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Abstract

Massively parallel reporter assays (MPRA) enable nucleotide-resolution dissection of 

transcriptional regulatory regions, such as enhancers, but only few regions at a time. Here, we 

present a combined experimental and computational approach, Sharpr-MPRA, that allows high-

resolution analysis of thousands of regions simultaneously. Sharpr-MPRA combines dense tiling 

of overlapping MPRA constructs with a probabilistic graphical model to recognize functional 

regulatory nucleotides, and to distinguish activating and repressive nucleotides, using their inferred 

contribution to reporter gene expression. We use Sharpr-MPRA to test 4.6 million nucleotides 

spanning 15,000 putative regulatory regions tiled at 5-nucleotide resolution in two human cell 

types. Our results recover known cell type-specific regulatory motifs and evolutionarily-conserved 

nucleotides, and distinguish known activating and repressive motifs. Our results also show that 

endogenous chromatin state and DNA accessibility are both predictive of regulatory function in 
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reporter assays, identify retroviral elements with activating roles, and uncover ‘attenuator’ motifs 

with repressive roles in active chromatin.

Introduction

Epigenome maps predict thousands of putative regulatory regions through their in vivo 
epigenomic signatures1–8 and are widely used for studying gene regulation9,10 and 

disease11,12. However, such maps present only indirect evidence of regulatory function, have 

often limited resolution, and do not distinguish activator from repressor elements5,6,8. DNA 

motif and sequence pattern analysis can complement epigenome maps5,6,8,13–15, but also 

provides only indirect evidence and only identifies sequences that match enriched patterns.

Episomal reporter assays1,2 and endogenous modulation11,16–18 provide two complementary 

approaches to characterize putative regulatory regions. Episomal reporters evaluate sequence 

function directly, independently of epigenetic effects, whereas endogenous perturbations 

capture endogenous context effects. Multiplexed endogenous or episomal assays have been 

used to dissect few regulatory regions at high resolution19–28 or many at low 

resolution23,28–37.

MPRAs19,30 synthesize DNA sequences on programmable microarrays and integrate them in 

reporter gene plasmids that are then transfected into cell types of interest. Barcodes placed in 

reporter gene 3'UTRs (to minimize their effect on pre-transcriptional control) provide a 

quantitative readout of gene expression levels. The limited number of array spots constrains 

the number of regions tested and the number of reporter constructs devoted to each region. 

Due to the short length of synthesized fragments (~145 nucleotides), MPRA requires 

accurate knowledge of putative regulatory region position and boundaries, which are not 

generally known.

Here, we overcome these limitations using dense tiling of MPRA constructs and 

computational analysis to infer activating and repressive nucleotides at high resolution 

across many regions. We term the combined approach Sharpr-MPRA, for Systematic High-

resolution Activation and Repression Profiling with Reporter-tiling using MPRA, and the 

associated computational method SHARPR. We use Sharpr-MPRA to dissect over 15,000 

putative regulatory regions from genome-wide epigenomic maps. We tile each 295-bp region 

at 5 nucleotide offsets using overlapping 145-nucleotide constructs. We make 4.6 million 

nucleotide inferences, each in two cell types, and distinguish activating and repressive 

regulatory functions without use of motifs or other sequence information. Inferred regulatory 

nucleotides are reproducible, high-resolution, cell type-specific, and supported by 

evolutionary conservation and regulatory motif evidence. Our strategy enables gene-

regulatory insights, including activating motifs lacking well-established regulators, ‘dual-

role’ motifs with both activating and repressive roles, strongly-activating repeat elements, 

and ‘attenuator’ motifs that play repressive roles in active chromatin states.
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Results

Pilot design tiling 250 regions at 30-bp resolution

We first developed a low-resolution 'pilot' design, applied to 250 regions showing H3K27ac-

marked enhancer chromatin states2 (200 in liver carcinoma HepG2 cells and 50 in leukemia 

K562 cells). We tiled 385-nucleotide regions at 30-nucleotide offsets using 145-nucleotide 

constructs, each unique sequence was tested using 24 barcodes (Fig. 1a, Supplementary Fig. 

1). We centered our tiling on H3K27ac signal dips known to be indicative of nucleosome 

displacement due to transcription factor (TF) binding, and thus likely to overlap regulatory 

nucleotides. For HepG2, we selected 100 regions with strong dip scores, and 100 with wide-

ranging dip scores (Supplementary Fig. 1, see Methods). We profiled each region in both 

K562 and HepG2, each in two replicates (Supplementary Data Files 1–2).

Among the nine tile positions, inner tiles (centered on H3K27ac dips) showed the highest 

level and frequency of activity (Fig. 2a, Supplementary Fig. 2a–c), and the highest 

variability across regions (Supplementary Fig. 2d), indicative of regulatory nucleotides. 

Regions with stronger H3K27ac dip scores showed higher activity and the cell type-

specificity of epigenomic signals matched the cell type-specificity of reporter expression 

(Fig. 2a, Supplementary Figs. 1–2), suggesting that endogenous epigenomic information is 

indicative of reporter assay activity.

Biological replicates of the same tile showed reproducible median reporter activity 

(Pearson’s correlation 0.92 across replicates for HepG2), but tiles offset by 30 bp sometimes 

differed substantially (Pearson's correlation 0.57 within the same HepG2 experiment) (Fig. 

2b), with greater distances showing greater differences (Supplementary Fig. 3a). K562 

showed similar results (0.66 vs. 0.34), with the lower correlation likely reflecting reduced 

transfection rates for K562 using our experimental protocols, as previously30. To gain 

insights into the sequences driving these differences, we focused on 637 pairs of neighboring 

positions in HepG2 and 142 pairs in K562 that showed significant differences in activity 

(false discovery rate 5%) (Supplementary Table 1, Supplementary Fig. 3b,c), and searched 

for motif differences in sequence segments distinguishing consecutive tiles (Fig. 2c,d, 

Supplementary Fig. 4a, see Methods). Segments with increased HepG2 activity were 

enriched for known liver-function motifs, including HNF4 and HNF1, whereas segments 

with increased K562 activity were enriched for known hematopoietic motifs including 

GATA (Supplementary Fig. 4b). This confirms that a tiling approach can reveal nucleotides 

important for cell type-specific regulatory function.

Scale-up design tiling 15,720 regions at 5-bp resolution

We next scaled-up our MPRA tiling design, increasing resolution, throughput, coverage, and 

chromatin state diversity. To achieve these goals, we made several modifications:

• Resolution: To achieve increased resolution, we positioned reporter 

sequences at 5-bp increments instead of 30 bp (Fig. 1a).

• Throughput: To increase throughput, we used a single reporter construct 

per position instead of 24 (Fig. 1a), achieving robustness by exploiting the 
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many reporter constructs overlapping each position (15 on average; 25 for 

the central 105 nucleotides). We also tested smaller 295 bp regions instead 

of 385 bp, focusing on the most informative positions based on our pilot 

results (Fig. 2a, Supplementary Fig. 2).

• Coverage: To increase coverage, we used two 244K arrays for DNA 

synthesis (instead of a single 55K array), targeting 15,720 regions for 

tiling, each profiled in both HepG2 and K562, using both a minimal TATA 

promoter (minP) and a strong SV40 promoter (SV40P), each in two 

replicates (Fig. 1c, columns), resulting in a total of 3.9 million 

measurements (Supplementary Data File 3).

• Chromatin state diversity: To enable analyses across diverse chromatin 

states of a 25-state ChromHMM model38,39(Supplementary Fig. 5), we 

centered regions on double-cut DNase I peaks instead of H3K27ac dips. 

To ensure that all states are represented, we used a tiered random sampling 

approach, which also favored enhancers and other DNase-enriched states 

(Fig. 1b, counts). To include both active and inactive regulatory regions in 

the cell types profiled, we selected DNase I regions from HepG2, K562, 

and two additional cell types, Human umbilical vein endothelial cells 

(Huvec) and embryonic stem cells (H1hesc) (Fig. 1c, rows).

These design choices, and the SHARPR computational inference method we describe next, 

allowed us to infer regulatory activity at ~5-nucleotide resolution across 4.6 million 

nucleotides spanning over 15,000 regions, a 6-fold increase in resolution and 60-fold 

increase in coverage compared to our pilot design.

Computation inference of activating and repressive nucleotides

We developed a computational method, SHARPR, that scores the relative activating or 

repressive potential of each 5-bp interval within tiled regions and interpolates these values to 

make predictions for individual nucleotides (Fig. 3a,b). The inclusion and exclusion of 5-bp 

nucleotide intervals between consecutive tiles is akin to perturbation experiments, allowing 

inferences at substantially higher resolution (5-bp) than the original reporter constructs (145-

bp) (Fig. 3a). Intuitively, activating intervals (e.g. containing activator motifs) should 

increase the reporter expression for tiles overlapping them, whereas repressive intervals (e.g. 

containing repressor motifs) should decrease reporter expression of overlapping tiles, as we 

show in our pilot experiments (e.g. Fig. 2c). Thus, modeling the relative activity of 

overlapping tiles should enable inference of activating and repressive nucleotide positions at 

high resolution (Fig. 3b).

We constructed a probabilistic graphical model (Fig. 3a, bottom) relating the unobserved 

regulatory activity of each 5-bp interval (hidden variables A1–A59) to the 145-bp reporter 

measurements (observed variables M1–M31). We modeled Mj using a normal distribution 

with mean the average of overlapping Ak and variance the empirical variance of all 

measurements in the experiment (see Methods). We modeled Ak using a normal distribution 

with mean the average of all measurements in the experiment and variance  a free 

parameter (smaller values resulting in more smoothed inferences). We inferred the ‘most 
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likely’ values for the regulatory activity variables based on observed reporter measurements 

and their prior distributions, and standardized these using a z-score to combine results from 

multiple replicates and inferences (Supplementary Fig. 6). We used a low-variance prior and 

a high-variance prior and combined these results (see Methods). We carried out piecewise 

linear interpolation from the 5-bp activity estimates to infer the regulatory activity of each 

nucleotide in the tiled regions. The computational portion of Sharpr-MPRA is implemented 

in a software package for which we provide a public software release (http://

www.biolchem.ucla.edu/labs/ernst/SHARPR/; Supplementary Code).

We used Sharpr-MPRA to make activating or repressive regulatory activity inferences for 

4.6 million nucleotides, each in two cell types, each using two promoter types, each using 

two replicates. We inferred nucleotide activity for the minP and SV40P promoters both 

individually (combining two replicate experiments for each), and for their combination 

(combinedP, using four experiments jointly), resulting in three activity tracks for each cell 

type (Supplementary Data File 4, Supplementary Figs. S6b, S7a). We also assigned a minP, 

SV40P and combinedP score to each region (Supplementary Fig. 7b,c), using the signed 

(activating or repressive) score of the maximum absolute score position (MaxPos) (labeled 

in Fig. 3b, bottom). We provide visualizations showing all minP, SV40P, and combinedP 

inferences for HepG2 and K562 in 31,440 figures on our supplementary website, and for 

several selected subsets (Supplementary Data Files 5–8).

Reproducibility of Sharpr-MPRA results

We evaluated the reproducibility of our results in multiple ways. We first evaluated the 

agreement between minP and SV40P inferences for each nucleotide position across regions. 

The central 101 positions showed on average 0.75 Pearson's correlation for HepG2 and 0.66 

for K562, which decreased towards outer positions (Supplementary Fig. 8a), attributable to 

fewer tiles overlapping outer positions and stronger regulatory activity closer to DNase peak 

centers. Individual nucleotides maintained similar scores between promoter types 

(Supplementary Fig. 9a), with 83% of scores ≥1.5 in one showing scores ≥1 in the other for 

HepG2 (71% for K562), and 74% of scores < −0.5 in one showing scores < 0 in the other for 

HepG2 (73% for K562).

Individual replicates of each promoter type showed strong agreement for increasing absolute 

scores (Supplementary Fig. 10a) for both cell types and both promoter types (e.g. Pearson 

correlation 0.7 for |score|≥2, 0.9 for |score|≥3 for minP). Between promoter types, regions 

with |score|≥2 showed 0.8 correlation on average in HepG2 (0.7 in K562), compared to <0.1 

expected by chance (Supplementary Fig. 10b). The MaxPos nucleotide position showed 

significantly greater concordance between replicates and between promoter types than 

expected by chance (Supplementary Fig. 11a–c), with the distance decreasing with 

increasing absolute score. Between minP replicates in HepG2, MaxPos nucleotides were on 

average within 28-bp, 11-bp and 5-bp respectively for |score|≥2, 4, and 6 for HepG2 (26-bp, 

13-bp, and 7-bp respectively for K562), compared to ~60-bp expected by chance when 

sampling MaxPos positions.

We repeated these comparisons across different sets of barcodes using DNase regions that 

were independently selected in multiple cell types, and thus tested using multiple barcode 
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sets (Supplementary Data File 5). Forty-four regions overlapped completely and 212 

overlapped partially, providing a resource for quantifying potential barcode effects. The 

position-specific correlation in Sharpr-MPRA scores between SV40P and minP showed a 

negligible change in HepG2 and a modest reduction in K562 when using the same vs. a 

different set of barcodes (0.72 vs. 0.71 and 0.69 vs. 0.60 respectively for the central 101 

nucleotide positions on average, Supplementary Fig. 8b), indicating a modest barcode effect 

relative to other sources of biological or technical variability. Individual nucleotide scores 

showed strong agreement across barcode sets for both partial-overlap and exact-overlap 

regions (Supplementary Fig. 9c,d), with 90% of combinedP scores ≥1.5 in one showing 

combinedP score ≥1 in the other for HepG2 (80% in K562) across all 256 multiply-tiled 

regions. The 44 complete-overlap regions showed high score correlation across barcode sets 

for regions with high absolute scores (0.96 for HepG2 and 0.77 for K562 for |score|≥2) 

(Supplementary Fig. 10c). The position of maximum score was within 16-bp between 

barcode sets for HepG2 (21-bp for K562) for |score|≥2 (Supplementary Fig. 11d). A search 

for k-mer effects within the barcodes (see Methods) found no influence on inferred activity 

in HepG2 compared to random expectation, a small effect for shorter k-mers in K562, and 

no noticeable effect for longer k-mers in either cell type (Supplementary Fig. 12).

Sharpr-MPRA recovers known motifs and conserved regions

To establish whether our inferred regulatory nucleotides are biologically relevant, we 

compared them to predictions of TF binding sites that were not used to make our inferences, 

including DNase-based5,6,8,40,41 and DNase-independent13 predictions of TF-bound 

nucleotides, and both motif-based8,13,41 and motif independent5,6,40 predictions of 

regulatory nucleotides. For example, CENTIPEDE8 motif annotations showed strong 

agreement for both activating and repressive scores at the nucleotide level (Fig. 3c, left, 

Supplementary Fig. 13), at the region level (Fig. 3b, Supplementary Data Files 6–8), and for 

specific regulators (Supplementary Fig. 14), and CENTIPEDE nucleotides showed 

reproducible scores (Supplementary Fig. 9b,e,f). Each regulatory annotation set tested 

showed better agreement with our inferences than with stringent controls (Supplementary 

Figs. 15–16).

We also compared our results to evolutionarily-conserved elements across 29 mammals42, 

and found enrichment for both activating and repressive nucleotides (Fig. 3c right, 

Supplementary Fig. 17), also supporting that Sharpr-MPRA captures functional nucleotides 

within tiled regions.

K-mer-based DeltaSVM14 predictions of nucleotides expected to have regulatory effects 

when mutated also agreed with our activating nucleotides (Supplementary Fig. 18, see 
Methods). However, DeltaSVM predictions failed to capture our repressive nucleotides, 

even though the latter agreed with both conserved nucleotides and CENTIPEDE motifs (Fig. 

3c).

Sharpr-MPRA captures regulatory nucleotides at high resolution

We next evaluated whether our inferences capture high-resolution information within tiled 

regions. We confirmed that CENTIPEDE motif and conserved element enrichments also 
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held when focusing on maximum-absolute-score positions (MaxPos) nucleotides 

(Supplementary Fig. 19), a substantial fraction of which disagreed with DNase center 

locations (66% of MaxPos nucleotides lie outside the 41 central nucleotides, 44% outside 

the 81 central nucleotides, Supplementary Fig. 20).

We compared the motif and conserved element enrichments of MaxPos nucleotides to those 

of DNase center position (CenPos) nucleotides, and their symmetric position (SymPos) 

nucleotides (equidistant from DNase peak centers) (illustrated in Fig. 3b). The CenPos 

comparison is particularly stringent, given the higher activity expected at central nucleotides 

and the better power to detect activity with more overlapping constructs. Despite these 

biases favoring central positions, MaxPos nucleotides were substantially more enriched than 

CenPos nucleotides for both CENTIPEDE motifs and conserved elements, in both HepG2 

and K562, for all ranks of high activation or repression (Fig. 3d, Supplementary Fig. 21). By 

contrast, their symmetrical (SymPos) nucleotides showed substantially lower enrichments 

than MaxPos nucleotides for all metrics, indicating that MaxPos enrichments do not stem 

from distance biases.

We evaluated the effect of tiling density on functional element recovery and replicate 

correlation, using spaced subsets of our reporter constructs. Higher density led to stronger 

CENTIPEDE motif and conserved element enrichments (Supplementary Fig. 22) and to 

higher correlation between replicates (Supplementary Fig. 23). Saturation was not reached at 

the 5-bp level used here, suggesting that smaller offsets might increase discovery power, at 

the cost of more constructs per region and thus fewer tiled regions.

Cell type-specific activating and repressing motifs

We used our Sharpr-MPRA results to study a compendium of 1934 known and predicted 

regulatory motifs13. For each motif, we computed an average motif score (across all central 

motif positions), and separately an 'activating' and a 'repressive' enrichment score (based on 

its enrichment in nucleotides with score≥1 and ≤−1 respectively) for each cell type 

(Supplementary Table 2) (see Methods). As minP and SV40P average motif scores were 

highly concordant (0.98 correlation in HepG2; 0.95 in K562, Supplementary Fig. 24), we 

focused on combinedP scores.

Most motifs showed similar average scores between the two cell types (Fig. 4a). For 

example, motifs for the ETS and NRF1 regulators showed among the strongest activating 

average scores in both HepG2 and K562, and known repressor REST motif43 showed the 

most repressive average score in both. Unexpectedly, the most activating average score in 

both cell types was found for variants of the TCTCGCGAGA palindrome, which was 

present in our compendium13 based on its de novo discovery in ChIP-seq experiments for 

diverse regulators (including NR3C1, BRCA1, ETS, CHD2, and ZBTB3344). This motif 

lacks a well-established regulator in vivo45, despite support for its importance from strong 

evolutionary conservation46, high nearby gene expression8, and other experimental and 

bioinformatics evidence44,47,48.

A subset of motifs showed significant differences (using a paired t-test) in scores between 

HepG2 and K562, (Supplementary Fig. 25a). Significantly-different activating motifs 
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include HNF4, RXRA, PPARA, HNF1A, HNF1B, and FOXA in HepG2, consistent with 

known liver-related roles, and GATA, SP1, and KLF in K562, consistent with K562 roles49 

(Supplementary Fig. 26a). Significantly-different repressive motifs included multiple RFX 

motifs in HepG2 (Supplementary Fig. 26b), consistent with previous evidence for one 

enhancer50.

Cell type specificity was also reflected in the position-specific aggregated distribution of 

activity scores surrounding all instances of these motifs (Fig. 4b). Activating motifs (e.g. 

ETS, GATA, HNF4), showed a positive peak surrounding their instances, and repressor 

motifs (e.g. REST, RFX) showed a negative peak, in each case matching the expected cell 

types. These patterns were stronger when motifs occurred in more central positions 

(Supplementary Fig. 27), as expected given the higher reporter coverage and absolute 

activity of central positions.

The motif compendium resulted in more activating than repressive motif scores, both based 

on average scores (Fig. 4a), and based on activating vs. repressive enrichment scores (511 

vs. 117 in HepG2; 474 vs. 79 in K562, respectively, at an uncorrected p-value of 0.01) (Fig 

4c, Supplementary Fig. 25b, Supplementary Table 2). The higher number of activating 

motifs also held for average scores of all 7-mer sequences (Supplementary Fig. 28), 

indicating it is not an ascertainment bias in the compendium used.

A small number of 'dual-role' motifs showed signatures of both activating and repressive 

function in the same cell type (14 in HepG2 and 15 in K562, of which six were in common). 

These included several motifs for MAF proteins, consistent with previous reports of both 

activation and repression51,52 and different motifs of the AP-2 family. Alternative cutoffs 

(top 5% activating and repressive nucleotides) also resulted in very few dual-role motifs (6 

in HepG2 and 9 in K562) (Supplementary Fig. 29).

Enrichment of ERV1 repeats in activating nucleotides

The most strongly-activating nucleotides in HepG2 showed substantial enrichment for long 

terminal repeat (LTR) elements (Fig. 5, Supplementary Fig. 30), consistent with previous 

reports of their ability to drive gene expression53. This helps explain why conserved 

elements were less enriched in the most extreme activating scores (Fig. 3c), as no LTRs 

overlapped conserved elements with the most extreme activating scores.

Among LTRs, Endogenous retroviral sequence 1 (ERV1) repeats showed the strongest 

enrichment in HepG2 activating nucleotides (Fig. 5a), overlapping 33% of the 820 

nucleotides with the highest regulatory scores (≥6.5 bin), vs. only 4% expected on average 

(8-fold enrichment). Regulatory roles were previously hypothesized for ERV1 repeats, based 

on TF binding and RNAi evidence54–56, and our results indicate they can function 

autonomously and lead to strong episomal expression.

By contrast, LINE elements were strongly depleted in both activating and repressive 

nucleotides in HepG2 and K562 (Fig. 5b, Supplementary Fig. 30b), indicating repeat-

specific regulatory functions. Moreover, ERV1 and other LTR enrichments were weaker in 
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K562 than HepG2 activating nucleotides (Supplementary Fig. 30a,c), indicating cell type-

specific repeat functions.

Endogenous chromatin state is predictive of reporter activity

We analyzed the relationship between regulatory activity scores and endogenous chromatin 

state, enabled by inclusion of all chromatin states (defined in Supplementary Fig. 5) and 

both DNase and non-DNase sites in each cell type (by including DNase regions only active 

in other cell types).

Among DNase regions, endogenous chromatin state was predictive of regulatory function in 

reporter assays, (quantified for each region by its MaxPos Sharpr-MPRA score) (Fig. 6a, 

Supplementary Fig. 31a). Regions in active promoter or H3K27ac-marked enhancer 

chromatin states showed higher Sharpr-MPRA activating scores, regions in weak enhancer 

states showed intermediate activating scores, and regions in Polycomb-associated states 

showed repressive Sharpr-MPRA scores, consistent with previous work2,57. Conversely, 

among genomic locations in the same chromatin state, the DNA accessibility of the region in 

its endogenous context was predictive of Sharpr-MPRA reporter activity (Fig. 6b, 

Supplementary Fig. 31b), consistent with previous work in enhancer regions30,31. Together, 

these results indicate that the endogenous epigenomic signatures of DNA accessibility and 

chromatin state each capture unique information about regulatory function, and that 

sequence elements within these regions can have corresponding activating or repressive 

regulatory functions outside their endogenous context.

The fraction of regions that show activating and repressive MaxPos scores varied greatly 

between chromatin states and DNase classes (Supplementary Fig. 32). In HepG2, activating 

regions with scores ≥1 included 36% of HepG2-selected DNase regions in an active 

promoter state (Tss) and 29% in an H3K27ac-marked enhancer state (Enh) (Supplementary 

Fig. 32a), compared to only 6% for non-DNase sites in the quiescent states (Quies) 

(Supplementary Fig. 32d) (41% and 32% vs. 5% respectively in K562). Repressive regions 

with MaxPos scores ≤−1 in HepG2 included 29% of HepG2-selected DNase regions in 

Polycomb repressed states ReprD and Repr (21% for K562) (Supplementary Fig. 32a), 

compared to only 6% of all DNase regions in the active promoter state (10% in K562) 

(Supplementary Fig. 32c). These comparisons allow us to estimate false discovery rates for 

both activating regions (e.g. 6% for HepG2, 5% for K562) and for repressive regions (e.g. 

6% and 10% respectively) relative to their respective backgrounds. These estimates are 

likely conservative, as all regions tested were in DNase sites in at least one cell type, and 

thus more likely to contain activating or repressive elements than random background 

nucleotides.

Beyond these thresholds, the full distribution of MaxPos scores across chromatin states and 

DNA accessibility (Supplementary Fig. 33), confirmed consistently higher activation scores 

for active promoter and H3K27ac-marked enhancer states across a broad range of ranked 

positions. For non-DNase regions, the strongest repressive scores were found for chromatin 

state DNaseD (associated with single-cut DNase58 and lack of double-cut DNase7), 

indicating that it contains repressive elements, consistent with a previously-hypothesized 

repressive role38 (Supplementary Fig. 33c).
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The role of H3K27ac as a signature of active enhancer regions is well-established2,4,30,59 

and agrees with our results here, but was recently questioned in an isolated study31 using a 

similar reporter assay (CRE-seq), which suggested that H3K27ac-marked regions show 

weaker reporter activity. That study31 used a 7-state segmentation39 that merged 

ChromHMM60 and Segway61 results and tested smaller segments (130-bp) without a tiling 

approach and without anchoring on DNase sites, making its results dependent on the 

positioning of tested segments, and specifically whether DNase sites or their flanking 

elements were captured. Mapping their tested segments31 on the 25-state ChromHMM 

annotations considered here, we find that the H3K27ac-marked enhancers selected by the 

study preferentially lay outside DNase regions, and the non-H3K27ac enhancers selected 

preferentially lay in DNase regions. Correcting for this bias by analyzing DNase and non-

DNase regions separately, we find that H3K27ac enhancers have increased CRE-Seq activity 

compared with non-H3K27ac enhancers (Supplementary Fig. 34), which is fully consistent 

with our results and the previous literature.

Similar to other studies30,31,62,63, many predicted enhancer and promoter regions did not 

have reporter activity (Supplementary Fig. 7b). These regions showed distinct levels and 

patterns of endogenous TF binding and DNA accessibility, including: less frequent 

endogenous TF binding within the tested regions; more frequent endogenous TF binding in 

the surrounding 2-kb; and proximity to other DNase sites (Supplementary Figs. 35–38). We 

interpret these findings to indicate that their endogenous activation may arise at least in part 

from TF binding in nearby regions, consistent with their lower reporter gene expression 

when tested in isolation.

A Subset of Repressive Motifs in Active Chromatin

For each motif, we analyzed the relationship between its observed average regulatory score 

and the average regulatory score that would be expected based on the chromatin states where 

the motif occurs, quantified as the median of randomized motif occurrences that preserve 

positional and chromatin state distributions (see Methods). Overall, the observed average 

score of a motif was correlated with its expected average score (0.54 in HepG2 and 0.68 in 

K562 for motifs with ≥20 instances, Fig. 6c, Supplementary Fig. 39, Supplementary Table 

2). For example, NRF1 showed both a high average regulation score and a high expected 

score in both HepG2 and K562, indicating that it acts as an activator in active chromatin 

states.

Several motifs showed only moderate expected scores but very strong activating or 

repressive motif scores, suggesting they maintain their functions regardless of their genomic 

context. In HepG2 for example, TP53 showed only a moderate expected score, but the 

highest score among all evaluated motifs, consistent with its proposed role as a pioneer 

factor64. At the other end of the spectrum, REST showed only an intermediate expected 

score, but had the most repressive motif score, indicating strong repressor functions 

irrespective of context.

A small number of motifs showed repressive motif scores, but among the highest expected 

scores, suggesting they play ‘attenuator’ repressive roles in activating chromatin contexts. 

RFX family motifs had among the most repressive motif scores in HepG2, but among the 
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most activating expected scores (Fig. 6c). Consistent with 'attenuator' roles, they showed 

repressive (negative) activity in our positional activity analysis, but they were flanked by 

activating (positive) scores (Fig. 4b). Moreover, in our pilot analysis in HepG2, RFX family 

motifs were discovered as enriched in segments inferred to be repressive, but found in active 

enhancer regions (Supplementary Fig. 4). Indeed, a repressive role was experimentally 

confirmed in an enhancer of the Cdx2 gene for a single RFX1 motif instance in HepG2 

cells50. Our results indicate a broader repressive role in active regions, a discovery that stems 

directly from our ability to distinguish activating vs. repressive nucleotides using our tiling 

approach.

Discussion

We presented Sharpr-MPRA, a combined experimental and computational approach for 

high-resolution mapping of activating and repressive nucleotides across thousands of 

genomic regions. We used dense tiling of MPRA constructs spanning 4.6 million nucleotides 

targeting 15,720 regions at a resolution typically not afforded without perturbation 

experiments, which are traditionally not applicable at this scale. Sharpr-MPRA distinguishes 

activating from repressive nucleotides, and directly assesses regulatory function in a reporter 

assay, thus complementing the endogenous epigenomic signatures surveyed by ENCODE1, 

Roadmap Epigenomics4 and related projects.

Nucleotides with stronger activating or repressive Sharpr-MPRA scores were enriched in 

evolutionarily-conserved elements and predicted cell type-specific TF binding sites. 

Surprisingly however, both enrichments were weaker for the most highly-active nucleotides 

in HepG2 cells. Instead, the strongest reporter activity overlapped ERV1 endogenous 

retroviral repeat elements, which might speak to a potential role in regulatory turnover 

across even closely-related species.

Endogenous epigenomic signatures were predictive of reporter gene expression, with 

chromatin state and DNA accessibility each providing relevant information. Segments with 

endogenous active promoter and H3K27ac-marked enhancer signatures drove the strongest 

reporter gene activation, and segments showing endogenous Polycomb-associated signatures 

showed among the strongest reporter gene repression. These results indicate that even when 

tested outside their endogenous context, DNA sequence elements maintain the activating and 

repressive functions reflected in their endogenous epigenomic signatures.

Aggregation of activity scores at the motif level revealed cell type-specific motifs, and 

distinguished activator and repressor motifs. Motif activity typically correlated with 

chromatin context, with activating motifs found in active chromatin states, and repressive 

motifs in repressive states. Notable exceptions included putative 'attenuator' motifs that 

showed repressive roles but were found in active chromatin states (e.g. RFX motifs in 

HepG2) and putative ‘pioneer’ motifs, which showed strong activity regardless of their 

chromatin state context (e.g. activator TP53 and repressor NRSF), although directed 

experimentation and endogenous modulation will be needed to confirm these predictions. 

Most motifs showed activating-only or repressive-only signatures, but a small number of 

'dual-role' motifs showed both activating and repressive signatures (e.g. members of the 
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MAF and AP-2 protein families). Surprisingly, the sequence pattern with the strongest 

average activity in both cell types, TCTCGCGAGA, is not associated with a well-

established regulator, highlighting our still incomplete understanding of regulatory elements, 

and the importance of unbiased dissection of regulatory regions.

Limitations include a need for longer sequences to show reporter activity in some regions, 

which might be overcome by improved DNA synthesis, and limited transfection efficiency 

in some cell types, which may require alternative delivery approaches (e.g. viral 

transduction). Additionally, we assumed additive effects in our analysis, which may miss 

interactions between different nucleotide positions. Barcode effects and other factors may 

cause experimental noise, which could be overcome by higher density tiling or different 

experimental bar-coding strategies63. We only tested elements in episomal assays, which 

provides direct information on regulatory activity, but does not capture potential effects of 

the endogenous chromatin context, and we only transfected unstimulated cells, although 

some sites may only function after specific stimulations.

We envision diverse uses for the results and methodology presented here. On one hand, the 

annotation of activating or repressive function for 4.6 million nucleotides can be useful to 

ask biological questions beyond the ones addressed here, and to train new computational 

models (e.g. for predicting activating and repressive nucleotides outside the regions surveyed 

here, or predicting the effect of non-coding variation on regulatory function62,63). On the 

other hand, Sharpr-MPRA's combined experimental and computational strategy can be 

broadly useful for dissecting regulatory regions across individuals, species, cell types, 

conditions, and disease state.

Online Methods

Pilot Large-step Massively Parallel Reporter Assay Design

As a pilot design we selected 250 regulatory regions to test. Each selected regulatory region 

was tiled by nine sequence tiles of 145bp in length placed in 30bp offsets so that adjacent 

sequences would have 115bp in common. Each tile was associated with 24 unique barcodes. 

In this design we used 216 barcodes per putative regulatory region.

Of the 250 regions we selected 200 of them so that their center position came from a HepG2 

H3K27ac-marked "strong enhancer" chromatin states from the 15-state chromatin state 

model in Ref. 2 (Supplementary Fig. 1b). In order to define the specific locations to test we 

first defined a dip score based on the ENCODE hg18 HepG2 H3K27ac signal2 on chr1–22 

and chrX. We defined the dip score to be the sum of the signal from positions 200bp away in 

both directions minus twice the signal at the dip center. We then ranked all positions at a 25-

nucleotide resolution based on their dip score excluding from consideration positions that 

either (i) did not have the minimum HepG2 H3K27ac signal within 200 nucleotides, or (ii) 

were tied for the minimum H3K27ac signal with another position within 200 nucleotides 

and did not have a strictly greater dip score than the tied position. This requirement often 

enabled us to center our tiles within nucleosome depleted regions. We excluded positions if 

they were within 2kb of an annotated transcription start site based on the GENCODE v2b 

annotations. We also excluded from testing those sequences that contained a GGTACC, 
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TCTAGA, or GGCCNNNNNGGCC as these were recognition sequences of the restriction 

enzymes. We selected 100 positions to be the highest ranked non-excluded positions. We 

selected an additional 100 positions to cover a range of dip scores among the non-excluded 

positions. Let m denote the dip-score of the 101st ranked position. We define an interval 

width w to be (ln(m)−ln(10))/99. We selected as the ith range selection where i=1,…,100 the 

region which had the greatest dip score, v, such that ln(ν) ≤ m − (i − 1)×w. The center of the 

selected 25-bp position interval was used as the center of the center tile.

An additional 50 sequences were selected based on the same procedure to select the top 100 

sequences for HepG2, but based on the K562 data, limited to the top 50, with the additional 

constraint that they were in low-activity states in HepG2 (‘weak transcribed’ or 

‘heterochromatin;low signal’) (Supplementary Fig. 1b).

For the motif enrichment analysis, we converted the coordinates from this design to hg19 

using the UCSC Genome Browser liftover tool.

Identification of Significant Adjacent Changes in the Pilot Large-step Data

Among all pairs of adjacent tiles we identified a set of pairs that had a significant difference 

in reporter expression level at a 5% False Discovery Rate. Our procedure for doing this was 

as follows. Let pi denote the p-value for the ith adjacent pair (where i=1,…,2000 in our case) 

that there is a significant difference in the reporter expression between the first and second 

tiles of the pair. We let pi,L denote the p-value for the one sided test that the second tile has 

lower expression than the first and pi,G the p-value for a one sided test that the second tile 

has greater expression than the first. We further let pi,L,r and pi,G,r for r=1,…,R, where R=2 

in our case, denote the p-value for that in the ith pair and the rth replicate that the second tile 

had lower or greater expression than the first respectively.

We compute the individual pi,L,r and pi,G,r p-values based on a one-sided Mann-Whitney 

Test on all the individual barcoded expression values for a tile, which was up to 24 in our 

case. To compute pi,L,r we first obtained a two-sided p-value, v, for a Mann-Whitney Test 

using Apache Commons Math 3.3 (https://commons.apache.org/). We then assigned the p-

value v/2 if the second tile had average lower or equal ranks than the first and the p-value 1-

v/2 otherwise; we made the opposite assignments for pi,G,r. The pi,L p-value was computed 

based on Fisher’s method combining the pi,L,r for r=1,…,R p-values, and likewise for the 

pi,G p-values. The p-value pi we defined to be

We multiply by two here to correct for having testing both p-values separately as one-sided 

tests. We obtained a false discovery rate for the set of p-values pi for i=1,…,2000 using a 

Benjamini-Hochberg procedure.

Scale-up Sharpr-MPRA Assay Design

We targeted 15,720 DNase regions, consisting of 3,930 tiled regions in each of four cell 

types: HepG2, H1hesc, K562, and Huvec. The DNase peaks were generated by the 
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University of Washington ENCODE Group7 and specifically we used the peaks contained in 

the hg19 files: wgEncodeUwDnaseHepg2PkRep1.narrowPeak.gz, 

wgEncodeUwDnaseH1hescPkRep1.narrowPeak.gz, 

wgEncodeUwDnaseK562PkRep1.narrowPeak.gz, and 

wgEncodeUwDnaseHuvecPkRep1.narrowPeak.gz for the HepG2, H1hesc, K562, and Huvec 

cell types respectively. The selection of the subset of 3,930 regulatory regions based on each 

cell type was conducted independently. To increase chromatin state diversity, we selected 

regions using a richer 25-state chromatin state model (the ChromHMM60 model from Refs 

38,39), which was based on 14 input tracks, consisting of 8 histone modification marks, 

CTCF, POL2, DNase (single-cut, generated by Duke58; and double-cut, generated by 

University of Washington7), FAIRE58, and input. The counts of each state were manually 

specified to ensure some coverage of each chromatin state, greater coverage in states more 

associated with DNase, and deeper coverage of enhancer chromatin states (specified in Fig. 

1b). The regions were then randomly selected given the counts for each state. As with the 

Pilot design we excluded from testing those sequences that contained a GGTACC, 

TCTAGA, or GGCCNNNNNGGCC as these were recognition sequences of the restriction 

enzymes, but we had no restriction in this design with respect to position relative to 

annotated genes. The tiled regions based on each cell type and each chromatin state were 

randomly and evenly divided between the two array designs, which led to each design 

having 7860 tiled regions. If the same or overlapping regions were selected based on 

different cell types we retained both tiled regions and considered them separately except in 

forming the browser tracks in which case we averaged all regulatory scores for a given 

nucleotide. In total, we targeted 15,720 regions, some of which overlapped, resulting in 

15,455 unique non-overlapping regions.

Experimental Procedure

The experimental methods for a Massively Parallel Reporter Assay are described in 

(Melinkov et al., 2014)66. Oligo nucleotide library synthesis was performed by Agilent 

Inc.67, and the cell culture, transfection and plasmid construction were done as in 

(Kheradpour et al, 2013)30. The MPRA vector backbone and promoter-reporter cassettes are 

available from Addgene (Plasmid # 49349, 49353 and 49354). The K562 and HepG2 cell 

lines were obtained directly from ATCC (CCL-243 and HB-8065).

For the pilot design, we used a single 55K-spot array for synthesis and designed sequences 

for 54,000 of them (2,250 unique sequences with 24 barcodes each). Transfection and 

barcode sequencing experiments were conducted in replicate in both K562 and HepG2 cells 

using the SV40 promoter (Supplementary Fig. 1a). The plasmid pools were amplified and 

sequenced in replicate and shared among the K562 and HepG2 experiments.

For the scale-up design, we used two 244K-spot arrays for synthesis and designed sequences 

for 243,660 of them of which 243,573 and 243,564 (99.96%) were included in the synthesis 

for the two arrays, leading a total of 487,137 probed tiles. Transfection and barcode 

sequencing experiments were conducted for each array in both HepG2 and K562, each using 

both a minimal and SV40P promoter, each in two replicates (16 experiments total). For these 

experiments we amplified and sequenced four plasmid pools, one for each combination of 
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array design and promoter type (one for minP in HepG2, one for SV40P in HepG2, one for 

minP in K562, and one for SV40P in K562), with the two RNA replicate experiments 

normalized to the same DNA pool.

Data Normalization

The initial data processing for data from one experiment was as follows. We generated DNA 

and RNA counts based on the procedure described in (Kheradpour et al, 2013)30. And added 

a pseudo-count of 1 to these counts. We then divided all RNA values by the sum of all RNA-

values and divided the DNA values by the sum of all the DNA values. For the readout 

corresponding to a given barcode we computed the log base two ratio of the RNA to DNA 

counts. We treated as missing those barcodes that had less than 20 for the original DNA 

counts associated with them. For the pilot design, we then normalized the values by taking 

the difference with the average value for the expression of the tiles in the positions furthest 

from the H3K27ac dip centers (tiles #1 and #9) as an approximation for background in these 

experiment. For the scale-up design, additional normalization was conducted on the inferred 

activity values (see below).

Sharpr-MPRA Regulatory Activity Scores

To compute Sharpr-MPRA regulatory activity scores from tiled reporter data we assume 

each reporter sequence has length L, which was 145bp in our case, and a consistent step 

size, s, between adjacent reporter sequences, which was 5 in our case. We assume that L is 

divisible by s, and let N=L/s denote the number of intervals of the step size overlapped by a 

reporter sequence, which was 29 in our case. We let J denote the number of overlapping 

reporter tiles covering a tiled region, which was 31 in our case. We let K denote the total 

number of non-overlapping intervals of step size s intervals that have coverage by at least 

one reporter sequence which is N + (J − 1), or 59 in our case. We let W = s×K denote the 

total number of nucleotides covered by at least one reporter sequence, which was 295 in our 

case, and we index them using i=1,…,295. We let T denote the total number of tiled regions 

tested in a single design, which was 7860 in our case. We let R denote the number of 

experiments for the design that we are combining, where R = 2 when we considered the 

SV40P and minP experiments separately and R = 4 when we combined all experiments for a 

design in the same cell type.

We let Ar,t,k denote a random variable for the unobserved regulatory activity for the kth s=5-

bp interval where k = 1, …, K = 59 in the tth tiled region in the rth experiment being 

combined. We let Mr,t,j denote a random variable for the normalized expression value for the 

reporter sequence at the jth tile offset, where j = 1, …, J = 31, of the tth tiled region in the rth 

experiment being combined (Fig. 3a). We let mr,t,j denote the corresponding observed value, 

and if there was no observed value it is set to null. Our objective is to infer the maximum a 

posteriori values of the Ar,t,k variables conditioned on the observed values for the Mr,t,j 

variables.

We assume that each Ar,t,k is normally distributed with mean μar and variance , that is

Ernst et al. Page 15

Nat Biotechnol. Author manuscript; available in PMC 2017 April 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Let  denote the set of all observed reporter values. μar is set to the 

empirical mean of the observed reporter values in the rth experiment, that is

 is a free parameter. We performed the inference with  set both to 1 and 50 and 

combined the inferences using a procedure described below.

We assume that each Mr,t,j is normally distributed with mean μmr,t,j and variance , that is

We assume μmr,t,j to be the mean of all the unobserved regulatory activity variables 

corresponding to intervals for which the jth reporter tile overlaps, that is

We set  to the empirical variance of the observed reporter values in rth experiment, that is

The vector Xr,t comprised of the Ar,t,k and Mr,t,j variables in the rth experiment for tth tiled 

region, can be expressed as a multivariate normal distribution

where Ar,t = [Ar,t,1 … Ar,t,K]T and Mr,t = [Mr,t,1 … Mr,t,J]T. If a mr,t,j is considered missing, 

that is has a null value, the corresponding Mr,t,j variable is omitted, but we do not re-index 

the remaining Mr,t,j variables. We let

Both μAr,t and μMr,t are column vectors with all values equal to μar.
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Conditioning on observing Mr,t = mr,t the maximum a posteriori values for values in Ar,t is 

determined as the mean in a conditional multivariate normal distribution which is given by68

For ΣMr,t,Mr,t we have:

For ΣAr,t,Mr,t we have:

The above expressions are derived in the Supplementary Note.

We denote with ar,t,k the inferred value for the kth interval in the tth tiled region in the rth 

experiment. We note that the modeling to infer these values can also be viewed as a specific 

instance of Bayesian linear regression.

We then standardize all inferred values within an experiment by subtracting the mean and 

dividing by the standard deviation. Formally we denote zr,t,k the standardized regulatory 

score for the kth interval in the tth tiled region in the rth experiment. We then define:
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We also define as our merged regulatory score ẑt,k for the kth interval in the tth tiled region 

which averages multiple replicates as:

When conducting inference with two different values for , denoted  and , we denote 

the merged regulatory scores for kth interval in the tth tiled region for these two parameter 

settings,  and , respectively. We combined them to obtain the value denoted  as 

follows

This procedure takes the more conservative score when the signs of the values agree and 0 

otherwise. Note that if , then . We inferred activity values using both 

a low-variance prior  and a high-variance prior . We found this strategy for 

combining the results using two different variance prior parameters was more robust 

compared to using one specific parameter setting as it would reduce overfitting in cases 

when a single variance parameter was set to be too large, which sometimes led to unlikely 

high activating and repressive inferences in the same small region, while also reducing 

underfitting when a single variance parameter was set to be too small (Supplementary Fig. 

6). We evaluated the enrichments of inferred highly activating and repressive nucleotides for 

conserved elements as a function of the variance prior parameters. We found them to be 

relatively robust across a substantial range of parameter settings, and in particular when 

using this strategy of using the more conservative inference from two substantially different 

settings for the variance prior (Supplementary Fig. 40). We also verified for the values of 

these parameters we used that using the higher variance parameter in conjunction with the 

lower variance parameter had little overall effect on the motif analyses as compared to just 

using the higher variance parameter (Supplementary Fig. 41).
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To obtain nucleotide regulatory scores, bt,i, for each nucleotide i = 0, …, W − 1 in the tth 

tiled region we conducted piecewise linear interpolations between the merged regulatory 

scores. Formally we define bt,i as

where

The inference on the two designs was conducted separately, but they were combined for 

conducting the downstream analysis. The matrix operations were implemented using the 

library Apache Commons Math (https://commons.apache.org/proper/commons-math/) 

library v3.3. For the analysis on step sizes greater than 5 (Supplementary Figs. 22–23), we 

effectively applied the method here with a step size of 5, but treated entire positions of 

reporter tiles as missing.

Region and Chromatin State Scores

The region score for a tiled region t, denoted et is defined as bt,i (see above) where i is 

selected to maximize |bt,i| for i = 0, …, W − 1. The average region score for a chromatin 

state u, denoted su, based on matched data in a cell type, is the average value of et for all 

tiled regions t selected based on chromatin state u in the cell type.

Footprint, Motif, Transcription Factor ChIP-Seq, Conservation and Repeat Data

The HepG2 and K562 CENTIPEDE elements were from Ref. 8 obtained from http://

centipede.uchicago.edu/. The footprints from Ref. 6 were obtained from ftp://

ftp.ebi.ac.uk/pub/datanucleotides/ensembl/encode/integration_data_jan2011/byDataType/

footprints/jan2011/. The Wellington footprints in K562 were obtained from the 

supplementary data of Ref. 40. The footprints of Ref. 5 were the hg19 footprints obtained 

from http://fureylab.web.unc.edu/datasets/footprints/. The PIQ footprints41 were the version 

1 footprints obtained from http://piq.csail.mit.edu/ including both forward and reverse 
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footprints. The motif instances were those provided by Ref. 13. The ENCODE transcription 

factor binding peak call datasets used in the analyses of Supplementary Figs. 35 and 36 were 

the ENCODE21,69 uniform peak calls downloaded from http://hgdownload.cse.ucsc.edu/

goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform which included 150 files in K562 

cells and 77 for HepG2 cells. The conserved elements were the hg19 liftover of the SiPhy-

PI65 conserved elements from Ref. 42. The repeats were based on RepeatMasker70 obtained 

through the UCSC genome browser71.

The Motif Analysis in the Scale-up Experiments Data

The motif analysis comparing K562 and HepG2 cells (Fig. 4, Supplementary Figure 25, 

Supplementary Table 2) was computed based on averaging the bt,i values at the center of all 

instances for a motif. The p-values were computed using a paired t-test over all instances 

tested using the Apache Commons Math library v3.3 implementation. The average motif 

score for the analysis in Fig. 6c was based on just motif instances overlapping a tiled region 

selected based on HepG2 chromatin data when testing in HepG2 cells and likewise for K562 

restricted to motifs with at least 20 such instances. The expected motif scores for these same 

set of instances were computed by permuting among tiled regions assigned to the same 

chromatin state and selected by the cell type of the measurements, which set of reporter 

values were assigned to which tiled regions. These permutations would preserve the same 

set of rows in a matrix where the rows correspond to reporter expression values and the 

columns the tile offsets. This was done for 1000 permutations. For each motif the median 

average motif score across all permutations as well as the value of the 2.5% and 97.5% 

quantiles were recorded to form the expected motif values and 95% confidence intervals.

The p-values for motif enrichment as an activator or repressor in Fig. 4c and Supplementary 

Figs. 25–26, 29 were computed based on one-side binomial tests where the probability of 

success in the binomial distribution is the fraction of total nucleotides tested that had a 

regulatory score greater than or equal to the activation threshold for activators or less than or 

equal to the repression threshold for repressors. The number of trials is the number of 

instances of a motif with a center position overlapping a nucleotide tested. The number of 

successes is the number of instances of the motif with a center position having a regulatory 

score equal to or greater than the activation threshold for activators or less than or equal to 

the repression threshold for repressors. The p-value threshold for defining activator and 

repressor motifs was an uncorrected p-value of 0.01. In total 1934 motifs were tested. Motif 

instances that appeared on both strands at the same position were only counted once in the 

analysis.

Motif Analysis in the Pilot Large-step Experiment Data

We defined four sets of sequences to analyze for motifs based on the pilot data. Two sets 

were defined based on adjacent pairs of tiles with significant differences at a 5% FDR in the 

HepG2 data, with one set corresponding to the sequences that on average had higher 

expression as determined based on the average ranks and the other set lower expression. The 

other two sets were based on the K562 data defined in the same way as for the HepG2 data. 

For each set of sequences we conducted motif analysis on the 30-bp that were unique to each 

sequence in the set compared to its corresponding adjacent tile plus 10 additional bp into the 
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common sequence. The motif enrichments with known motifs were computed using the 

program of Ref. 13 modified so that the background set of motifs only included those 

overlapping sequences part of the array design. We ran de novo motif discovery using 

MEME72 through the MEME suite with its default settings except requesting 10 motifs. The 

motifs were matched to a known motif using TOMTOM73.

DeltaSVM Comparison

For the comparison with important regulatory mutations predicted by the DeltaSVM 

approach in Supplementary Fig. 18a we identified a top 1% set of nucleotides associated 

with the maximum decrease in the sequence predicted to be regulatory when mutating the 

reference sequence. Specifically we obtained the gkm-SVM 10-mer weights based on 

Human ENCODE UW DHS from the website http://www.beerlab.org/deltasvm/ and used 

those in the files 

tup2_UwDnaseHepg2Aln_500_nc30_np_top10k_nsr1×1_gkm_1_10_6_3_weights.out and 

tup2_UwDnaseK562Aln_500_nc30_np_top10k_nsr1×1_gkm_1_10_6_3_weights.out for 

Hepg2 and K562 cells respectively. For each nucleotide tested we computed the sum of the 

k-mer weights for the k-mers overlapping the nucleotide, which would be ten weights or 

fewer if the nucleotide was within the first or last nine nucleotides of the 295-bp region. We 

denote this sum as sREF. We also computed this sum for each of the three possible nucleotide 

substitutions to the reference sequence at the position denoted by sM1, sM2, sM3. We ranked 

nucleotide position based on the extent to which they minimized min(sM1 –sREF, sM2 –sREF, 
sM3 –sREF). The focus on the top 1% nucleotides was consistent with a percentage threshold 

used previously with DeltaSVM scores14.

We also identified a top 1% set of nucleotides associated with the maximum increase in the 

sequence predicted to be regulatory when mutating the reference sequence (Supplementary 

Fig. 18b) using the same procedure as above except ranking nucleotides based on the extent 

to which they maximized the value of max(sM1 –sREF,sM2 – sREF, sM3 –sREF).

Barcode k-mer Analysis

For the analysis of barcode k-mer effect on inferred activity (Supplementary Fig. 12) we first 

define et,j to be the barcode sequence for the tth tiled region where t=1,…15720, for the jth 

reporter tile offset where j=1,…,31, and et,j,p the nucleotide at the pth position in the barcode 

for p=1,…,10.

For considering the occurrence of a k-mer sequence regardless of position within the 

barcode we then define for a k-mer sequence s the set Us,j={(t,p) | s=et,j,p… et,j,p+k−1} which 

gives all pairs of regions and barcode positions containing the k-mer sequence in the jth 

reporter tile offset. We computed average inferred regulatory activity scores for all tuples (s, 
j, i) such that s is a sequence of length k found within at least one barcode sequence, j=1,…,

31 corresponds to one of the 31 reporter tile offsets, and i=1,…,295 corresponds to one of 

the inferred activity positions. The average inferred regulatory activity average is then 

defined as
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where u. t denotes the tiled region of u. We then ranked these averages to determine the 

cumulative distributions. To determine the expected distribution of these averages for this 

analysis we randomly reassigned each barcode sequence to reporter sequences, but still 

preserving the activity inferences based on the real assignments. We repeated the same 

analysis based on the randomized assignments. We did this for 400 randomizations of 

barcode assignments to reporter sequences and obtained 400 separate rankings of averages. 

For each rank in the ranking we determined the median value over the 400 randomizations 

and the 2.5 and 97.5th percentiles. This analysis was done separately for each value of k=1,

…,6.

Availability of Data, Software, and Sharpr-MPRA Scores

Raw data is available through Gene Expression Omnibus Accession (GEO) GSE71279. 

Count data is available in Supplementary Data Files 1 and 3, from GEO, and the 

supplementary website (http://www.biolchem.ucla.edu/labs/ernst/SHARPR/). The Sharpr-

MPRA scores are available in text file, image, and browser track formats from the 

supplementary website and also in text format in Supplementary Data File 4. The SHARPR 

software is also available from the supplementary website and the source code is maintained 

at http://github.com/jernst98/SHARPR.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Experimental Design
(a) Comparison of MPRA strategies for testing regulatory regions. Non-tiling approaches 

(top, e.g. Ref.30) use multiple barcodes for the same tested sequence. Our pilot design 

(middle) tests each region using 9 tile offsets, spaced at 30-bp increments, each tested using 

24 barcodes (216 MPRA array spots per region). Our scaled-up design (bottom), tests each 

region using 31 tile offsets spaced at 5-bp increments, each tested using a single barcode per 

tile offset. The designs are to scale along the horizontal dimension. Only top and bottom are 

to scale in the vertical dimension. (b) The 25 chromatin states used in selecting regulatory 

regions for testing in the scale-up design38,39 (Supplementary Fig. 5). Heatmap indicates the 

emission probabilities (scaled between 0 and 100) for each epigenomic feature (columns) in 

each chromatin state (rows). Tested regions were restricted to DNase sites in one of four cell 

types, with the number of regions selected based on a stratified random sampling as 

indicated. (c) Overview of experiments using the scale-up design (see Supplementary Fig. 1 

for the pilot design). We carried out 16 experiments, consisting of two sets of 7860 regions 

(row groups) across 25 chromatin states (colors), with 31 tiles per region (individual 
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columns), each tested in both HepG2 (orange) and K562 (green), each using both a minimal 

promoter and an SV40 promoter, each in two replicates. Heatmap shows MPRA reporter 

gene expression measurements (blue=low, yellow=high, black=missing) (Supplementary 

Data 3).
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Figure 2. Tiling enhancer regions in pilot design reveals regulatory segments at 30-bp resolution
(a) Effect of tile offset and H3K27ac dip score on reporter expression. Average HepG2 

reporter expression (y-axis) at each of nine offsets (x-axis) for three sets of regions (color): 

HepG2 candidate enhancers2 with the highest H3K27ac dip scores (orange), candidate 

enhancers with a range of dip scores (light orange), and regions that are not predicted 

enhancers in HepG2 but are predicted enhancers with a high dip score in K562 (green). 

Error bar height is one standard error. (b) Consecutive tiles can differ in reporter expression. 

Top: Comparison of median reporter activity between biological replicates in HepG2. Only 
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first eight tile offsets shown. Bottom: Comparison of consecutive tiles T (x-axis) and T+1 

(y-axis) for the same biological replicate (rep1). (c) Top: Chromatin state annotations2 in 

nine cell types and H3K27ac signal track in HepG2 over the 500kb and 10kb surrounding 

the tiled 385-bp region centered in the H3K27ac dip. Middle: Expanded view of tile reporter 

measurements (yellow blue color) across all nine tiles, 24 barcodes, and two replicates. 

Bottom: Tiles #4 and #5 share 115-bp in common (abbreviated), and have 30-bp unique to 

#4 or #5 (shown), indicating the potential presence of activating elements in the sequence 

unique to #5 and/or repressive elements in the sequence unique to #4. Indeed, the 30-bp 

segment unique to #5 contains a candidate binding site for HNF4, a known activator of liver-

related functions. (d) Expanded view of expression activity measurements for consecutive 

tiles #4 and #5 for all individual barcodes (points), sorted by their reporter expression levels. 

For Replicate 1 of Tile #4, 1 of 24 barcode measurements failed. The y-axis coordinates 

correspond to the ones shown in panel b. See Supplementary Figs. 2–4 for additional results 

on the pilot design.
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Figure 3. Scale-up design permits dissection of regulatory elements at high-resolution
(a) Modeling scheme and probabilistic graphical model for the scale-up design. Variables 

M1,…,M31 represent the observed values of the reporter measurements for the 31 tiles (each 

145-bp long), and variables A1,…,A59 represent the unobserved regulatory activity level of 

each 5-bp interval of the 295-bp covered, which is then normalized into the Sharpr-MPRA 

regulatory activity score. Bottom: Probabilistic graphical model used for high-resolution 

inference of activating and repressive intervals, with arrows Ak→Mj illustrating the 

dependencies between variables when tile Mj overlaps interval Ak, and the direction of 

information flow in the generative model. Conditional inference allows us to use the 

observed reporter measurements M1,…,M31 for each tile j in order to infer the unobserved 

activity levels A1,…,A59 for each 5-bp interval k, which we interpolate to each nucleotide 

position i, under the modeling assumptions specified in Methods. (b) Observed reporter 

expression measurements for 145-bp segments (top) and inferred regulatory activity for 5-bp 

segments, interpolated to individual nucleotides (bottom) for two 295-bp regulatory regions 

in HepG2 cells. Top: At each offset, the four rows correspond to four measurements of the 

same tile, using the minP and SV40P promoter, each in two replicates. Measurements for 

each tile are shown spanning all nucleotide positions the tile covers. White rows represent 

missing data for a promoter/replicate combination for a given 145-bp tile. Bottom: resulting 
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inference of regulatory activity at each nucleotide i using all four measurements (black), 

only the two SV40P measurements (green), or only the two minP measurements (blue). 

Predicted positions of highest activating (positive scores) or repressive (negative scores) 

activity capture CENTIPEDE8 predicted binding sites (red boxes) and conserved elements 

identified by the SiPhy-PI method42,65 (purple boxes), even though such information was 

not used in our inferences. These examples are shown (and boxed) on page 2 of 

Supplementary Data Files 6a and 6b respectively. (c) Higher activating or repressive Sharpr-

MPRA regulation activity score in HepG2 cells (x-axis) results in higher overlap with 

transcription factor binding sites predicted by CENTIPEDE in HepG2 cells8 (y-axis, left 

panel), and higher overlap with conserved elements identified by SiPhy-PI42,65 (y-axis, right 

panel). Each point represents the average of 927 nucleotide positions in each of 5,000 

quantiles. Horizontal black line shows the expected overlap averaged across all 295 

nucleotide positions of each region, and the green line shows the expected overlap fraction at 

the center nucleotide position (a stringent control). Reversed grey barplot at the top of each 

panel shows the density (histogram) of the distribution of Sharpr-MPRA combinedP scores 

in HepG2 cells. (d) Sharpr-MPRA inferences capture regulatory nucleotides at high 

resolution. Cumulative overlap (y-axis) with CENTIPEDE predicted transcription factor 

binding sites in HepG2 (left plot) and evolutionarily conserved elements (right plot) is 

higher for maximum-absolutely-score nucleotide positions (MaxPos, blue), than for the 

stringent control of DNase center nucleotide positions (CenPos, red), or for symmetric 

nucleotide positions (SymPos, green), indicating this is not a positional bias. Each set is 

ranked from highest (left) to lowest (right) absolute Sharpr-MPRA score in MaxPos/CenPos/

SymPos nucleotides (x-axis) in HepG2 cells (see Supplementary Fig. 21 for K562 cells, and 

for individual promoter types). Dotted lines mark thresholds at absolute score ≥2, ≥1, and 

≥0.5. MaxPos, CenPos, and SymPos nucleotide positions are illustrated in the example of 

panel b.
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Figure 4. Comparison of Sharpr-MPRA with motif annotations
(a) Comparison of average Sharpr-MPRA score for regulatory motifs from a previously 

assembled compendium13 (points) in HepG2 (x-axis) vs. K562 (y-axis), averaged at the 

center position of all instances for each motif. Arrows highlight motif examples mentioned 

in the text (Supplementary Table 2). Only motifs with more than 10 instances are shown. (b) 
Aggregation plots of the regulation score (y-axis) at increasing varying genomic positions 

relative to the motif center (x-axis) for K562 (green) and HepG2 (orange) for all motif 

instances, predicted independently of cell type in Ref 13, for ETS_known9, 

GATA_known14, REST_known2, HNF4_known18, and RFX5_known6 regulatory motifs. 

Error bar height is one standard error. (c) Activating enrichment score (y-axis) and 

repressive enrichment score (x-axis) for the regulatory motif compendium13 (points) in 

HepG2 (left) and K562 (right), based on the statistical significance (−log10P) for the 

enrichment of the center motif position for nucleotides with Sharpr-MPRA scores ≤−1 

(repressive) or ≥1 (activating), using a one-sided binomial test. Inset expands boxed region, 

and does not cover any points, as no motif was enriched beyond −log10P=20 for both 

activating and repressing positions. Arrows highlight members of MAF and AP-2 motif 

families discussed in text. Similar plots using top 5% activating and repressive nucleotides in 

Supplementary Fig. 29.
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Figure 5. Regulatory activity of ERV1 and LINE repeats
For nucleotides of varying Sharpr-MPRA regulatory activity score in HepG2 cells (x-axis 

bins) the fraction that overlaps with annotated repeat elements (y-axis) shows a strong ERV1 

repeat enrichment at the most activating nucleotides (panel a) and a depletion for LINE 

repeats at the most activating and most repressive nucleotides (panel b). Bins formed by 

assigning each base to the nearest 0.5 value based on its regulatory score. Extreme bins 

contain extreme values as indicated. Horizontal lines denote expected overlap based on 

center position (CenPos, green), and all positions (black). Enrichments and depletions for 

K562 and for additional repeats shown in Supplementary Fig. 30.
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Figure 6. Endogenous chromatin state is predictive of reporter activity
(a,b) Average HepG2 Sharpr-MPRA regulatory score (y-axis) and standard error (vertical 

error bars) for each chromatin state (columns) for (a) all 3930 DNase regions selected in 

HepG2 and (b) all 15,720 regions selected in all four cell types, evaluated at nucleotide 

positions of maximum absolute activity (MaxPos). In panel a, each group of consecutive 

bars shows the combinedP, minP, and SV40P results. All 3930 regions correspond to DNase 

sites in HepG2, as they were selected in HepG2. In panel b, the combinedP score is shown 

separately for regions corresponding to DNase sites in HepG2 (light shading) and non-

DNase sites in HepG2 (darker shading). Some DNase sites selected in other cell types were 

also DNase in HepG2, leading to an increased DNase count compared to panel a. All non-

DNase regions in HepG2 were DNase regions in the cell type in which they were selected. 

The chromatin state of the center position is shown. K562 plots in Supplementary Fig. 31. 

(c) For all motifs (Ref 13) (circles) in HepG2-selected regions (top) and K562-selected 

regions (bottom), relationship between their average combinedP Sharpr-MPRA score in the 

corresponding cell type (y-axis) and their expected score based on the chromatin states in 

which the motif occurs (x-axis), quantified as the median of randomized motif occurrences 
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that preserve positional and chromatin state distributions (see Methods). Only motifs with 

20 or more evaluated instances in selected regions are shown. Diagonal line shows y=x line. 

Randomization 95th percentile confidence intervals shown in Supplementary Fig. 39.
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