLU-249, and LYS-266 (Figure 7A,B). ECSH1 and

GSSG are likely to interact in the GSSG-ECSH1 complex

(Supplementary Figure S7B). When each contact residue of the

GSSG-ECSH1 complex was broken down, we found THR-124,

MET-148, ASP-150, and LYS-121 of the B-chain to facilitate

binding, while ARG-178, LYS-241, and CYS-149 of the B-chain

hindered binding (Supplementary Figure S7C). In the stable

structure of GSSG-ECSH1, MET-148 and ARG-178 are directly

involved in the interaction between ECSH1 and GSSG. Therefore,

the above analysis suggests that GSSG can stably bind ECSH1.

GSSG-GSTT1 secondary structure analysis
and MM/GBSA

After MDS, the secondary structure of the GSSG-GSTT1

complex decreased; coils, bends, 5-helix increased, and turn,

A-helix decreased (Supplementary Figure S7D). GSSG-GSTT1

fluctuated at sites 35–47, 128–131, 209–230, 183–186 and amino
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acids involved in the interaction of the GSSG-GSTT1 complex were

ARG-76 (A-chain), GLN-87 (A-chain), ARG-92 (A-chain), and

ARG-92 (B-chain) (Figure 7C,D). GSSG and GSTT1 had a negative

total free energy, suggesting an interaction between GSTT1 and

GSSG (Supplementary Figure S7E). ARG-92 and GLN-87 of the B

chain hindered binding of the GSSG-GSTT1 complex, while ASP-88

and LEU-89 facilitated binding (Supplementary Figure S7F). The

stability of the GSSG-GSTT1 complex was dependent onARG-92 of

the B chain, which interacts directly with GSTT1 and GSSG. These

data suggest that GSSG could stably target and bind GSTT1.

GSSG-HSD17B10 secondary structure
analysis and MM/GBSA

GSSG-HSD17B10 complex after MDS showed that the

overall structure increased, B-sheet, bend, 3-helix increased,

and coil, 5-helix decreased (Supplementary Figure S7G).

GSSG-HSD17B10 complex contained highly flexible sites

96–116, 143–163, 207–223, 245–261, and GSSG-HSD17B10

had five amino acid interactions, namely GLY-17, SER-20,

GLY-21, LEU-22, ASP-41, and CYS-91 (Figures 7E,F).

HSD17B10 and GSSG are likely to interact, and

VDWAALS and EEL suggest that both water and

electrostatic interactions contribute to binding, while

ESURF and EGB suggest that polar solubilization does not

contribute to binding (Figure 7H). The binding ability

between GSSG and HSD17B10 gradually decreased with

each contact residue; ASP-41 and LEU-42 of the A-chain

played a hindering role (Supplementary Figure S7I). In the

stable structure of the GSSG-HSD17B10 complex, GLY-21,

LEU-22, and ASP-41 were directly involved in the interaction

between HSD17B10 and GSSG. These results suggested a

stable interaction between HSD17B10 and GSSG.

FIGURE 6
Results of molecular dynamics simulations (MDS) of five key metabolic enzymes. (A) The atomic root mean square deviation (RMSD) of the
protein-metabolite complex MDS. (B) Rg variation of protein-metabolite complex MDS. (C) Solvent accessible surface area (SASA) variation of
proteins in 0–3 ns of protein-metabolite complex MDS. (D) Changes in hydrogen bonding in the steady state of protein-metabolite complexes.
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GSSG-LDHA secondary structure analysis
and MM/GBSA

The secondary structure of the GSSG-LDHA complex after

MDS could be seen as decreased overall structure, increased

B-sheet, bend, and 3-helix, and decreased A-helix

(Supplementary Figure S8A). There were five highly flexible

sites in the GSSG-LDHA complex: 1–20, 54–163, 207–223,

245–261, and two amino acids were involved in the GSSG-

LDHA complex, including ANS164 and ARG-171 (Figures

8A,B). GSSG-LDHA complex had a negative total free energy,

indicating that LDHA and GSSGmight interact. VDWAALS and

EEL indicated that water and electrostatic interactions

contributed to the binding. In contrast, ESURF and EGB

suggest that polar solubilization does not promote binding

(Supplementary Figure S8B). In the GSSG-LDHA complex,

ALA-168, LEU-183, SER-255, ARG-171, ARG-269, ARG-270,

and LEU-254 of the A-chain were the primary contact residues

FIGURE 7
Amino acid interactions of the stable structure. (A,B) Amino acid interactions of GSSG-ECSH1 complex MDS after obtaining the stable structure.
(C,D) Amino acid interactions of GSSG-GSTT1 complex MDS after obtaining the stable structure. (E,F) Amino acid interactions of GSSG-HSD17B10
complex MDS after obtaining the stable structure.

Frontiers in Pharmacology frontiersin.org12

Chen et al. 10.3389/fphar.2022.1010785

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1010785


that facilitate binding, while ARG-171, ARG-269, ARG-270, and

LEU-254 acted as barriers (Supplementary Figure S8C). Among

them, ARG-171 directly interacted with LDHA and GSSG in the

stable structure of GSSG-LDHA. Therefore, these results suggest

that GSSG is capable of targeting LDHA stably.

GSSG-LDHB secondary structure analysis
and MM/GBSA

According to the secondary structure of the GSSG-LDHB

complex after MDS, the overall structure decreased, coils, bends,

and turns increased, and B-sheets decreased (Supplementary

Figure S8D). GSSG-LDHB complexes had highly flexible sites

1–20, 55–73, 100–104, 221–249, three amino acid interactions

existed in the GSSG-LDHB complex, including HIS-182, PRO-

182, and ASP-259 (Figures 8C,D). The GSSG-LDHA complex

had a negative total free energy, suggesting that LDHA and GSSG

are likely to interact. VDWAALS and EEL suggested water and

electrostatic interactions contribute to binding, while ESURF and

EGB suggested polar solubilization was not conducive to binding

(Supplementary Figure S8E). ARG-172, ARG-270, ARG-270,

and ASN-165 of the A-chain mainly hindered binding, while

SER-256, ALA-252, LEU-166, and ASP-256 of the A-chain were

favorable contacts (Supplementary Figure S8F). In the stable

structure of the GSSG-LDHB complex, ASP-256 was directly

involved in the interaction between LDHB and GSSG. However,

according to the animation of MDS, GSSG-LDHB complex does

not seem to bind very well. Despite their potential interactions,

GSSG-LDH may not be very stable complexes.

Discussion

Exercise has been identified as an effective method for

preventing aging-related neurodegeneration. In the present study,

we found that exercise improved the metabolic landscape of the

cerebrovascular microenvironment.We found that ECHS1, GSTT1,

FIGURE 8
Amino acid interactions of the stable structure. (A,B) Amino acid interactions of GSSG-LDHA complex MDS after obtaining stable structures.
(C,D) Amino acid interactions of GSSG-LDHB complex MDS after obtaining stable structures.
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HSD17B10, LDHA, and LDHB were proteins associated with CPC

age heterogeneity and involved in the metabolism of (R)-3-

Hydroxybutyric acid, 2-Hydroxyglutarate, 2-Ketobutyric acid, 3-

Hydroxyanthranilic acid, Fumaric acid, L-Leucine, and Oxidized

glutathione. MDS simulations suggested that GSSG might cause

metabolic abnormalities in NVU due to CPC age heterogeneity.

Brain cells vary in type and regulation during aging, but little

is known about how they change. Research has shown that

energy depletion during brain aging is associated with

heterogeneous cellular regulatory networks (Davie et al.,

2018). This study refines these studies and reveals

heterogeneity in NMI scores and transcriptomes during brain

aging. These age heterogeneity-associated neurodegenerative

disorders are closely associated with neuropathologies such as

glucose metabolism disorders in the whole brain or specific cells

(Dringen, 2000). According to recent findings, glutathione

metabolism and reactive oxygen species defense in glial cells

play an important role (Dringen, 2000). While glutathione plays

an important role in redox signaling, the role of GSSG has not

been completely established (Mailloux and Treberg, 2016;

Méndez et al., 2016; Zhang et al., 2012; Flohé, 2013). GSSG

occurs when reactive oxygen species react with glutathione

(GSH), a natural antioxidant that prevents oxidative damage

in the body (Yu et al., 2012; Cramer, 2021). Moreover, GSSG/

GSH can be used as an analytical tool to reveal redox metabolic

disorders caused by glutathione (Masters et al., 2020; Neese et al.,

2020). In neuropsychiatric and neurodegenerative diseases, GSH

plays an important role (Gu et al., 2015). GSSG/GSH levels are

higher in the whole blood of AD patients because their cellular

redox status has been altered (Martínez de Toda et al., 2019).

Muscular dystrophy and metabolic syndrome are also associated

with dysregulation of GSH/GSSG balance (Pérez-Torres et al.,

2017). Studies have focused on the redox function of GSH, while

an understanding of the biochemical functions of GSSG has been

limited. First, we investigated whether elevated GSSG in the

ADRD microenvironment directly targets CPC age

heterogeneity-related proteins (ECHS1, GSTT1, HSD17B10,

LDHA, and LDHB), suggesting that brain energy metabolism

may be diminished. The sections below discuss how ECHS1,

GSTT1, HSD17B10, LDHA, and LDHB function in the brain and

vascular health.

Short-chain enoyl-CoA hydratase (ECHS1) is a

mitochondrial matrix enzyme that plays several roles, such as

oxidizing fats and metabolizing essential amino acids, including

valine (Haack et al., 2015). ECHS1 deficiency, for instance, can

cause secondary pyruvate dehydrogenase deficiency, resulting in

clinical symptoms (Ferdinandusse et al., 2015).

ECHS1 deficiency leads to mitochondrial encephalopathy, as

shown by delayed motor and cognitive development and

abnormal brain MRI signals in the nucleus accumbens and

caudate nucleus (Huffnagel et al., 2017). ECHS1 deficiency

also causes paroxysmal exercise-induced dyskinesias (PED)

(Mahajan et al., 2017). Therefore, ECHS1 expression in the

CPC of aged rats might serve as a protector against injury.

Furthermore, exercising may protect the function of

ECHS1 and thus improve NVU energy metabolism by

reducing GSSG levels in circulating blood.

We found that the oxidative stress-related factors, such as

aging, upregulate the Glutathione S-transferase theta 1 (GSTT1)

level in human cells (Ito et al., 2011). GSTT1 functions to bind

electrophile compounds to glutathione, allowing them to proceed

to the next step in metabolism. Examples include drugs,

environmental toxins, and oxidative chain products.

GSTT1 functions as an anticancer agent in the body by

cleaning up environmental toxins and carcinogens (Geng

et al., 2016). Researchers found that avoiding nitrous

compounds during pregnancy and abstaining from

GSTT1 consumption may reduce children’s risk of brain

tumors (Nielsen et al., 2011). Multiple sclerosis, refractory

schizophrenia, and osteosarcoma have all been linked to

polymorphisms in GSTT1 (Pérez-Torres et al., 2017; Martínez

de Toda et al., 2019; Pinheiro et al., 2017; Wang et al., 2015).

Molecular dynamics studies revealed that increased levels of

GSSG might inhibit the activity of GSTT1, impairing its

function and affecting GSTT1 metabolism in NVU.

17β-Hydroxysteroid dehydrogenase type 10 (HSD10),

encoded by the HSD17B10 gene at Xp11.2, is a mitochondrial

NAD + -dependent dehydrogenase that catalyzes multiple

reactions and binds to many proteins and peptides (Yang

et al., 2011). Missense mutations resulting in 17β-HSD10

deficiency cause infantile neurodegeneration characterized by

progressive psychomotor disability and altered mitochondrial

morphology (Yang et al., 2014). Generally, ADRD patients have

abnormally elevated levels of 17-HSD10, and steroid endostasis

can be restored by using neuroactive steroids or by modulating

17-HSD10 activity to protect neurons (Ferdinandusse et al., 2015;

Huffnagel et al., 2017; He et al., 2019). This study shows that

GSSG can impede the function of key enzymes in the NVU of

ADRD patients, and that prolonged physical exercise can reduce

GSSG levels, reverse the negative effects of GSSG, and improve

NVU metabolism.

Lactate dehydrogenase, a NAD-dependent kinase, contains

three subunits, LDHA, LDHB, and LDHC, which can form six

tetrameric isozymes that catalyze the oxidation of lactate to

pyruvate (Urbańska and Orzechowski, 2019). LDHA

preferentially converts pyruvate to lactate under anaerobic

conditions, while LDHB preferentially converts lactate to

pyruvate when oxygen is present (Urbańska and Orzechowski,

2019). As metabolic links between tumor and stroma, LDHA and

LDHB play essential roles in tumor cell metabolism and

adaptation to unfavorable environments, as well as regulating

cell death (Massari et al., 2016; Mishra and Banerjee, 2019;

Urbańska and Orzechowski, 2019). LDHA and LDHB levels

may increase when brain lactate levels and lactate transport

decrease. Although these compounds are meant to ameliorate

deficits in brain energy metabolism, they might block lactate
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trafficking from glial cells (Zhang et al., 2018). Physical exercise

might improve this state by reducing the GSSG/GSH ratio by

targeting LDHA in GSSG-targeted therapies.

Neurodegeneration associated with aging can be prevented

through physical activity. We measured the heterogeneity

between cells using NMF and NMI methods. We also

identified age-related metabolic pathways in CPC through

intercellular interactions and combined multi-omics analysis.

Our results suggest that GSSG might directly target CPC age

heterogeneity-related proteins (ECHS1, GSTT1, HSD17B10,

LDHA, and LDHB) by molecular docking and MDS.

Accordingly, circulating GSSG might be involved in aging-

related neurodegeneration in NVU, and this may be due to its

ability to target age heterogeneity-associated proteins in CPC. In

addition, future studies and more MDS simulation will need to

investigate the molecular mechanism of action of GSSG in vivo

and in vitro. Furthermore, future studies should examine the role

of ESHS1, GSTT1, HSD17B10, LDHA, and LDHB in aging CPC

expression. And more research is needed to learn how physical

exercise affects CPC interaction with other cells, such as

astrocytes, to improve NVU function. This research aids in

pharmacological studies and drug development targeting

neurodegenerative diseases.

Conclusion

According to the present study, CPC metabolic pathway

activity was changed in the elderly group. GSH metabolite

and GSSG inhibit intracerebral energy metabolism in CPC by

targeting age heterogeneity-related proteins (ECHS1, GSTT1,

HSD17B10, LDHA, and LDHB), while exercise enhances it by

improving the GSH/GSSG balance. Based on single-cell

integration analysis, our molecular dynamics and free energy

simulations confirmed that GSSG interferes with intracerebral

energy metabolism.

Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and

accession number(s) can be found in the article/

Supplementary Material.

Author contributions

YC: Methodology, Writing—Review and Editing,

Conceptualization, Software, Validation, Formal analysis,

Data Curation, Writing—Original Draft; YS:

Conceptualization, Methodology, Supervision,

Writing—Original Draft; ZL: Methodology,

Conceptualization, Writing—Original Draft; FL: Data

Curation, Writing—Review and Editing; ZH: Methodology,

Writing—Review and Editing; BQ: Data Curation,

Writing—Review and Editing; JL: Data Curation,

Methodology; WL: Software, Validation, Language

polishing; MY: Supervision, Writing—Review and Editing;

XK: Supervision, Writing—Review and Editing; JH:

Validation, Language polishing; CS: Conceptualization,

Validation; CY: Validation, Data Curation; CG: Validation,

Data Curation; YX: Writing—Original Draft,

Conceptualization, Supervision, Methodology, Funding

acquisition; JW: Conceptualization, Supervision, Project

administration, Funding acquisition; SC:

Conceptualization, Supervision, Project administration,

Funding acquisition.

Funding

This study was supported by grants from the National

Natural Science Foundation of China (No. 82102634,

81972062 and 81772419), Medical and Health Science and

Technology Development Project of Shandong Province

(2018WS147). This work was also supported by Project of

the Key Clinical Medicine Center of Shanghai (No.

2017ZZ01006), Sanming Project of Medicine in Shenzhen

(No. SZSM201612078), Development Project of Shanghai

Peak Disciplines-Integrative Medicine (No. 20180101),

Shanghai Committee of Science and Technology (No.

19441901600), Shandong Medical and Health Technology

Development Fund (202103070325), Shandong Province

Traditional Chinese Medicine Science and Technology

Project (M-2022216) and Nursery Project of the Affiliated

Tai’an City Central Hospital of Qingdao University

(2022MPM06). This study was also funded by the Health

Shanghai Initiative Special Fund (Medical-Sports

Integration, Creating a New Model of Exercise for Health;

Project No. JKSHZX-2022-02).

Acknowledgments

We thank the reviewers for their contribution to the

successful publication of this study. We also appreciate the

guidance of diagram by the Fudan University Committee of

the Communist Youth League. Thanks to Figdraw (Home for

Researchers) for the drawing service (ID: SOYAWccaac). We

also thank Xiangjun Chen and Yi Wang for their constructive

comments of this study.

Frontiers in Pharmacology frontiersin.org15

Chen et al. 10.3389/fphar.2022.1010785

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1010785


Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the

editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fphar.

2022.1010785/full#supplementary-material

SUPPLEMENTARY FIGURE S1
Quality control for the GSE147693 scRNA-seq dataset. (A) Differences in
expression of signature RNA, the total number of RNAs detected, percent
ofmitochondrialcounts (pMT),andpercentofhemoglobinRNAcounts (pHB)
indifferentclinical samples. (B)Scatterplots showingthecorrelationbetween
thenumberofRNAsdetectedand thenumberofmitochondria in a single cell
(Left panel), thenumberof signaturegenes (middlepanel), and thenumberof
erythrocyte proteins mixed in the sample (right panel), respectively.

SUPPLEMENTARY FIGURE S2
The top 10marker genes for each cell cluster are shown in a heatmap. The
marker genes of various cells are shown here.

SUPPLEMENTARY FIGURE S3
Analysis of cNMFs and selection of hyperparameters. (A) Diagnostic plots
are used to determine the components that should be selected. (B) The
cell score distribution was plotted with the Usage matrix to remove
components with extreme distributions. (C) Heat map showing the
clustering effect after calculating the cosine distance on NMF.

SUPPLEMENTARY FIGURE S4
Using CellChat to identify key senders, receivers, mediators, and
influencers in intercellular communication networks. (A) secreted

signaling-related CellChat functions, (B) ECM receptor-related CellChat
functions, and (C) cell-cell contact-related CellChat functions.

SUPPLEMENTARY FIGURE S5
Heatmap of CPC metabolic pathway-related gene expression. (A)
Heatmap of selected genes in the butanoate metabolism pathway; (B)
Heatmap of selected genes in glutathione metabolism pathway; (C)
Heatmap of selected genes in the propanoate metabolism pathway;
(D). Heatmap of selected genes in the pyruvate metabolism pathway
gene heatmap; (E). Heatmap of selected genes in the tryptophan
metabolism pathway; (F). Heatmap of selected genes in the leucine
and isoleucine degradation pathway.

SUPPLEMENTARY FIGURE S6
The structures of six exercise-related small molecule metabolites
[including: (R)-3-Hydroxybutyric acid, 2-Hydroxyglutatate, 2-
Ketobutyric acid, Fumaric acid, 3-Hydroxyanthranilic acid, and oxidized
glutathione].

SUPPLEMENTARY FIGURE S7
MDS secondary structure and binding free energy analysis. (A) Plots of
individual secondary structures of proteins in the MDS system with time.
(B) Binding free energy between GSSG-ECSH1 complexes. (C)
Relationship between each contact residue and binding in the GSSG-
ECSH1 complex. (D) Plot showing each secondary structure of the GSSG-
GSTT1 complex with time in the MDS system. (E) Binding free energy
between GSSG-GSTT1 complexes. (F) Relationship between each contact
residue and binding in the GSSG-GSTT1 complex. (G) Plot showing the
individual secondary structures of the GSSG-HSD17B10 complex in the
MDS system with time. (H) The binding free energy between GSSG-
HSD17B10 complexes. (I) The relationship between each contact
residue and binding in the GSSG-HSD17B10 complex. Notes: Negative
energy indicates strong binding ability. ‘Total’ indicates the system’s total
energy, which represents the ability of the protein and small molecule to
interact with each other. VDWAALS- van der Waals energy; EEl-
Electrostatic energy; EGB- Polar solvation energy; ESURF- Non-polar
solvation energy; GGAS- Total gas phase free energy; GSOLV- Total
solvation free energy; TOTAL free energy- GSOLV + GGAS.

SUPPLEMENTARY FIGURE S8
MDS secondary structure analysis and binding free energy analysis. (A)
Plots of the individual secondary structures of the GSSG-LDHA
complex proteins in the MDS system over time. (B) Binding free
energy between GSSG-LDHA complexes. (C) Relationship between
each contact residue and binding in the GSSG-LDHA complex. (D) Plot
illustrating the change in each secondary structure between GSSG-
LDHB complexes with time in the MDS system. (E) Binding free energy
between GSSG-LDHB complexes. (F) Relationship between each
contact residue and binding in the GSSG-LDHB complex. Notes:
Negative energy indicates a strong binding ability. “Total” indicates
the system’s total energy and represents the ability of the protein and
small molecule to interact. VDWAALS- van der Waals energy; EEl-
Electrostatic energy; EGB- Polar solvation energy; ESURF- Non-polar
solvation energy; GGAS- Total gas phase free energy; GSOLV- Total
solvation free energy; TOTAL free energy- GSOLV + GGAS.
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