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Acute respiratory distress syndrome (ARDS) is recognized as a serious public health issue that results in respiratory failure and
high mortality rates. The syndrome is characterized by immune cell aggregation, communication, activation, and alveolar
epithelial damage. To elucidate the complex dynamic process of the immune system’s response in ARDS, we construct the
intercellular communication network of immune cells in ARDS based on a single-cell RNA sequencing dataset (including three
sepsis-induced ARDS patients and four sepsis-only patients). The results show that macrophages relayed most of the
intercellular signals (ligand–receptor pairs) in both groups. Many genes related to immune response (IFI44L, ISG, and HLA-
DQB1) and biological functions (response to virus, negative regulation of viral life cycle, and response to interferon-beta) were
detected via differentially expressed gene analysis of macrophages between the two groups. Deep analysis of the intercellular
signals related to the macrophage found that sepsis-induced ARDS harbored distinctive intercellular signals related to
chemokine–chemokine receptors (CCL3/4/5−CCR1), which mainly are involved in the disturbance of the STAT family
transcription factors (TFs), such as STAT2 and STAT3. These signals and downstream TFs might play key roles in
macrophage M1/M2 polarization in the process of sepsis-induced ARDS. This study provides a comprehensive view of the
intercellular communication landscape between sepsis and sepsis-induced ARDS and identifies key intercellular
communications and TFs involved in sepsis-induced ARDS. We believe that our study provides valuable clues for
understanding the immune response mechanisms of ARDS.

1. Introduction

Acute respiratory distress syndrome (ARDS) is the most
severe form of acute lung injury, comprising up to 10% of
intensive care unit admissions [1]. With slow improvement,
the high mortality rate decreased from 60% to 40% in the
last 20 years [2, 3]. Further, survivors experienced a low
quality of life for a lengthy period of time because of the
sequelae of the syndrome, such as pulmonary function
limitations and sustained neurocognitive deficiencies [4].
Sepsis is a critical infectious condition that can cause
immune system responses and organ dysfunction [5]. Severe
sepsis is known to cause fatal stages of disease development
that involve lactic acidosis, oliguria, and ARDS [6].

Many studies have attempted to elucidate how ARDS occurs,
such as explaining how pulmonary edema fluid accumulates
due to lung inflammation and increased alveolar endothelial
and epithelial permeabilities [7–9]. Some studies have
described how these pathways are disrupted in ARDS
[10–15]. However, researchers have not yet elucidated the
multifactorial mechanisms by which sepsis induces ARDS,
nor have they distinguished the mechanism of sepsis and
sepsis-induced ARDS, which could further explain how
and why ARDS occur.

ARDS is characterized by a serious inflammatory reac-
tion in the lung and leads to serious hypoxemia and poor
pulmonary compliance in both children and adults [9, 16].
Despite development in the understanding of the
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pathogenesis of ARDS, the underlying mechanism still needs
to be elucidated. Immune cells interact with and respond to
lung infection, and their contribution to disease progression
is critical for the development of effective management strat-
egies [17]. In addition, surviving a severe respiratory infec-
tion is dependent on a careful balance between mounting
an immune response that is sufficient to clear the infection
and maintaining lung function despite immune-induced tis-
sue damage [18]. Hence, studying the interrelationships
between immune cells is important in the exploration of
ARDS development.

At present, the single-cell biotechnologies provide an
opportunity to identify new and rare cell types and their
characteristics with unprecedented accuracy. Recent
research has used single-cell RNA sequencing (scRNA-seq)
to identify an early monocyte gene signature in ARDS [3].
In this study, to further elucidate the complex dynamic
process of the immune system’s response in ARDS, we
construct the intercellular communication network of
immune cells in ARDS based on scRNA-seq dataset (includ-
ing three sepsis-induced ARDS patients and four sepsis-only
patients). We then investigated the distinctive intercellular
signals and the internal signaling in macrophages ofsepsis-
induced ARDS. We believe that our study provides valuable
clues for understanding the immune response mechanisms
of ARDS.

2. Materials and Methods

2.1. Data Collection and Processing. Data were collected
from GSE151263, including three sepsis-induced ARDS
patients and four sepsis-only patients. The scRNA-seq and
quality control were performed as described in [3]. Differen-
tially expressed genes (DEGs) in the two groups were
screened by “Seurat3” in R (p adj < 0:05 and logFC > 0:4)

and were drawn by “pheatmap” and “ggplot2” in R. The t-
SNE was drawn by “Seurat” in R.

2.2. Cell Recognition. Table 1 lists the markers expressed
specifically in immune cells, sourced from Garnett (ver-
sion: 0.1.20) [19]. By observing the expression of these
markers, we were able to recognize different immune cells
in the patients.

2.3. Inferring Cell–Cell Communication. Intercellular
signaling among different immune cell types of sepsis and
sepsis-induced ARDS was calculated by CellCall [20], which
is a toolkit for recognition of intercellular communication
networks and internal regulatory signals by combining the
expression of ligands/receptors with downstream transcrip-
tion factor (TF) activities for certain ligand–receptor (LR)
pairs. Genes that were expressed in less than 10% of the cells
of a certain cell type were excluded in this study. For details,
in CellCall package, we set the parameter of function Create-
NichConObject() with min:feature = 3, scale:factor = 106.
Parameters p:adjust = 0:05 and probs = 0:9 in function
TransCommuProfile(). Meanwhile, we have set the default
parameter with function CreateSeuratObject() in Seurat
package.

2.4. Disease Preference Analysis. Based on Zhang et al.’s work
[21], we proposed the “disease preference” by calculating
the index D:

D = Observation
Expected , ð1Þ

where Observation means the number of specific
immune cells in every patient (Table 2) and Expected
equals ðM/SÞ ∗N , where M is the total number of specific
immune cells in all the patients (e.g., M might be the total

Table 1: Markers of different immune cells.

Cell type Subtype Marker

B cell CD79A, CD79B, MS4A1, CD37

CD4+ T cell
CD4+ memory T cell CCR7, CD27, IL7R

Naive CD4+ T cell CCR7, IL7R, MAL, MYC, TCF7

CD8 T cell CD8A, CD8B, GZMK, CD3D, NKG7

Macrophage cell CD14, CD163, CD68, CSF1R, FCGR3A, LYZ

NK cell CCL3, CD247, GNLY, GZMB, NKG7

Table 2: Number of specific immune cells in each patient.

Sepsis 1 Sepsis 2 Sepsis 3 Sepsis 4 ARDS 1 ARDS 2 ARDS 3

B 419 18 248 298 594 357 134

CD4T 1245 517 1345 639 955 1217 545

CD8T 736 536 923 168 809 217 229

Macrophage 969 1976 859 2680 1451 1588 918

NK 437 235 165 124 176 53 111

Sum 3806 3282 3540 3909 3985 3432 1937
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Figure 1: Characteristic of different immune cells. (a) t-SNE analysis for five clusters corresponding to five immune cells, respectively. (b)
Correlation of immune cells. (c) Expression of markers related to classification of the five immune cells. (d) Intercellular signaling among
different immune cell types. (e) Disease preference of macrophages and other immune cells for the same patient.
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Figure 2: Continued.
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number of B cells in all seven patients). S is the total
number of cells in all seven patients, and N is the total
number of cells in one patient.

2.5. Statistical Analysis. The Louvain algorithm was applied
for classified analysis (resolution = 0:5). Spearman
correlation coefficient was used to calculate the relevance
among different immune cells by assessing the mean value
of cell markers present in different immune cells drawn by
“psych” in R. Intercellular communication networks and
downstream TF activities for certain LR pairs were observed,
and a ridgeline plot was drawn using “CellCall” in R. Gene
ontology functional enrichment analysis was performed on
Metascape [22] with kappa similarity index.

3. Results

3.1. Intercellular Communications in Sepsis and Sepsis-
Induced ARDS. According to the Louvain algorithm, the
scRNA-seq data were classified for five immune cell types
(NK, B, CD4+ T, and CD8+ T cells) (Figure 1(a)).
Figure 1(c) illustrates the expression of markers to help clas-
sify the five cluster cells. Figure 1(b) reveals little correlation
among different immune cells, except NK cells and CD8+ T
cells. Intercellular signaling among different immune cell
types was analyzed by CellCall, and macrophages exhibited
extensive communication with other immune cells
(Figure 1(d)). Moreover, the disease preference results indi-
cated that macrophages exhibit different trends from other
cells in the same patient (Figure 1(e)).

3.2. DEG Analysis in Macrophage. To compare the function of
macrophages involved in the extensive intercellular communi-
cation in sepsis and sepsis-induced ARDS, DEG analysis was
performed. We detected 21 genes expressed noticeably in
sepsis-only patients, and 59 genes expressed noticeably in
sepsis-induced ARDS patients (see Figures 2(a) and 2(b)).
Among the genes, IFI44L is often expressed as a response to
viral infections, which evokes extensive immunomodulation
[23]. HLA-DQB1 is known as a major histocompatibility
complex, showing connections to many immune cells and
related to immune response [24, 25]. AREG, which encodes
amphiregulin, was among the downregulated genes in
sepsis-induced ARDS. Downregulation of AREG induces
epithelial cell apoptosis in lipopolysaccharide-induced lung
injury in mice [26]. Figure 2(c) reveals that the t-SNE results
distinguish the two groups of samples, by performing PCA
analysis with a total of 80 DEGs. Gene ontology functional
enrichment analysis with a total of 80 DEGs is exhibited in
Figure 2(d) and Table S1. Terms such as “response to virus,”
“negative regulation of viral life cycle,” “growth factor
activity,” and “response to interferon-beta” were related to
immune response and regulation of a complex
transcriptional response.

3.3. Differential Intercellular Communication Related to
Macrophages. Intercellular signals from macrophages to
other immune cells were noticeably higher in the sepsis-
only patients compared to the sepsis-induced ARDS patients
(Figure 3(a)). We list the LR pairs between macrophages and
other immune cells for the two groups in Figure 3(b). Only
one pair was observed to have the same ligand and receptor.

response to virus
response to interferon-beta
negative regulation of viral life cycle
muscle tissue development
lytic vacuole
growth factor activity
protein homodimerization activity
erythrocyte differentiation
secretory granule lumen
response to cadmium ion

negative regulation of catalytic activity
response to peptide
regulation of growth
cytosolic ribosome
negative regulation of protein modification process
cellular response to transforming growth factor beta stimulus
nucleobase-containing compound catabolic process
regulation of epidermal growth factor receptor signaling pathway
late endosome
MAPK cascade

(d)

Figure 2: Differentially expressed gene (DEG) analysis and gene ontology functional enrichment analysis in macrophages. (a) Heatmap of
DEGs in sepsis and sepsis-induced ARDS of macrophages. (b) Volcano plot displaying DEGs between the two groups in macrophages. (c) t-
SNE analysis with top 20 major factors. (d) Gene ontology functional enrichment analysis with a total of 80 DEGs.
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Figure 3: Continued.
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Sepsis-induced ARDS patients displayed FASLG−FAS,
which reportedly is related to increased protein
permeability in the pulmonary alveoli [27], and CCL3/4/
5−CCR1, which is related to the chemokines and
proinflammatory cytokines that participate in and promote
inflammatory responses related to macrophages [28, 29].
Sepsis-only patients displayed IL1B−IL1RAP, of which
Interleukin-1-B (IL1B) is a proinflammatory cytokine that
plays an important role in sepsis and affects the p38
MAPK and NFκB signaling pathways [30, 31], and
TGFB1−TGFBR1, of which transforming growth factor
beta1 (TGF-beta1) gene single-nucleotide polymorphisms
and plasma TGF-beta1 levels were thought to be
associated with susceptibility to sepsis [32]. Furthermore,
we analyzed the downstream TFs targeted by LR pairs
(Figure 3(c)) and found that different TFs, including
SMAD3, RBPJ, and MAX, were targeted in sepsis-only
patients, while FOS, STAT3, STAT2, and RB1 were
targeted in sepsis-induced patients. Furthermore, most
genes regulated by TFs were differentially expressed
(Figure 3(d)), which could prove the downstream TFs
were activated. However, the genes regulated by STAT3
were low expression, which may indicate that STAT3
was inhibited.

4. Discussion

ARDS is a syndrome of acute respiratory failure caused by
noncardiogenic pulmonary edema [11], resulting in an
excessive inflammatory and immune response [33]. In this
study, we analyzed intercellular communication of immune
cell types with scRNA-seq data to identify the immune cell
and downstream TFs that play a vital role in sepsis and
sepsis-induced ARDS. Our results indicate that
macrophages have the most extensive communication with
other immune cells, such as NK, B, CD4+ T, and CD8+ T
cells. We further screened the DEGs in macrophages
between sepsis and sepsis-induced ARDS. The DEGs were
enriched in gene ontology terms, such as “response to virus,”
“negative regulation of viral life cycle,” and “regulation of
epidermal growth factor receptor signaling pathway,” which
related to immune response. We compared the LR pairs
between macrophages and other immune cells in the two
groups. The LR pairs in the sepsis-induced ARDS group,
including FASLG−FAS, OSM−IL6ST, and CCL3/4/5
−CCR1, were different from pairs in the sepsis-only group.
The chemokine–chemokine receptors (CCL3/4/5−CCR1)
are known to be involved in the promotion inflammatory
response by macrophages [28, 29, 34]. FASLG−FAS were
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Figure 3: CellCall results and ridge plot of genes regulated by transcription factor (TF). (a) Intercellular signals from macrophage to other
immune cells. (b) Ligand-receptor (LR) pairs between macrophage and other immune cells for two groups. (c) Downstream transcription
factors (TFs) targeted by LR pairs in sepsis-induced ARDS and sepsis, and the width of each item means the frequencies of each pairs
occurred among all the pairs, with the wider flow between two objects, the closer relation they have. (d) Ridgeline plot of genes regulated
by TFs.
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involved in protein permeability in the pulmonary alveoli
[27]. Moreover, the downstream TFs targeted by the LR
pairs in sepsis-induced ARDS are FOS, RB1, STAT2, and
STAT3. In vivo, aberrant expression of Stat3 has been
associated with immune tolerance [35], acute-phase
response [36], and septic shock [37]. These observations
suggest that Stat3 may play an important role during
inflammation [38]. Other studies have demonstrated the
relationship between STAT3 and macrophages as well as
macrophage phenotype shift.

Some researchers have confirmed that macrophages
play a dual role of proinflammation and anti-
inflammation based on the microenvironment in different
pathological stages. In the acute phase of ALI/ARDS,
resident alveolar macrophages, typically expressing the
alternatively activated phenotype (M2), shift into the
classically activated phenotype (M1) and release various
potent proinflammatory mediators. In the later phase, the
M1 phenotype of the activated resident and recruited
macrophages shifts back to the M2 phenotype for
eliminating apoptotic cells and participating in fibrosis
[39–45]. If the process of shifting back to M2 is blocked,
then the severe inflammatory reactions will persist and
ARDS will not proceed to the next stage. Yin et al. [46]
have found inhibition of the IL-6/STAT3 signaling
pathway can induce the polarization of M1 macrophages
and suppress the polarization of M2 macrophages. The
inhibition of the IL-6/STAT3 signaling pathway can turn
macrophages into M1 type, which is in line with our
results that STAT3 was inhibited. Chen et al. [44] provide
evidence that the transcription factor STAT3 can promote
the transcription of lnc-M2 and facilitate the process of
M2 macrophage differentiation via the PKA/CREB
pathway. In a breast cancer study, Griess et al. [45] found
that the inhibition of M2 marker genes was partly
mediated through a decrease in Stat3 activation during
IL4-induced M2 polarization [47]. Furthermore, the
expression of STAT3 was successfully reduced after
STAT3 knockdown, resulting in an increase in
inflammation and M1 macrophages and a decrease in
the proportion of M2 macrophages [48].

5. Conclusion

In this study, we inferred the intercellular communication
of immune cells and, with scRNA-seq data analysis, found
that macrophages play a vital role in sepsis and sepsis-
induced ARDS. Meanwhile, downstream TFs, including
STAT3, were found to play a vital role in the process of
macrophage M1/M2 polarization. Determining in what
case the upstream LR pairs combined to activate STAT3
requires further research. In summary, this study provides
a comprehensive view of the intercellular communication
landscape between sepsis and sepsis-induced ARDS and
identifies key intercellular communications and TFs
involved in sepsis-induced ARDS. We believe that our
study provides valuable clues for understanding the
immune response mechanisms of ARDS.
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