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Patients with blood disorders who are immune suppressed
are at increased risk for infection with severe acute
respiratory syndrome coronavirus 2. Sequelae of infection
can include severe respiratory disease and/or prolonged
duration of viral shedding. Cellular therapies may protect
these vulnerable patients by providing antiviral cellular
immunity and/or immune modaulation. In this recent review

of the field, phase 1/2 trials evaluating adoptive cellular
therapies with virus-specific T cells or natural killer cells
are described along with trials evaluating the
safety, feasibility, and preliminary efficacy of immune
modulating cellular therapies including regulatory T cells
and mesenchymal In addition, the
immunologic basis for these therapies is discussed.

stromal cells.

Introduction

Despite the development of highly efficacious vaccines, the
COVID-19 pandemic continues to take a massive toll on popula-
tions internationally. Multiple studies have demonstrated ele-
vated hospitalization and mortality rates in immunocompromised
patients, including those with inborn errors of immunity, cancer,
hematopoietic stem cell transplantation (HSCT), or solid organ
transplantation.’ Registry reports have indicated that mortality
rates in immunocompromised patients requiring hospitalization
for severe COVID-19 are as high as 20% despite currently avail-
able therapies. Although some individuals with underlying immu-
nodeficiency who become infected with severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) will achieve effective viral
clearance,®® multiple reports have demonstrated a risk of pro-
longed shedding of viable virus with intrahost accrual of novel
viral variants over time.””"" Studies of immunocompromised pop-
ulations have shown suboptimal responses to vaccination,'?"
and although booster vaccines in these populations is required,
it is unclear how durable their protective immunity will be com-
pared with immune-competent individuals. Disease severity and
the potential for new variants highlight the need for new preven-
tative and therapeutic approaches to protect immunocompro-
mised populations from COVID-19. Adoptive cellular therapy has
been used in prior studies to prevent or treat viral infections in
the setting of inborn errors of immunity or transplantation, with
evidence of safety and efficacy against herpesviruses, polyomavi-
ruses, and some respiratory pathogens such as adenovirus.'®??
Accordingly, adoptive T-cell therapy is being explored as a pre-
ventative or therapeutic adjunctive therapy against SARS-CoV-2.

Among adults infected with SARS-CoV-2, severe disease is

accompanied by characteristic immunologic profiles, including
markedly elevated plasma levels of inflammatory cytokines.
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Several studies have demonstrated patterns of cytokine eleva-
tion, including interleukin 6 (IL-6) and IL-10, which correlate with
risk of mortality.?**® Treatment with dexamethasone among
patients requiring respiratory support improves outcomes,?’
suggesting that anti-inflammatory agents may be beneficial in
some patients with COVID-19. Trials of immunosuppressive
agents including tocilizumab,?® Janus kinase inhibitors, and Bru-
ton’s tyrosine kinase inhibitors have yielded mixed results.?”33 In
this context, regulatory T cells (Tregs) and mesenchymal stromal
cells may be beneficial adjunctive treatments with immune mod-
ulatory and tissue reparative properties that could improve out-
comes among patients with severe COVID-19.

Cellular therapies for SARS-CoV-2 can be conceptually classified
based on their intended function as either (1) adoptive immuno-
therapies designed to enhance viral clearance in patients with
ineffective immune responses to SARS-CoV-2 or (2) immune
modulatory therapies to correct a dysregulated immune response
contributing to clinical deterioration (Figure 1). Within the former
category, adoptive immunotherapy may be used for the preven-
tion or treatment of active SARS-CoV-2 infection in immunocom-
promised patients and includes adoptive immunotherapy with
SARS-CoV-2-specific T cells or natural killer (NK) cells. By con-
trast, immune modulatory cellular therapies include Tregs and
mesenchymal stromal cells. Phase 1/2 trials are underway to eval-
uate these therapies clinically. Hence, this review focuses on the
immunologic basis for their development and the results to date.

T-cell responses to SARS-CoV-2 infection

The adaptive immune response to SARS-CoV-2 has been an
area of intense investigation since the onset of the pandemic.
Understanding antigen-specific B-cell, CD4™ T-cell, and CD8"
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Figure 1. Classification of cellular therapies for SARS-CoV-2 infection. Cellular therapy for SARS-CoV-2 can be classified as adoptive anti-viral immunotherapy with
CST or NK cells to aid immunocompromised patients with viral clearance (A) or immunomodulatory immunotherapy with Tregs or MSCs to correct dysregulated

immune responses in patients with severe COVID-19 (B).

T-cell responses has been essential for developing effective vac-
cines and defining the immunopathology that contributes to
severity of illness caused by SARS-CoV-2. Although maladaptive
immune responses to SARS-CoV-2 remain incompletely under-
stood, several studies to date suggest a link between severe
COVID-19 and insufficient early innate immune responses
to SARS-CoV-2, resulting in weak or delayed adaptive
response,?*>* rather than a primary pathologic role of antigen-
specific humoral or cell-mediated adaptive immunity.3*>*
Indeed, circulating CD4™* SARS-CoV-2-specific T cells (CSTs) are
detected in peripheral blood mononuclear cells (PBMCs) from
>90% of convalescent individuals, CD8"* CSTs are detected in
>70%, and the presence of CSTs is associated with recovery
and decreased severity of illness.*>** Lymphopenia is associated
with poorer outcomes in COVID-19, and analysis of bronchoal-
veolar lavage (BAL) fluid from patients with varying illness sever-
ity indicates decreased clonal T-cell expansion, suggesting a
suboptimal CST presence in the lungs of patients with severe or
fatal disease.>’*> Moreover, in patients with hematologic malig-
nancies, CD8" T-cell depletion has been associated with poor
outcomes, particularly in patients who also have impaired
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humoral responses to SARS-CoV-2.* These findings suggest
that T-cell responses, particularly CSTs, are important for effec-
tive viral clearance and are associated with improved outcomes
in patients with acute infection. Thus, adoptive cellular therapy
with CSTs and/or NK cells may be an effective strategy for
improving outcomes in immunocompromised patients with or at
risk for SARS-CoV-2 infection.

The potential application of immunotherapy could be relevant
to many patient groups. For example, immunomodulatory
immunotherapy could be applicable to any patient at high risk
of severe COVID-19. CST or NK therapy would be most applica-
ble to immunocompromised patients with T-cell deficiency or
those receiving immunosuppressive therapies. In these patients,
early identification and treatment of those at high risk for
immune dysregulation because of SARS-CoV-2 might enhance
viral clearance and prevent severe disease, because lower initial
viral load,*” early bystander CD8" T-cell activation,*® and ade-
quate early type | interferon response®®*374? correlate with
decreased mortality related to SARS-CoV-2.3>*° For example, in
patients with autoantibodies to type | interferon, CST therapy
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could theoretically bypass early defects in interferon signaling
and restore immune responses to SARS-CoV-2. Additionally,
analysis of T-cell subsets has shown that Th1-skewed and CD8*
T-cell responses are associated with decreased COVID-19 sever-
ity,>'? suggesting that enhanced cell therapy products might
be manufactured to favor protective T-cell subsets.>® Whether
adoptive immunotherapy with CSTs and/or NK cells adminis-
tered later in the disease course worsens ongoing inflammation
and immunopathology is not known but will be addressed by
ongoing phase 1/2 trials (Tables 1 and 2).

Adoptive virus-specific T-cell therapy

Adoptive cellular therapy with virus-specific T cells (VSTs) has
been used safely and effectively for more than 25 years to treat
and prevent viral infections in patients with immune deficiencies,
especially in the post-HSCT setting.?>**>” Manufacture of VSTs
for clinical use involves either selection or ex vivo expansion
from donor PBMCs. VST selection uses major histocompatibility
complex-antigen multimers or cytokine capture technology to
isolate VSTs from PBMCs, whereas ex vivo expansion involves
PBMC culture in the presence of growth-enhancing cytokines
and viral antigens for 10 to 12 days to generate a product
enriched in VSTs targeting 1 or more viruses.?® In the post-
HSCT population, treatment with donor-derived VSTs results in
reconstitution of antiviral immunity with persistence of VSTs for
years after infusion.>®* For patients who have not undergone
HSCT or for whom a donor is not available, banking of cryopre-
served ex vivo expanded VSTs has developed as an effective
"off-the-shelf” approach to VST therapy, allowing for rapid treat-
ment of fulminant viral infections with partially HLA-matched
VST products.®” %42 HLA matching strategies vary across proto-
cols and research continues to determine the optimal approach.
Recent studies have demonstrated that small banks using strate-
gically chosen donors based on their HLA type and immunity to
the target of interest can provide potential treatment to a large
number of referred patients.®® Evidence to date points to
increased efficacy if at least 1 shared HLA allele is known to
mediate antiviral T-cell immunity.>” Therefore, in the setting of
SARS-CoV-2 infection, donor-derived CSTs could be an option
as treatment or prophylaxis for high-risk patients after HSCT,
and third party partially HLA-matched CSTs could be used as an
early treatment for COVID-19 infection in high-risk patients with
blood disorders in general.

Clinical use of SARS-CoV-2-specific T cells

CSTs can be expanded from the PBMCs of most convalescent
donors, along with some individuals who have not been
infected with SARS-CoV-2, likely because of cross-reactivity
with common cold coronaviruses.*%*4%® Epitope mapping has
established immunogenic hot spots within  SARS-CoV-2,
including multiple regions of the spike and nucleocapsid pro-
teins, as well highly conserved regions of the membrane pro-
tein, allowing for design of peptide pools for rapid expansion
of CSTs for clinical use.®*> Convalescent donors who have
seroconverted display broader T-cell antigenic responsive-
ness, but even seronegative convalescent individuals can elicit
an expandable CST population.®* Spike-directed T-cell
responses have also been demonstrated in individuals who
have been vaccinated against SARS-CoV-2, thus providing a
large pool of potential donors for the generation of CST
banks.”””" Moreover, these spike-directed T-cell responses
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elicited from vaccinated but previously uninfected donors
against peptide pools created from the Wuhan strain have
shown cross reactivity to other variant strains, thereby broad-
ening the applicability of this approach.”?

Currently, there are 7 registered phase 1/2 trials evaluating allo-
geneic CSTs for the treatment or prevention of COVID-19, 4 of
which are actively recruiting patients (Table 1). Six trials are
designed to test third party allogeneic CSTs for treatment of
SARS-CoV-2 infection in high-risk patients (based on illness
severity score, underlying comorbidities, and/or age) and 1
(NCT05141058) tests HSCT donor-derived CSTs for prophylaxis
against SARS-CoV-2 infection in SARS-CoV-2-negative partici-
pants after allogeneic HSCT. Two trials (NCT05141058 and
NCV04745295) specifically target immunocompromised patients
with blood disorders; 3 others include malignancy and/or
immune suppression as risk factors for severe disease, which are
required for eligibility (Table 1). To date, data from 1 trial
(NCT04401410) have been presented detailing 4 patients who
were treated with partially HLA-matched CSTs to treat SARS-
CoV-2 infection in high-risk individuals. One patient experienced
symptoms consistent with cytokine release syndrome but recov-
ered. Three of the 4 treated patients achieved resolution of their
infection after CST infusion,”® but without results from the con-
trol group, the extent of the CST effect is unclear. Unfortunately,
this trial was terminated early because of feasibility concerns
with insufficient numbers of patients meeting inclusion criteria.

As SARS-CoV-2 variants arise, CSTs generated for therapeutic
use must be evaluated for cross-reactivity against new circulat-
ing viral strains. Studies to date demonstrate moderate to high
T-cell cross-reactivity against circulating variants, including the
omicron variant,”*7® with strong reactivity particularly in the
CD4" compartment.®”:7%727779 |ndeed, T-cell epitopes identi-
fied in CSTs from convalescent patients span the viral prote-
ome??398082 and stimulate T-cell responses to viral variants
that are partially resistant to vaccine-induced humoral spike-
specific responses.®¥85 Importantly, high-throughput systematic
analysis of CD8" T-cell activity in response to mutant peptides
from SARS-CoV-2 variants of concern, including alpha, beta,
and delta variants, has suggested decreased ability of some
mutant epitopes to bind to certain HLA 28 which highlights
the need to ensure that CSTs generated for clinical use main-
tain activity against circulating strains as new variants arise.”?
SARS-CoV-2-specific T cells are long-lasting in convalescent
individuals, retaining activation and proliferation capacity ex
vivo for at least 10 months,®® and supporting the assertion that
CSTs may provide durable protection against severe illness due
to SARS-CoV-2, even as humoral immunity wanes.®’

Limitations/effect of concomitant steroid
treatment on adoptive cellular therapy efficacy
Although many groups have classified T-cell immunity to
SARS-CoV-2 and demonstrated the feasibility of CST genera-
tion, the hyperinflammatory nature of critical COVID-19 calls
into question whether T-cell therapy may be beneficial in the
setting of pneumonia or acute respiratory distress syndrome
(ARDS). Dexamethasone is standard treatment for hypoxic
patients following the demonstration of a survival advantage
in randomized controlled trials, and this therapy is highly likely
to inactivate both endogenous lymphocytes and any

CONWAY et al
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unmodified adoptive cell therapies. Basar et al”® showed that

corticosteroid-resistant T cells targeting SARS-CoV-2 could be
generated via CRISPR/Cas9 knockout of the glucocorticoid
receptor (NR3C1), and the resulting cells maintain viability and
effector function in the presence of dexamethasone in vitro.
These and similar approaches may facilitate the use of cell
therapy even when immunosuppressive pharmacotherapy
must be administered simultaneously.

Blood disorder
eligibility

NK-cell immunotherapy for COVID-19

NK cells are an essential component of antiviral defense, as dem-
onstrated by many inborn errors of immunity in which NK cell

Yes (inclusion criteria as risk factor for
severe disease)

Yes (required for inclusion)

= :é; defects result in viral susceptibility.”"?? Studies of COVID-19 have
T E <« demonstrated that NK lymphopenia is common in acute illness,
-.g?,_’ m N with loss of CD56%™ effector NK cells in patients with severe
w g cases.” Reports have revealed inverse correlations between NK
counts and serum IL-6 level,”* as well as interleukin-2 receptor

alpha.” Robust NK activation has been observed in both periph-

g’ 5 eral blood and BAL samples from patients with COVID-19,

E E although elevation of adaptive NK cells (NKG2C*/Ksp377/

o g perforin®) was exclusively seen in severe disease.”® A recent

E £ study suggested that the IL-15-IL-15R axis may be a key driver of

immune dysfunction in COVID-19 infection, with excess signaling
resulting in NK dysfunction.”” Ma et al”® also demonstrated that
NK cells modified with a chimeric antigen receptor (CAR) using a
single chain variable fragment (scFv) derived from the spike-
targeting S309 monoclonal antibody killed spike-expressing tar-
gets and had cross-reactivity with common spike variants.

Presently, there are 7 clinical trials evaluating allogeneic NK cell
immunotherapy as adjunctive treatment for COVID-19, as well
as 1 trial of NK CAR immunotherapy targeting SARS-CoV-2
(Table 2); none specifically target immunocompromised popula-
tions. No study results have been published to date and at least
1 such trial is no longer recruiting (NCT04365101).
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at escalating doses for prophylaxis

against SARS-CoV-2 infection.
Arm B: Children (=12 and <18 y) will
at escalating doses for prophylaxis

family donor derived CSTs up to
against SARS-CoV-2 infection.

five times every 2 wk along with

standard of care.
Active Comparator: Standard of care

receive a single infusion of CSTs
receive a single infusion of CSTs

alone.
Arm A: Adults (=18 to <80 y) will

Experimental arm: Patients receive

Cell therapy targeting immune dysregulation in
COVID-19

Although characterization of COVID-19 immunopathology has
been complicated by the dynamic nature of the immune
response over time, distinct immunologic profiles are associated
with progression to severe disease in patients infected with
SARS-CoV-2.2437991% Flevated plasma markers of inflamma-
tion, including C-reactive protein (CRP), ferritin, IL-6, IL-8, and
tumor necrosis factor-a are associated with risk of progression
to severe disease and mortality.?6'9"""%% Additionally, severe
COVID-19 is characterized by circulating T-cell lymphopenia
and an activated, exhausted T-cell phenotype,'® "% Treg dys-
function,'® and myeloid cell activation in blood and bronchoal-
veolar samples. 345119112 Myltisystem inflammatory syndrome
in children, an inflammatory complication of SARS-CoV-2 infec-
tion in children, seems to be associated with increased CST
responses compared with children who have uncomplicated
SARS-CoV-2 infection'"® and has an inflammatory profile unique
from severe COVID-19 in adults.""*'"> Additionally, this syn-
drome has been associated with activation of CX3CR1™ vascular
patrolling T cells."’® These immunologic signatures may allow
for targeting of immune modulatory treatments to the patients
most likely to benefit from them and point to the potential utility
of immune modulation in treating COVID-19.

Population
at least 10 d from symptom onset

with recent SARS-CoV-2 infection
available

underlying comorbidity
HLA-matched family related donor

COVID-19 disease
Risk of progression based on

HSCT
SARS-CoV-2 RT-PCR negative

Hospitalized for mild to moderate
=28 d and <4 wk after allogeneic

SARS-CoV-2 RT-PCR +
=12y and <80y

18 to 65y

Treatment
matched allogeneic

CSTs
allogeneic CSTs

Family derived HLA-
HSCT donor-derived

NCT04896606
NCT05141058

Table 1. (continued)
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Multiple immune modulators, including IL-1 and IL-6 receptor
blockers and systemic corticosteroids, have been used to target
the hyperinflammatory phenomena in severe COVID-19 and
multisystem inflammatory syndrome in children, which have
recently been reviewed."”""® Cellular treatments with ex vivo
expanded Tregs and/or mesenchymal stromal cells (MSCs) may
offer a targeted and less broadly immunosuppressive approach.
In addition, Tregs and MSCs have shown promise in preclinical
and early clinical trials for the treatment of ARDS,"""'?* a hall-
mark of severe COVID-19.

Use of Treg and MSC therapies in ARDS

ARDS is a syndrome of lung injury defined by the acute devel-
opment of hypoxemia resulting from alveolar injury and loss of
vectorial fluid transport out of the airspaces. This is accompa-
nied by dysregulated alveolar inflammatory cell infiltration that
perpetuates the injury, although the exact immunologic
responses are only partially understood. The therapeutic poten-
tial of Tregs and MSCs in ARDS centers around their immune
modulatory and tissue reparative properties. In preclinical mod-
els, Tregs attenuate markers of inflammation, promote tissue
repair, and shorten time to recovery from lung injury, although
Tregs have not been trialed clinically in ARDS before their use in
SARS-CoV-2 infection.'?® MSCs attenuate systemic inflammation
and lung injury in murine models of ARDS, and phase 1 and 2a
trials among adults with ARDS have shown them to be safe and
well tolerated.'?*'% In viral ARDS specifically, preclinical results
with MSC treatment have been mixed."?6"'2% Whether the thera-
peutic effect of MSCs changes depending on the viral pathogen
remains an open question.

Both MSCs and Tregs have been used safely to treat steroid-
refractory graft-versus-host disease (GVHD). In this setting, treat-
ment aims to dampen a damaging graft-versus-host immune
response by suppressing cytotoxic T cells along with elements
of the innate immune response including dendritic and NK
cells."??13% Similar immune modulatory targets may explain the
therapeutic potential of these biologics for the treatment of viral
ARDS, which is exacerbated by a damaging inflammatory

response.131

Treg treatment for COVID-19

The full phenotype and function of Tregs in vivo is well
reviewed elsewhere™?"** and is beyond the scope of this
review. In brief, Tregs are characteristically CD4*CD25"C-
D127' T lymphocytes that express the transcription factor Fork-
head Box Protein 3 and inhibit the activation and proliferation
of inflammatory effector cells, including CD4* and CD8" effec-
tor T lymphocytes, macrophages, B cells, neutrophils, and den-
dritic cells.’3213%13¢ Treg products for cellular therapy may be
either autologous or allogeneic depending on the clinical con-
text and have been safely administered to patients for the
treatment of GVHD, solid organ transplant rejection, and auto-
immune diseases in phase 1/2 clinical trials.'3-'4!

In the setting of an acute and life-threatening viral infection,
such as severe COVID-19, rapid availability of an “off-the-shelf”
product is needed. Thus, clinical trials of Tregs in COVID-19
(Table 3) are evaluating banked, partially HLA-matched alloge-
neic Treg products. The manufacture of Tregs for treatment of
SARS-CoV-2 infection requires expansion from donor cord

CELLULAR THERAPIES FOR COVID-19

blood (CB) or peripheral blood, as Tregs comprise only 5% to
10% of the CD4™ population in these sources.

In July 2020, Gladstone et al™*? published a case series of 2 adult
patients with COVID-19 and ARDS who were treated with 2 to 3
doses of 1 X 108 cells per dose of cryopreserved, allogeneic,
HLA-matched Tregs, ex vivo expanded from CB. Neither patient
experienced adverse events related to the treatment, and both
experienced improvement in symptoms and a decrease in inflam-
matory markers (including IL-6, IL-12, interferon-y, tumor necrosis
factor-a) that was temporally associated with Treg infusion.’?
This CB-derived Treg product, termed CK0802, is now under
investigation in a multicenter, double-blinded, placebo-controlled,
phase 1 trial (NCT04468971) targeting moderate-to-severe
ARDS caused by COVID-19. NCT05027815 is also evaluating
treatment with allogeneic ex vivo expanded polyclonal
CD4TCD127"°CD25M Tregs for treatment of COVID-19 and
ARDS in an open label, nonrandomized dose-escalation studly.
Results from these trials have not yet been reported.

MSC production for treatment of
COVID-19

MSCs currently in use in phase 1/2 clinical trials for the treatment
of COVID-19 ARDS are derived from bone marrow, adipose tis-
sue, or umbilical cord and then expanded in vitro for manufac-
ture of a clinical product. Similar products have been used safely
and effectively in phase 1, 2, and 3 trials to modulate the graft-
versus-host response in acute and chronic GVHD."3¥'*8 Their
low MHC-II surface expression allows for allogeneic infusion
without HLA matching. Although cell-to-cell contact mediates
some aspects of potential therapeutic benefit of MSCs,'*">"
their immune modulatory, antimicrobial, and tissue reparative
properties are largely mediated by paracrine factors collectively
referred to as the MSC “secretome.” *2"'>” MSC-secreted hepa-
tocyte growth factor,'®* keratinocyte growth factor,’*"*® and
angiopoietin-1'>">7 have all been linked to protection against
lung injury, as have extracellular vesicle-associated RNAs."® As
such, MSC-derived extracellular vesicles are also under investiga-
tion for the treatment of severe COVID-19.

Although MSCs show efficacy in preclinical disease models and
safety in early clinical trials, the results of phase 3 trials have
been mixed. This is likely in part because of variation in tissue
source and manufacturing protocols, including culture conditions
and number of passages, which can lead to functional and phe-
notypic differences in MSCs that might go undetected based on
minimal release criteria.’®® Furthermore, best methods of isola-
tion (plastic adherence vs selection) and ex vivo expansion are
also unclear, as head-to-head studies of clinical outcomes using
differing manufacturing methods have not been performed.’®"

Use of MSCs for treatment of COVID-19

Based on preclinical and early clinical data supporting their use in
ARDS and observation of the inflammatory response to SARS-
CoV-2, several groups completed pilot studies using MSCs to
treat severe COVID-19, with no observed treatment-related
adverse events.'®>"®” These included an open-label, individually
randomized pilot study conducted by Shu et al,'*? in which 41
patients diagnosed with severe COVID-19 were assigned to treat-
ment with a single IV dose of 2 X 10° cells/kg human umbilical
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cord (hUC)-MSCs (n = 12) or standard treatment (n = 29), with a
decline in CRP and IL-6 and more rapid improvement in hypox-
emia in the treatment compared with control group. Leng et al'®*
treated 7 patients diagnosed with COVID-19 with 1 X 10° cells/
kg of hUC-MSCs with subsequent clinical improvement and
decreased CRP and confirmed that their hUC-MSC product was
ACE2 negative and thus unlikely to be infected by SARS-CoV-2, a
finding that has been confirmed elsewhere.'®*'%81¢? Gyo et al'®®
treated 31 patients with severe COVID-19 pneumonia with
1 % 10° cells’kg hUC-MSCs with a trend toward improvement in
oxygenation and decreased inflammatory markers (IL-6, CRP, pro-
calcitonin) after treatment. Sengupta et al'’® treated patients with
severe COVID-19 and moderate-to-severe ARDS (n = 24) with
MSC-derived exosomes (ExoFlo) in a nonrandomized, open-label
cohort study and found an improvement in oxygenation and a
survival rate of 83% after treatment, along with an increase in lym-
phocyte counts and a decrease in CRP.

Results from early randomized controlled trials of MSCs for treat-
ment of COVID-19 have shown promising preliminary efficacy
results, although their samples sizes are small. In a double-
blinded, randomized, placebo-controlled trial of 40 critically il
adults with COVID-19, 20 of whom were treated with hUC-
MSCs, Dilogo et al'”" (NCT04457609) reported a survival rate in
patients treated with hUC-MSCs that was 2.5 times higher than
those who received placebo (P = .047). Lanzoni et al'”2
(NCT04355728) also performed a double-blinded, randomized,
placebo-controlled phase 1/2a study in which 24 patients with
COVID-19 ARDS were allocated 1:1 to either treatment with 2
doses of 100 * 20 X 10° hUC-MSCs or vehicle solution
and found significantly improved patient survival (91% vs 42%,
P = .015), serious adverse event-free survival, and time to recov-
ery in the hUC-MSC group. Shi et al'’® (NCT04288102) treated
101 patients who had been hospitalized for COVID-19, most of
whom were classified as being in the convalescent phase of
iliness at enrollment, with either hUC-MSCs (n = 66) or placebo
(n = 35). This study identified an improvement in a 6-minute
walk test and computed tomography lung lesion burden in the
MSC group compared with placebo. There are currently more
than 30 registered clinical trials evaluating safety, feasibility, and
efficacy of MSCs for the treatment of COVID-19.

Limitations and future directions

Although multiple studies of cellular therapy targeting COVID-19
are underway or planned, there remain many potential hurdles for
these treatments. Although some of the current studies include
control groups, randomized controlled studies of cellular therapies
are difficult to carry out, particularly when focused on rare patient
populations. Cellular therapies can be costly because of the
manufacturing requirements. However, current antiviral cell thera-
pies are roughly on par with the cost of IV antiviral medications,

and if effective in reducing hospitalization time, they may be eco-
nomical. As SARS-CoV-2 infection has the potential to progress
rapidly, both antiviral and anti-inflammatory cellular therapies
would likely require rapid turnaround (likely on the order of days)
to be feasible as treatment options. This would likely eliminate
individualized cellular therapies for treatment in most cases. Fur-
thermore, the standard use of immunosuppressive medications
including corticosteroids in patients with severe respiratory dis-
ease may inactivate infused cellular therapies. Gene-engineered
products may overcome this limitation but would add to the cost
of product generation. Use of previously generated cell banks
from healthy donors could overcome many of these hurdles.

Conclusion

There remains a need for novel therapies to protect vulnerable
populations from SARS-CoV-2 and future emerging infectious dis-
eases, and adoptive cellular therapy may play a role in the preven-
tion of disease in patients with blood disorders who are unable to
mount a vaccine response. In addition, cell-based therapies are a
potential treatment for these patients and high-risk individuals
with complicated COVID-19. Randomized controlled trials of anti-
viral and anti-inflammatory immunotherapy are, however, required
to help determine whether these therapies will have an estab-
lished place in our armamentarium against COVID-19.
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