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Abstract: Background: Integrase strand-transfer inhibitor (INSTI)-containing regimens have gradu-
ally been administered in Guangdong Province, China beginning in 2016, and INSTI-related drug
resistance (DR) may occur and should be monitored among HIV-1-infected patients. Objective: To
investigate the prevalence of INSTI-related resistance among HIV-1-infected individuals in Guang-
dong and provide evidence for the optimal administration of INSTIs. Methods: This study recruited
1208 HIV-1-infected patients (including 404 ART-naive and 804 ART-experienced patients) between
June 2021 and April 2022. The entire integrase gene was amplified from blood plasma. Demo-
graphic and epidemiological information were collected. INSTI mutations and susceptibility were
interpreted using the Stanford HIV Drug Resistance Database HIVdb program. Results: Of the
1208 enrolled individuals, 2.65% (32/1208) carried at least one INSTI major or accessory drug resis-
tance mutation (DRM), with 1.49% (6/404) being from ART-naive individuals and 3.23% (26/804) from
ART-experienced individuals. Among them, seven polymorphic major mutations were detected. Al-
though no INSTI drug resistance was found among treatment-naive patients, seven ART-experienced
patients (0.87%, 7/804) carried mutations conferring resistance to INSTIs. Conclusion: The overall
prevalence of INSTI DRMs and DR was comparatively low among ART-naive and ART-treated popu-
lations in Guangdong; however, INSTI-related polymorphic mutations were observed. Surveillance
should be reinforced before transfer to INSTI-containing regimens.

Keywords: HIV-1; drug resistance mutations; integrase strand transfer inhibitors; drug resistance

1. Introduction

The HIV epidemic remains one of the most serious global health threats [1,2]. The
World Health Organization (WHO) has estimated that approximately 37.7 million people
were living with HIV infection globally in 2020, with 1.5 million new infections with HIV
and 0.68 million HIV-related deaths [3]. About 1.05 million people living with HIV and
AIDS (PLWHIV), with another 351 thousand deaths, were cumulatively reported in China
by the end of 2020 [4]. Heterosexual contact accounted for 74.2% newly diagnosed HIV
infections, while men who have sex with men accounted for 23.3% in 2020. In Guangdong,
a cumulative 78.2 thousand PLWHIV were reported by the end of October 2021, with
8.8 thousand individuals newly diagnosed in Guangdong during January to October
of 2021 [5].

Combined antiretroviral therapy (cART) suppresses HIV replication, allowing immune
reconstitution to occur, dramatically decreasing HIV/AIDS-related morbidity and mortality
as well as the risk of further HIV transmission [6,7]. By the end of 2020, approximately 73%
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(27.5/37.7 million) of PLWHIV globally were receiving ART [3]. By the end of October 2021,
85.67% (67.0/78.2 thousand) of PLWHIV in Guangdong were receiving ART [5].

Overall, increased use of reverse transcriptase inhibitor-based regimens has been
accompanied by the emergence of drug resistance, which leads to treatment failure and
can be transmitted to those with new infections [8–11]. Indeed, a multicountry HIV drug
resistance analysis in five sub-Saharan African countries showed that 53.0% and 8.8%
of newly diagnosed infants exhibited resistance to one or more nonnucleoside reverse
transcriptase inhibitors (NNRTIs) or nucleoside reverse transcriptase inhibitors (NRTIs),
even before treatment was initiated [12].

Integrase strand-transfer inhibitors (INSTIs) are the latest class of drugs available that
target the HIV integrase enzyme; they offer novel treatment options for patients with both
ART-naive and acquired or transmitted drug resistance (ADR or TDR) to protease inhibitors
(PIs) and NNRTIs [13,14]. The first-generation INSTIs raltegravir (RAL) and elvitegravir
(EVG) were approved by the Food and Drug Administration for clinical use in 2007 and
2012, respectively; the second-generation INSTIs dolutegravir (DTG), bictegravir (BIC),
and cabotegravir (CAB) were approved in 2012, 2018, and 2021, respectively [15]. In US
Department of Health and Human Services Adult and Adolescent HIV treatment guidelines,
one INSTI plus two NRTIs are recommended regimens for ART-naive patients [13,16]. RAL
or DTG plus two NRTI regimens are recommended as first-line treatment in the 2018
Chinese Guidelines for Diagnosis and Treatment of HIV/AIDS [17], and have been widely
used in Guangdong since 2016.

Although INSTIs have been proven to be an effective antiretroviral drug against HIV
infection [18,19], the occurrence of drug resistance mutations may be inevitable [20]. In
the present study, we conducted a province-wide survey to investigate INSTI resistance
mutations and drug susceptibility among ART-naive and ART-experienced patients in
Guangdong. Because drug resistance to INSTIs is not routinely included in HIV-1 genotypic
testing in China, our results provide important evidence for clinicians as well as for the
development of preventive HIV/AIDS control strategies.

2. Materials and Methods
2.1. Study Population and Data Collection

HIV-1-infected individuals were eligible for inclusion in this study if they were
16 years old or older, treatment-naive, or ART-experienced with HIV-1 viral load above
1000 copies/mL. We recruited 1208 individuals from Guangdong between June 2021 and
April 2022, comprising 804 ART-experienced and 404 ART-naive individuals. Epidemiologi-
cal data for the patients (including age, sex, transmission route, geographical region, year at
diagnosis, and CD4+ T-cell counts) were downloaded from the National Free Antiretroviral
Treatment Database for Disease Control and Prevention.

2.2. Sample Collection, Viral Load Determination, and Genotyping

Anticoagulant EDTA peripheral blood samples were collected and plasma was sep-
arated after centrifugation. Real-time molecular beacon detection was applied to detect
HIV-1 viral load (Daan, China). HIV-1 genotypes were determined using the online tool
COMET HIV (https://comet.lih.lu/index.php, accessed on 8 November 2022) and con-
firmed using a maximum likelihood (ML) phylogenetic tree based on protease (PR) and
partial reverse transcriptase (RT) sequences.

2.3. RNA Extraction, Amplification, and Sanger Sequencing

Viral RNA was extracted from plasma samples using an automatic magnetic-bead-
based Virus RNA Extraction Kit (Daan, China) according to the manufacturer’s instructions.
Amplification of the entire Integrase (IN) gene (HXB2 4230–5093, covering all 288 amino
acids of integrase) was performed with an in-house RT–PCR procedure, as previously
described [21]. Positive PCR products were separated by agarose gel electrophoresis and
sent to Tianyi Huiyuan Genomics Company for Sanger sequencing.

https://comet.lih.lu/index.php
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2.4. Genotype Identification and Genotypic Drug Resistance Analysis

The obtained sequences were assembled and cleaned with Sequencher DNA sequence
analysis software (Version 5.4.6) and then aligned using BioEdit software (Version 7.2).
The Stanford HIV-1 drug resistance database (HIVdb version 9.1, https://hivdb.stanford.
edu/hivdb/by-sequences/, accessed on 2 June 2022) was employed to identify INSTI
mutations and sensitivity to BIC, CAB, DTG, EVG, and RAL. Sequences associated with low-
level, intermediate, or high-level categories of resistance were defined as conferring INSTI
drug resistance.

2.5. Sequence Data and Gene Evolution Analysis

All IN sequences from the 1208 HIV-1 individuals were submitted to the GenBank web-
site (https://www.ncbi.nlm.nih.gov/genbank, accessed on 22 July 2022) under accession
numbers OP032752-OP033959.

The ML phylogenetic tree was generated using PhyML version 3.0 (https://www.
hiv.lanl.gov/content/sequence/PHYML/interface.html, accessed on 28 September 2017)
with the GTR model [22]. Branch support was estimated using the approximate likelihood
ratio test (aLRT) SH-like supports, and aLTR values higher than 0.9 were used to identify
lineages. The final trees were visualized using Figtree V1.4.2.

2.6. Statistical Analysis

All statistical analyses were performed using IBM SPSS V25.0. Quantitative statistics
were described using the median (IQR). The chi-square test was applied for comparisons
between two groups, and the level of significance for the evaluation of two-sided p values
was set at 0.05.

3. Results
3.1. Demographic Information of the Study Participants

In total, 1208 individuals were included in this study, including 404 ART-naive and
804 ART-experienced individuals. The age of the participants ranged from 16 to 87 years,
with a median age of 43 years. Among them, 50.99% (616/1208) were recruited in 2021
and 49.01% (592/1208) in 2022. Approximately 44.04% of the individuals had confirmed
infections before 2019. Most of the subjects (81.85%, 990/1208) were male. Heterosexual
(HET) contact comprised the predominant risk group (59.02%, 713/1208), followed by men
who have sex with men (MSM) (26.99%, 326/1208) and intravenous drug users (IDU) (7.37%,
89/1208). The median HIV-1 RNA viral load at the time of the drug resistance test and the
CD4+ T-cell count at baseline were 4.15 (log 10, IU/mL) and 199 (cells/µL), respectively.
The demographic characteristics of the HIV-1-infected individuals are summarized in
Table 1. Most of the 804 ART-experienced individuals (90.58%, 728/804) were treated with
two NRTIs+PI/NNRTI during the whole antiviral process; 9.45% (76/804) of them had
used INSTI-containing regimens (DTG (61.84%, 47/76), EVG (21.05%, 16/76), BIC (13.16%,
10/76) or RAL (3.95%, 3/76)).

Complete IN sequences were obtained from all 1208 enrolled participants. There were
no duplicate samples from the same subject at different time points. According to COMET
HIV-1 analysis based on PR/RT sequences, CRF01_AE was the most frequently occur-
ring genotype, with a proportion of 40.81% (493/1208), followed by CRF07_BC (28.64%,
346/1208) and CRF55_01B (28.64%, 346/1208). A total of six subtypes or circulating recom-
binant forms (CRFs) were confirmed (91.39%, 1104/1208) according to the ML phylogenetic
tree based on 1104 PR/RT sequences (Figure 1A), which was constructed to determine the
evolutionary relationship of these sequences. CRF07_BC and CRF08_BC cannot fall into
clusters; meanwhile, sequences in CRF55_01B and CRF59_01B clusters cannot match the
genotypes confirmed by the ML phylogenetic tree based on 1104 PR/RT sequences, as they
lack the necessary breakpoints for subtyping (Figure 1B).

https://hivdb.stanford.edu/hivdb/by-sequences/
https://hivdb.stanford.edu/hivdb/by-sequences/
https://www.ncbi.nlm.nih.gov/genbank
https://www.hiv.lanl.gov/content/sequence/PHYML/interface.html
https://www.hiv.lanl.gov/content/sequence/PHYML/interface.html
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Table 1. Demographic and Viral Characteristics of 1208 Study Population.

Characteristics All Patient ART Naive Patient ART Experienced Patient

Patient, number 1208 404 804
Sex, number (%)

Male 990 (81.95) 354 (87.62) 636 (79.10)
Female 218 (18.05) 50 (12.38) 168 (20.90)

Age, median (range) 43 (16–87) 33 (16–82) 91 (19–87)
HIV-1 RNA at DR test

(Log10, IU/mL), number (%)
4.15

(2.32–7.51) 4.91 (2.88–7.51) 4.05 (2.32–6.66)

CD4 count at baseline
(cells/µL), median(range) 199 (1–1302) 248 (1–1302) 162 (1–940)

HIV transmission route, number (%)
MSM 326 (26.99) 188 (46.53) 138 (17.16)

Heterosexual 713 (59.02) 204 (50.5) 509 (63.31)
Intravenous drug users 89 (7.37) 7 (1.73) 82 (10.20)

SexIDU 5 (0.41) 1 (0.25) 4 (0.50)
Blood 3 (0.25) 0 (0.00) 3 (0.37)

Unknown 72 (5.96) 4 (0.99) 68 (8.46)
Geographical region, number (%)

Pearl River Delta 660 (54.64) 289 (71.53) 371 (46.14)
Eastern 72 (5.96) 19 (4.70) 53 (6.59)
Western 308 (25.50) 36 (8.91) 272 (33.83)

Northern 168 (13.91) 60 (14.85) 108 (13.43)
Collection year, number (%)

2021 616 (50.99) 66 (16.34) 550 (68.41)
2022 592 (49.01) 338 (83.66) 254 (31.59)

Confirm year, number (%)
Before 2019 532 (44.04) 24 (5.94) 508 (63.18)

2019 106 (8.77) 3 (0.74) 103 (12.81)
2020 121 (10.02) 8 (1.98) 82 (10.20)
2021 189 (15.65) 109 (26.98) 111 (13.81)
2022 260 (21.52) 260 (64.36) 0 (0.00)

ART history (months), median (range) - - 41.02 (1–206)
HIV-1 genotypes based on PR/RT sequences, number (%)

CRF01_AE 493 (40.81) 124 (30.69) 369 (45.90)
CRF07_BC 346 (28.64) 157 (38.86) 189 (23.51)
CRF08_BC 78 (6.46) 19 (4.70) 59 (7.34)
CRF55_01B 132 (10.93) 45 (11.14) 87 (10.82)
CRF59_01B 25 (2.07) 7 (1.73) 18 (2.24)
Subtype B 30 (2.48) 8 (1.98) 22 (2.74)

Other 104 (8.61) 44 (10.89) 60 (7.46)
IN mutation, number (%) 32 (2.65) 6 (1.49) 26 (3.23)

IN Drug Resistance, number (%) 7 (0.58) 0 (0.00) 7 (0.87)

3.2. DRMs Associated with INSTIs in ART-Naive and ART-Experienced Participants

Of the 1208 individuals, 2.65% (32/1208) carried at least one INSTI major or accessory
DRM. Among them, 1.49% (6/404) were obtained from ART-naive individuals, whereas
3.23% (26/804) were from ART-experienced individuals (Table 1, Figure 2).

A total of 38 INSTI-related DRMs were detected among the enrolled individuals.
Approximately 2.32% (28/1208) harboured only INSTI accessory DRMs (ART experienced,
2.74% (22/804); ART naive, 1.49% (6/404)), 0.25% (3/1208) harboured only INSTI major
DRMs (ART experienced, 0.37% (3/804)), and 0.08% (1/1208) harboured both INSTI major
and accessory DRMs (ART experienced, 0.12% (1/804)).

E138K and Q148R (both 0.17%, 2/1208) were the most frequent mutations among
INSTI major DRMs, and E157Q (1.41%, 17/1208) was the most frequent mutation among
INSTI accessory DRMs. Moreover, INSTI major and accessory DRMs both varied among
ART-naive and ART-experienced individuals (Figure 3).
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3.3. DR Associated with INSTIs in ART-Naive and ART-Experienced Participants

According to the HIVdb program, 0.58% (7/1208) of the enrolled individuals car-
ried INSTI-related DRMs associated with low-level, intermediate, or high-level resistance
(Figure 4). The characteristics of the patients with INSTI-related mutations and the corre-
sponding drug resistance levels are shown in Table 2. Four patients carrying INSTI-related

https://www.hiv.lanl.gov/content/index
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major mutations all showed at least low-level resistance to INSTIs. Among the 28 patients
carrying INSTI-related accessory mutations, we found only three cases carrying the H51Y
or G163R mutation, which cause low-level resistance to INSTIs.
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Seven patients with INSTI-related drug resistance were observed among the ART-
experienced patients. Among them, four HIV-1 genotypes were identified (CRF01_AE,
1 CRF07_BC, 1 CRF55_01B and one unassigned genotype, respectively). Six individuals
were male, and the dominant transmission route was HET (4/7), with a median age of
52 years (IQR: 29–73 years). Four individuals received INSTI-containing ART regimens
(4/76, 5.26%), while the other three (3/728, 0.41%) were not recorded as utilizing INSTIs.
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Table 2. Characteristics of patients with IN-related mutations and the corresponding drug resistance level.

Sample
ID

Group 1 Geographical
Region Sex Age Transmission

Route
Genotype

IN DRM IN DR 2 Ever Used
Regimen

Containing
Integrase

Other Class
DRMsMajor Accessory BIC CAB DTG EVG RAL

220111 Naive PRD Female 33 HET 08_BC - E157Q S S S P P No No
220281 Naive PRD Female 49 HET 08_BC - E157Q S S S P P No No

ZLQ08251 Naive Northern Female 37 HET 07_BC - E157Q S S S P P No No
ZLQ08265 Naive Northern Male 23 MSM 01_AE - E157Q S S S P P No No
ZLQ08266 Naive Northern Male 55 MSM 59_01B - E157Q S S S P P No No
ZLQ08269 Naive Northern Male 51 HET 07_BC - E157Q S S S P P No Yes

FX25834 ART PRD Male 58 HET Other
E138K,
G140A,
S147G,
Q148R

- H H H H H Yes/RAL Yes

FX26041 ART PRD Male 39 HET 01_AE - H51Y P L P L L Yes/BIC No
ZK01926 ART PRD Male 73 HET 01_AE T66I,

E92Q - L L L H M Yes/EVG Yes

ZK02467 ART PRD Male 32 MSM 01_AE G118R,
E138K Q146V M H H H H Yes/DTG Yes

FX25322 ART PRD Female 42 HET 07_BC - A128T S S S S S No No
FX26691 ART PRD Male 39 MSM 01_AE - G149A S S S S S No No
ZK01777 ART Western Male 59 Blood 01_AE - E157Q S S S P P No No
ZK01784 ART Western Male 61 HET 07_BC - E157Q S S S P P No Yes
ZK01822 ART Western Male 79 HET Other - E157Q S S S P P No Yes
ZK01839 ART Western Male 78 HET Other - E157Q S S S P P No Yes
ZK01936 ART PRD Female 41 HET 07_BC - A128T S S S S S No No
ZK02078 ART Western Male 35 IDU 07_BC - A128T S S S S S No No
ZK02106 ART Eastern Male 29 MSM 55_01B Q148R - L M L H H No Yes
ZK02277 ART Northern Male 73 HET 07_BC - E157Q S S S P P No Yes
ZK02406 ART Western Female 71 HET 01_AE - G163R S S S L L No Yes
ZK02501 ART Eastern Female 27 HET 01_AE - E157Q S S S P P No No
ZK02503 ART Eastern Male 46 HET 55_01B - E157Q S S S P P No Yes
ZK02513 ART Western Male 71 HET 07_BC - A128T S S S S S No Yes
ZK02543 ART Western Male 52 IDU 07_BC - G163R S S S L L No Yes
ZK02548 ART Western Male 36 IDU 07_BC - E157Q S S S P P No Yes
ZK02590 ART Northern Male 45 IDU 07_BC - E157Q S S S P P No No
ZK02723 ART PRD Male 40 HET 08_BC - E157Q S S S P P No Yes
ZK02810 ART PRD Male 54 IDU 07_BC - A128T S S S S S No Yes
ZK02853 ART PRD Male 46 IDU 07_BC - A128T S S S S S No No
ZK02870 ART Western Male 70 HET 08_BC - Q146R S S S S S No Yes
ZK02877 ART Western Male 52 HET 07_BC - E157Q S S S P P No No

1 Naive: ART naive; ART: ART Experienced. 2 S: Susceptible; P: Potential Low-Level Resistance; L: Low-Level Resistance; M: Intermediate Resistance; H: High-Level Resistance.
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Conversely, no drug resistance to INSTIs was observed among treatment-naive pa-
tients. The prevalence of drug resistance to INSTIs among ART-experienced patients was
0.87% (7/804) (Figure 2). As shown in Figure 4, the percentages of resistance levels for
the five INSTI drugs were all lower than 1.00%. Among the ART-experienced patients,
the percentages of resistance were 0.37% (3/804), 0.50% (4/804), 0.37% (3/804), 0.50%
(4/804), and 0.50% (4/804) for BIC, CAB, DTG, EVG, and RAL, respectively, and a greater
proportion of high-level resistance to EVG was found (0.37%, 3/804) (Figure 4).

4. Discussion

INSTIs, a novel class of anti-HIV agents, show high activity in inhibiting HIV-1
replication and play a critical role in therapy for infection with this virus [18]. However, as
shown in previous research, first-generation INSTIs (RAL and EVG) have lower genetic
barriers and possible cross-resistance. While the second-generation INSTIs (DTG, CAB
and BIC) have a higher resistance barrier [23], the surveillance of resistance to INSTIs is
necessary with more frequent use of the single-tablet regimens (STRs) containing INSTIs.

HIV-1 has a high degree of natural variability due its lack of gene expression proofread-
ing and high frequency of genetic recombination [24]. We observed six cases (1.49%) of the
accessory INSTI resistance mutation E157Q among ART-naive individuals (Figure 3), which
is a polymorphic mutation that appears to have little effect on INSTI susceptibility [25] and
is common in ART-naive individuals with a very low proportion [21,26,27]. The absence of
INSTI-associated drug resistance among ART-naive individuals suggests low circulation
of INSTI-resistant variants prior to treatment in Guangdong, which is in accordance with
reports both from other provinces and worldwide [21,24,28–30]. However, when compared
with the prevalence of INSTI-related DRMs among ART-naive HIV-1-infected patients in
2018 (1.45%, 12/827) [21], no statistically significant difference in the prevalence of INSTI-
related DRMs among ART-naive HIV-1 infections was observed in this study (χ2 = 0.002,
p = 1.00 > 0.05). With the increasing number of patients using INSTI-containing regimens
in Guangdong (patients who used INSTI-related regimens accounted for approximately
12.8% of all patients under ART in the Pearl River Delta region of Guangdong in 2021,
unpublished data), surveillance should be reinforced with respect to the further choice of
or transfer to INSTI-containing regimens.

Regarding ART-experienced individuals, most of the INSTI resistance mutations
detected were accessory (71.88%, 23/32). The most frequent mutations were E157Q (1.37%,
11/804) and A128T (0.75%, 6/804), followed by G163R (0.25%, 2/804), H51Y (0.12%, 1/804),
Q146R (0.12%, 1/804), Q146V (0.12%, 1/804), and G149A (0.12%, 1/804) (Figure 3). Except
for G163R and H51Y, all these mutations are accessory and usually only reduce INSTI
susceptibility when occurring in combination with other INSTI-resistance mutations [31].
G163R is nonpolymorphic in all subtypes except subtype F, and confers low-level resistance
to EVG and RAL when appearing alone [32]. H51Y is a rare nonpolymorphic accessory
mutation selected in patients receiving RAL or EVG, and minimally reduces EVG and
possibly CAB susceptibility [33]. The patient carrying the H51Y mutation had used the
BIC/FTC/TAF regimen as ART for four months, with HIV-1 viral load decreasing from
1.21 × 105 IU/mL at baseline to 7.99 × 102 IU/mL at DR test. The treatment failure in this
case may have been due to the H51Y mutation, which needs to be confirmed by further
phenotypic analysis.

For the ART-experienced individuals, 28.13% (9/32) of the INSTI resistance muta-
tions detected are major resistance mutations. The most frequent major INSTI resistance
mutations were E138K and Q148R (both 0.25%, 2/804), followed by T66I, E92Q, G118R,
G140A, and S147G (all 0.12%, 1/804). All these major INSTI resistance mutations were
detected in four patients (three of them had ever used regimens containing integrase),
though the frequency of these major INSTI resistance mutations was very low (from 0.12%
to 0.25%). E138K is a non-polymorphic mutation occurring in patients receiving RAL, EVG,
and DTG [34]. In this study, two patients carrying the E138K mutation had used RAL and
DTG. Q148R has been reported in patients with virological failure during DTG [35], which
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can reduce RAL and EVG susceptibility 30–100-fold [36]. Most of the major INSTI DRMs
detected in this study may have been caused by the use of INSTIs, though the low rates of
other INSTI DRMs (mainly accessory mutations) may have been due to natural polymor-
phisms in the IN region and the long-term use of 2NRTI + NNRTI regimens. Surveillance
is necessary for the further use of INSTIs, especially in ART-experienced individuals.

According to previous studies [37,38], drug resistance to NNRTIs and/or NRTIs prior
to treatment increases the risk of resistance to INSTIs. In this study, seven patients showed
drug resistance to INSTIs, and six individuals were coupled with other class DRMs (Table 2).
Whether other classes of DRM represent a risk factor for resistance to INSTIs remains to be
investigated in the future.

According to previous studies [39–43], mutations outside of integrase gene, such as
those in and near the 3′ polypurine tract (3′PPT) and in envelope glycoproteins, are able
to confer resistance to INSTI. The continuous monitoring of mutations outside the IN
gene warrants special importance in surveillance of development of drug resistance. As
INSTIs are now widely used even in first-line therapy, we intend to focus on the continuous
monitoring of the mutations outside the IN gene in subsequent research.

5. Conclusions

The overall prevalence of INSTI DR in Guangdong remains low (0.58%, 7/1208), which
suggests that INSTIs currently have good applicability and that the use of INSTIs results in
ideal viral suppression. Nevertheless, the proportion of DR in ART-experienced individuals
was higher than that in ART-naive individuals (χ2 = 3.188, p = 0.088), and seven INSTI-
related polymorphic major mutations were detected among HIV-1 patients in Guangdong,
emphasizing the importance of monitoring drug resistance prior to administration of
INSTI-containing regimens.
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