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ABSTRACT
Extracellular vesicles (EVs) deliver bioactive macromolecules (i.e. proteins, lipids and nucleic acids)
for intercellular communication in multicellular organisms. EVs are secreted by all cell types
including immune cells. Immune cell-derived EVs modulate diverse aspects of the immune system
to either enhance or suppress immune activities. The extensive effects of immune cell-derived EVs
have become the focus of great interest for various nano-biomedical applications, ranging from the
medical use of nanoplatform-based diagnostic agents to the development of therapeutic interven-
tions as well as vaccine applications, and thus may be ideal for ‘immune-theranostic’. Here, we
review the latest advances concerning the biological roles of immune cell-derived EVs in innate and
acquired immunity. The intercellular communication amongst immune cells through their EVs is
highlighted, showing that all immune cell-derived EVs have their unique function(s) in immunity
through intricate interaction(s). Natural-killer (NK) cell-derived EVs, for example, contain potent
cytotoxic proteins and induce apoptosis to targeted cancer cells. On the other hand, cancer cell-
derived EVs bearing NK ligands may evade immune surveillance and responses. Finally, we discuss
possible medical uses for the immune cell-derived EVs as a tool for immune-theranostic: as
diagnostic biomarkers, for use in therapeutic interventions and for vaccination.
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Introduction

Cells secrete extracellular vesicles (EVs) in vivo as well as in
vitro. These vesicles are heterogeneous in size and originate
fromwithin the cell. In vivo, EVs are found in blood, urine,
amniotic fluid, breast milk, seminal fluid, saliva and malig-
nant effusions [1,2]. The EVs may be called exosomes,
microvesicles (MVs), apoptotic bodies and nano-sized
membrane vesicles, and they are excreted into the condi-
tionedmedia by different cell cultures [1,2]. Owing to their
diversified sources and functions, EVs have also been called
ectosomes, oncosomes, shedding microvesicles, micropar-
ticles, etc. [3] – all different terms with the same meaning,
thereby, causing confusion. Nevertheless, two generic
terms, exosomes and microvesicles, are currently the
most commonly used in this field (Figure 1(A)).

Exosomes are generated through fusion with the
plasma membrane of specific endosomal compartments
called ‘multivesicular bodies’ (MVB). Many reports have
shown several traffic components, such as Tsg101, Alix
and tetraspanins (CD63, CD9, CD81), that are enriched
in exosomes; thus, it may be suggested that these

distinctions can serve as exosomal markers [4–7]. Of
note, a subpopulation of small EVs derived from plasma
membrane may also contain CD9, CD63 and CD81.
Thus, these molecules, not specific to exosomes, are
considered as more generic EV markers of different
subtypes [8]. On the other hand, microvesicles (MV)
are formed via an outward budding from the plasma
membrane. Unlike exosomes, the molecular composi-
tion of microvesicles is less defined. Depending on the
cell types, microvesicles seem to be enriched in matrix
metalloproteinases (MMPs), glycoproteins, (e.g. GPIb,
GPIIb-IIIa and P-selectin and integrins, etc.), and Mac-
1; therefore they have been utilized as the markers for
microvesicles [9–13]. Further differentiation between
these two types of vesicles – exosomes and MV – is
difficult because of their similarity in size and density. In
general, EV is an acceptable term that encompasses all
classes of secreted lipid membrane vesicles
(Figure 1(A)).

All EVs share a characteristic composition of biomo-
lecules: proteins, lipids (e.g. cholesterol, ceramide) [14–
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16], and genetic material (e.g. mRNA, miRNA, tRNA and
DNA) and low-molecular-weight metabolites, i.e. amino
acids, ATP, glutathione, etc. [17–22]. (Figure 1(B)). Their
lipid and protein compositions have been extensively
analysed by various techniques, including: Western blot-
ting, FACS, immuno-EM and mass spectrometry [23].
Databases containing proteins already detected in MVs
are available: such as Vesiclepedia (http://www.microvesi
cles.org/), ExoCarta (http://exocarta.ludwig.edu.au/) and
the Urinary Exosomes Protein Database (http://dir.nhlbi.
nih.gov/papers/lkem/exosome/). EV proteomes include
both a common set of membranes and cytosolic proteins
and specific subsets of proteins, likely correlated to cell-
type-associated functions. The latter group may be
important in terms of their unique roles in organisms.
Any given EV isolate is expected to contain four cate-
gories of proteins to define EVs and their functions, based
on the recommendation of the International Society for
Extracellular Vesicles [5]. (1) The first group is trans-
membrane or lipid-bound extracellular proteins, which
are enriched in EV isolates. These proteins include tetra-
spanins (CD9, CD63, CD81), integrins, cell adhesion
molecules, growth factor receptors, heterotrimeric G pro-
teins (GNA) and phosphatidylserine-binding MFGE8/
lactadherin, etc. (2) The second group is cytosolic pro-
teins with membrane- or receptor-binding capacity,
which are also enriched in EV isolates, e.g. multivesicular
endosome formation (Tsg101, annexins, Rabs), signal
transduction or scaffolding proteins (syntenin). (3) The

third group is intracellular proteins associated with com-
partments other than plasma membrane or endosomes
that are absent or under-represented in EVs, such as
endoplasmic reticulum proteins (HSP90B1, calnexin),
Golgi components (GM130), mitochondria proteins
(cytochrome C) and argonaute/RISC complex (AGO).
(4) The fourth category is extracellular proteins that
bind specifically or non-specifically to membranes and
co-isolate with EVs, variable association with EVs, e.g.
acetylcholinesterase (AChE), serum albumin, extracellu-
lar matrix proteins (fibronectin, collagen) and soluble
secreted proteins (cytokines, growth factors, matrix
metalloproteinases) [5]. EVs also contain cell-type-speci-
fic components depending on the nature of the producer
cell [24]. For example, EVs from tumour cells contain
tumour antigens, platelet-derived exosomes contain coa-
gulation factors, and exosomes from dendritic cells
express MHC-II-peptide complexes [25].

In addition to the protein components, EVs contain a
specific repertoire of microRNAs (miRNAs), long non-
coding RNAs (lncRNAs) and mRNAs distinct from that
of their cell of origin [17,26]. It has been demonstrated
that embryonic stem-cell-derived microvesicles can deli-
ver Wnt-3 mRNA, which can be translated into the
corresponding proteins in target cells [27]. Also, EVs
can functionally transfer mRNA and microRNAs from
one cell to another as a novel mechanism of genetic
exchange between cells [17]. These seminal studies, fol-
lowed by the increasing number of publications reporting
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Figure 1. Biogenesis and molecular composition of a typical extracellular vesicle. (A) Extracellular vesicles may be classified into two
major groups: microvesicles and exosomes, depending on their biogenesis pathways. (B) General composition including genetic
materials, proteins and lipids in a typical EV. The proteins in EVs include transmembrane or lipid-bound extracellular proteins (e.g.
tetraspanins, cell adhesion molecules), cytosolic proteins (e.g. MVE formation, signal transduction), intracellular proteins (e.g.
HSP90), extracellular proteins (e.g. soluble secreted proteins, fibronectin), etc. EVs also contain cell-type specific components
depending on the nature of the producer cell. MVE: multivesicular endosome.
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that miRNAs are differentially expressed in the blood of
cancer patients compared with matched healthy indivi-
duals, inspired the hypothesis that miRNAs, inside EVs,
could elicit ‘hormone-like’ functions within the tumour
microenvironment. Toll-like receptor 8 (TLR8) has been
identified as the first miRceptor (defined as a receptor for
miRNAs) in Tumour-Associated Macrophages (TAMs)
[28]. This study identifies a completely new mechanism
of action for miRNAs, as ligands and agonists of a recep-
tor, triggering a pro-tumoral, inflammatory response
[29]. More recently, it has also been shown that miR-21,
secreted by neuroblastoma cells in EVs, is taken up by
TAMs and binds to TLR8 within TAM endosomes, trig-
gering the NF-κB signalling pathway that transactivates
miR-155 expression in TAMs and in EV secreted by
TAMs. TAM-derived EVs transfer miR-155 back to neu-
roblastoma cells, where it targets TERF1, leading to
increased resistance to cisplatin [26]. More recently, it
has been reported that prostate-cancer-derived exosomes
are enriched for lncRNAs harbouring miRNA seed
regions (especially for let-7 family members) and RNA-
binding protein-binding motifs [30]. This intriguing
finding suggests a possible role for these non-coding
RNAs in prostate carcinogenesis.While we are witnessing
a blossoming of studies assessing the role of extracellular
RNA (including RNA in EVs) as cancer biomarkers and
as functional molecules within the tumour microenvir-
onment, increasing caution is raised on the possible con-
founding effect of RNA in cell-culture-medium
components such as fetal bovine serum (FBS) [31]. This
important point needs to be taken into consideration for
a correct interpretation of the results of experiments with
extracellular RNA. EVs can also transport genomic
(gDNA) and mitochondrial DNA (mtDNA), ranging in
size from 100 base pairs to 2.5 kilobase pairs, to recipient
cells [32]. The transferred DNA from EVs to cells not
only increases the gDNA-coding mRNA and protein
levels, but also induces function in recipient cells [33]. It
has been shown that transferred BCR/ABL DNA from
leukaemia K562 EVs causes chronic myeloid leukaemia
in animal studies [34]. Tumour EVs carrying DNA,
which reflects the genetic status of the disease, are poten-
tially used as blood biomarkers for cancer [35]. Cytotoxic
agent ciprofloxacin induces Jurkat cells to release EVs
with both gDNA andmtDNA associated with fibronectin
on the EV surface [36]. This EV-associated DNA could be
a likely self-antigen, leading to an anti-DNA antibody
response. Also, irinotecan (CPT-11) induces the release
of intestinal DNA through the EV secretion, which trig-
gers innate immune responses causing intestinal toxicity,
the incidence of drug-induced diarrhoea [37]. Thus, EVs
transferring DNA can have both physiological and patho-
logical impacts on recipient cells. Collectively, secreted

EVs contain a wide variety of functional components.
Owing to the complexity, it is quite intractable to study
EVs’ compositions and functions. A recent report about
methodological guidelines is practically useful to avoid
many pitfalls and misconception in this field[38].

All cell types are known to secrete EVs, including
immune cells such as dendritic cells (DCs) [39], mast
cells (MCs) [40], macrophages [41,42], B lymphocytes
[43] and T lymphocytes [44,45]. This allows intercellular
communication in the bloodstream and lymph fluids,
which in turn can exert numerous immune functions in
physiology and pathology [46–48]. The impact of EVs’
biological functions on the immune system is now being
recognized. In this review, we will focus on the current
understanding of immune cell-derived EVs.

Current understanding of immune cell-derived
EVs and their potential effects

Vertebrates have two immune response systems – the
innate immune system and the acquired immune system.
The innate immune system has been greatly advanced in
all multicellular organisms, but the acquired immune
system is only manifested in vertebrates [49]. Natural-
killer (NK) cells are an essential part of innate immunity,
while B and T cells are the two necessary types of cells in
the acquired immune system. B cells can recognize for-
eign antigens, but T cells require antigen-presenting cells
(APCs) to identify the antigens. The professional APCs
are dendritic cells (DCs), macrophages and B cells. APCs
internalize foreign antigens, load these foreign antigens to
MHC-I and MHC-II, respectively, and present them to
CD8+ and CD4+ T cells for the T cell immune responses
[50]. Numerous reports have demonstrated that the
cross-talk amongst immune cells is through interleukins,
chemokines, interferons and other signalling molecules
[51,52]. Recent studies have also shown that immune cells
can secrete the immune active EVs that affect many
physiological and pathological processes. These immune
active EVs play important roles in innate and acquired
immune responses, including antigen presentation, NK
and T cell activations, T cell polarization toward Treg
cells, immune suppression and anti-inflammatory effects.
Therefore, the immune cell-derived EVs all take part in
immune responses and regulations, and may potentially
serve as a tool or target with great applications [46].

Roles of immune cell-derived EVs in innate
immunity

Immune cell-derived EVs are involved in the regula-
tion of the innate immune responses. EVs released by
NK cells, macrophages and dendritic cells have been
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described mainly as pro-inflammatory mediators via
paracrine messengers acting on the innate immune
system [53].

NK cells, group 1 innate lymphoid cells, have multi-
ple inhibitory receptors [e.g. killer immunoglobulin-
like receptors (KIR)] and activating receptors (e.g.
NKG2D), and the balance of these activating and inhi-
bitory signals determines whether NK cells are acti-
vated or not. HLA-B-associated transcript 3 (BAT3),
TNF superfamily members (TNF, TRAIL, Fas ligand
(FasL)) and IL-15Ra expressed in DC-derived EVs, can
bind directly to NK cell surface receptors (NKG2D
receptor, TNF superfamily receptors, IL-15Ra receptor)
to activate NK cells and enhance the cytotoxic activity
of NK cells [54–57] (Figure 2.①). Furthermore, human
NK cells may release EVs that are cytotoxic against
tumour cells and activated immune cells [58,59].

Macrophage-derived EVs can exert multiple func-
tions. They could induce macrophage differentiation.
Also, macrophage-derived EVs contain high levels of
miR-223, which modulates the differentiation and pro-
liferation of myeloid cells [60]. The macrophages that
are infected with Toxoplasma or Mycobacterium tuber-
culosis release pathogen-associated-molecular patterns-
containing EVs to induce immune cell recruitment and
pro-inflammatory cytokine secretion. The secreted pro-

inflammatory cytokines include RANTES and TNF-α
[61,62]. Moreover, intranasal injection of mice with
EVs released by Mycobacterium tuberculosis-infected
macrophages led to increased secretion of pro-inflam-
matory cytokine mediators (TNF-α and IL-12) and the
recruitment of neutrophils and macrophages into the
lungs of mice [63]. Lipopolysaccharide (LPS)-stimulated
macrophages secrete EVs, including the upregulated
cytokines and miRNAs, which promote the occurrence
of inflammation. In the innate and acquired immune
responses, the high-throughput transcript sequencing
analysis showed significant alteration of RNA species
in EVs. The EVs secreted by LPS-stimulated macro-
phages sufficiently activate NF-κB pathways in naive
immune cells, leading to the occurrence of inflammation
[41]. In the presence of oxidized low-density lipoprotein
(oxLDL)-conjugated immune complex, macrophages
release the EVs with increased expression of IL-1β,
phosphatase and Hsp70, and these EVs can promote
the formations of atherosclerotic plaques [64]
(Figure 2.②). It has been reported that endotoxin-sti-
mulated monocytes can release EVs that deliver a cell-
death message via encapsulated caspase-1 [65]. It is now
clear that a multiple protein complex, inflammasome, is
responsible for initiation of the inflammatory process
through the activation of caspase-1 and the production

Figure 2. Immune cell-derived EVs modulate innate and acquired immune responses. Innate and acquired immune cells may
communicate through released EVs by different ways, e.g. ① receptor–ligand interaction, ② pro-inflammatory mediators and
cytokines, ③ anti-inflammatory mediators and cytokines, ④ direct antigen presentation, ⑤ cross-dressing and cross-presentation,
⑥ MC-EVs activate iDC and TC, ⑦ MØ-EVs activate APCs-mediated TC, ⑧ TC-EVs induce immune regulatory effects, ⑨ iDC-EVs
induce immune suppression and ⑩ Treg-EVs induce immune suppression. The green/blue arrows indicate that secreted EVs exert a
positive immune response(s) to targets, and red arrows indicate that EVs suppress or block the immune activities. NK, natural-killer
cells; PN, polymorphonuclear neutrophils; mDC, mature dendritic cells; iDC, immature dendritic cells; APC, antigen-presenting cells;
BC, B cells; TC, T cells; MC, mast cells; MØ, macrophages; Treg cell, regulatory T cells; EVs, extracellular vesicles; AID, autoimmune
disease.
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of the pro-inflammatory cytokines IL-1β and IL-18 [66].
Inflammasome-containing EVs from stimulated macro-
phages specifically enrich immune response-related pro-
teins and signalling pathways. They can directly trigger
the NF-κB signalling pathway, and subsequently amplify
inflammatory signalling in neighbour cells [67]. Thus,
inflammasome-containing EVs play a vital role in acti-
vating the innate immune response in peripheral tissues.

Besides promoting inflammation, EVs released by
innate immune cells also play a role in innate immu-
nosuppressive effects. For example, activated poly-
morphonuclear neutrophils spread anti-inflammatory
EVs by regulating endogenous pro-resolving lipid
mediators or by inducing TGF-β secretion [68]
(Figure 2.③).

Roles of immune cell-derived EVs in acquired
immunity

More evidence has indicated that immune cell-derived
EVs are involved in the acquired immune response. In
the process of antigen presentation, APCs (such as DC
or macrophages) deliver MHC-I and MHC-II mole-
cules and directly stimulate the naive CD8+ and CD4+

T cells, respectively. Recent evidence has substantiated
the involvement of EVs in the process of antigen pre-
sentation, i.e. the immune cell-derived EVs express
MHC-I, MHC-II and T cell co-stimulatory molecules
on their surfaces [1], and these EVs can deliver the
foreign antigens. One example is that macrophages
infected with Mycobacterium tuberculosis release bac-
terial antigen-containing EVs [69,70]. Therefore,
immunologists have utilized immune cell-derived EVs
as media in antigen presentation and widely regarded
this as an important mechanism of antigen presenta-
tion [69,70].

Ample evidence has indicated that APCs need to
capture EVs during antigen presentation. Adhesion
molecules and integrins on EVs and their lipid content
may facilitate attachment and fusion with the plasma
membrane of APCs [53]. For example, mouse plasma-
cytoid DCs, which express Siglec-H, may capture EVs
in vivo [20]. Likewise, mature DCs (mDCs), which
express Siglec-1 receptor, can catch Jurkat cell-derived
EVs, and the capture was mostly inhibited by the
blocking Siglec-1, a sugar-binding lectin [71]. In gen-
eral, EVs captured by APCs may convey stimulatory or
suppressive signals to target cells (e.g. T cells) and
contribute to antigen presentation. At present, there
are three possible mechanisms bringing about immune
cell-derived EVs mediated antigen presentation to T
cells.

EV-mediated direct antigen presentation
APC-released EVs deliver MHC-I, MHC-II and T cell
co-stimulatory molecules, which can directly activate
CD8+ and CD4+ T cells in vitro [72–76]. Similarly, the
DCs in ovalbumin (OVA)-treated mice release OVA-
containing EVs, which are able to directly stimulate
OVA specific CD8+ T cell lines [72] (Figure 2.④).
Studies have shown that the EVs released by LPS-
treated DCs can induce the activation of antigen-spe-
cific T cells both in vivo and in vitro [77] (Figure 2.④).
In addition, the EVs secreted by monocyte-derived
DCs contain viral antigen, which can activate T cells
in vitro in the absence of DCs [75] (Figure 2.④).
Moreover, B cell line released EVs can directly stimu-
late CD4+ T cell lines [78] (Figure 2.④). The direct
effects of EVs on T cells, however, may not be the main
mechanism underlying the activation of naive T cells in
vivo. Studies have shown that the stimulatory activity
of EVs alone on T cells is 10- to 20-fold lower than in
the presence of APCs [79].

Cross-dressing antigen presentation
Immune cell-derived EVs (e.g. DC-secreted EVs) con-
tain antigen–MHC complexes [80]. Following the cap-
ture and internalization, these antigen–MHC complexes
are presented to T cells by APCs. This process is termed
‘cross-dressing’, indicating that the EVs can transfer
antigen–MHC complexes between immune cells [80–
83] (Figure 2.⑤). However, some studies have shown
that antigen–MHC complexes bearing EVs are unable to
perform the ‘cross-dressing’ process [84,85]. Thus,
further studies of this mechanism are required.

Cross-presentation
EV-transported antigens form a complex with MHC
via APCs and present antigen peptide to T cells. In the
presence of naive DCs, antigen-bearing EVs stimulate
T cells to promote the activation of T cells [86–88].
DCs capture antigen-bearing EVs, which are subse-
quently presented to the internal MHC-I and MHC-II
molecules, and then activate antigen-specific T cells
[80,89] (Figure 2.⑤). Mast cell-derived EVs in mice
deliver antigens and activate naive DCs, thereby acti-
vating T cells in vitro [90] (Figure 2.⑥). Studies have
shown that mast cell-derived OVA-bearing EVs can
activate both DCs and OVA-specific T cell lines [91]
(Figure 2.⑥). The EVs secreted by Mycobaterium
tuberculosis-infected macrophages contain bacterial
antigens that can activate APCs-mediated CD4+ and
CD8+ T cells in mycobacterium-sensitive mice [69]
(Figure 2.⑦). These mechanisms require the capture
of EVs by receptor cells, and the process entails the
interaction of receptors with ligands. Certain surface
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ligands and adhesion molecules have been shown to be
involved in the process of capture, such as tetraspanins,
ICAM-1 and phosphatidylserine [77,92,93].

Besides been involved in the process of antigen cross-
presentation, mast cell-derived EVs also take part in
transferring specific cargo to recipient cells and mediate
distinct effects [40,94]. For example, mast-cell-derived
EVs transfer proteins (such as CD13, ribosomal protein
S6 kinase, annexin V, CDC25, etc.) to splenocytes and T
cells, and contribute to the immunostimulatory activities
[95]. Similarly, they may transfer OX40L ligand to pro-
mote the proliferation and differentiation of naive CD4+

cells to Th2 cells [96]. Further, mast-cell-derived EVs are
able to induce plasminogen activator inhibitor type 1
(PAI-1) expression in endothelial cells in vitro and pro-
mote the deposition of fibrin during the inflammation
[97]. Another example was that EVs from MCs trans-
ferred the CD117 (Kit protein) to adenocarcinoma cells,
induced PI3K/AKT signalling and promoted migration
and proliferation of cancer cells [98].

T-cell-derived EVs can target many cell types, indu-
cing a wide variety of immune-response effects ranging
from immune activation to suppression [99]
(Figure 2.⑧). Activated T-cell-secreted EVs enhance
the immune response through action on autologous
resting T cells [23]. The EVs secreted by stimulated
human CD3+ T cells work synergistically with IL-2 to
promote the proliferation of autologous resting cells.
Likewise, T cell-derived EVs are required for RANTES
(CCL5)-dependent induction of T cell proliferation,
support immunogenicity via gene regulation in tar-
geted APCs [18] and take part in IL-2 mediated
immune-response signalling [100]. In addition, T-cell-
secreted EVs can activate MCs resulting in cell degra-
nulation and induction of IL-8 and IL-24 [101,102].
The EVs secreted by activated T cells contain super-
family members TNF (FasL), which promotes tumour
invasion in the lungs by increasing the expression of
metalloproteinase matrix 9 [103]. The EVs released by
CTLs contain FasL, which can kill the target cells [104].
Therefore, T-cell-secreted EVs are an important med-
iator of the immune responses that regulate the activity
of immune cells and other cells.

Immune cell-derived EVs have immune-promotive
as well as immunosuppressive effects, and immunosup-
pressive effects from EVs may also lead to immune
tolerance. Immune tolerance is classified into central
tolerance or peripheral tolerance depending on where
the state is originally induced. Thymus and bone mar-
row induce central immune tolerance, and lymph
nodes and other tissues induce peripheral immune
tolerance. Recent research showed that human thymic
EVs exhibit thymus-specific features including protein

content, surface markers and microRNA profile. These
thymic EVs play a role in T-cell selection and the
induction of central tolerance [105]. The presentation
of tissue-restricted antigens (TRAs) in the thymic
micromileus is vital to establish central tolerance.
Subsequent studies showed that thymic epithelial cells
(TECs) could produce thymic EVs bringing TRAs
[106] and MHC molecules [107]. The thymic EVs
from TECs become involved in the thymocyte negative
selection process by delivering intact functional pep-
tide–MHC complexes to APCs, such as thymic DCs,
and induce central tolerance [108].

Besides the central tolerance, immune cell-derived
EVs also have peripheral immune tolerance effects. For
example, the EVs secreted by immature or genetically
modified or IL-10-treated DCs have been shown to
induce immune suppression in transplanted model
mice and in mice with autoimmune disease [46,109–
111] (Figure 2.⑨). The expression of co-stimulatory
molecules in the immature DCs had decreased, indicat-
ing the immunosuppressive effect of the EVs released by
the immature DCs [104]. Activated T-cell-secreted EVs
expressing NKG2D, TCR, MHC, APO2 ligand, FasL and
others are able to block NK cytotoxicity, inhibit T-cell
stimulation, induce T-cell apoptosis and downregulate
the T-cell stimulatory capacity of APCs, thus diminish-
ing immune responses [112–115]. The presence of T-cell
tolerance in mice with allergic dermatitis is attributed to
the release of the EVs released by inhibitory CD8+ T
cells [116,117]. Moreover, CD73 of T regulatory cell-
derived EVs contributed to the suppressive role [118].

EVs secreted from certain subtypes of T cells may
participate in immunosuppression of anti-tumour
immunity against tumours. For example, the EVs
released by CD4+ T cells inhibited CD8+ cytotoxic T
lymphocyte response and anti-tumour activity against
OVA-expressing B16 melanoma [44] (Figure 2.⑩).
Activated CD8+ T cell-derived FasL-expressed EVs
could promote the invasion of murine melanoma cell
line B16 and Lewis lung cancer cell line via Fas signal-
ling pathway [103]. Similarly, CD8+ CD25+ regulatory T
cell-released EVs can suppress CD8+ T-cell-mediated
cytotoxicity [119]. EVs released by CD4+ CD25+ regu-
latory T cells have also been shown to inhibit the pro-
liferation of T cells and prolong the survival time in a rat
model, indicating the contributory effect of T-cell-
secreted EVs on transplantation tolerance [45]
(Figure 2.⑩). Therefore, certain EVs derived from
immune cells may elicit immunosuppression against
tumours, and this effect may be a potential target for
the design of cancer immunotherapy [120,121].

Collectively, immune cell-derived EVs are involved
in many aspects of innate and acquired immune
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responses. They may exert their functions alone by
direct interaction with recipient cells, or may associate
with cytokines and chemokines (such as TNF-α, IL-1ra,
G-CSF, CCL2), possibly eliciting synergistic actions to
regulate immune activities [53]. As such, immune cell-
derived EVs can mediate immune activation or immu-
nosuppression, so as to promote inflammatory, auto-
immune and other pathologic processes. The
regulatory effect of immune cells-derived EVs has
potential applications in the treatment of immune-
mediated diseases, such as inflammation and graft
rejection [117,122,123].

Natural-killer cell-derived EVs (NK EVs)

NK cells play an important role in immuno-surveillance
and host defence against cancer and pathogen infections
[124]. NK cells express a variety of germline-encoded
activating and inhibitory cell surface receptors [125].
The activation and/or inhibition signals are generated
at the specialized immunological synapse formed
between the NK and the target cell through the surface
receptors and utilizing their cytotoxic ability to eliminate
abnormal cells [124]. The way that NK cells destroy
target cells is to mobilize cytotoxic effector molecules
stored in lytic granules upon stimulation [126–128]. The
lytic granules have often been referred to as ‘secretory
lysosomes’ because they have the characteristics of lyso-
somes. They are generated in the cytoplasm and released
as a cargo of cytotoxic proteins, including perforin,
granzymes, granulysin, FasL/CD178, TNF-related apop-
tosis-inducing ligand (TRAIL/CD253) and small anti-
microbial peptides [124]. Interestingly, human NK cells
can release EVs in culture medium. The NK-derived
EVs also contain typical NK markers and lytic proteins
[58,59]. The relation between lytic granules/secretory
lysosomes of NK cells and secreted NK EVs is intri-
guing, but needs to be further explored to fully under-
stand their relation. Thus, isolation and characterization
of NK EVs would provide key information to define
their functions in immunity.

Characteristics of NK EVs

NK EVs have been isolated from NK92 cell culture [129]
and PBMC [58]. Furthermore, a large-scale method to
isolate NK EVs from ex vivo expansion of activated NK
cell culture has been developed [59]. This large-scale
isolation of activated NKEVsmight lead to new strategies
for clinical exploitation. IsolatedNKEVs are cytotoxic for
cell lines derived from haematologic malignancies
(Jurkat, K562, DAUDI) and a solid tumour (breast carci-
noma SKBR3) [58]. Activated NK EVs from ex vivo

expansion cultures show cytotoxicity to other tested can-
cer cell lines including ALL (SupB15, NALM-6), neuro-
blastoma (CHLA-136, CHLA-255) and breast carcinoma
(MCF7) [59]. The degradation product of the common
caspase substrate, PARP, could be detected in targeted
cancer cell lines shortly after the NK EVs treatment. The
pan-caspase inhibitor significantly reduced cytotoxicity.
Furthermore, inhibitors of the apoptosis initiation group
(caspase-2, -8, -9 and -10) effectively blocked EV-induced
cytotoxicity, as did the inhibitors of caspase-3 (apoptosis
execution group) and, to a lesser extent, those of caspase-
6 and -12. Cleaved caspase-3, -7, -9 protein products can
also be observed in the targeted cancer cells. Inhibitors of
the inflammatory activation group (caspase-1, -4 and -13)
had no detectable effect on cytotoxicity. The results sug-
gest that the caspase members in the initiation and execu-
tion groups are involved, at least in part, in NK EV-
mediated killing of cancer cells [59].

One unique feature of isolated NK EVs is that they
contain key cytotoxic proteins, such as perforin (PFN),
granzyme A (Gzm-A), granzyme B (Gzm-B) and gran-
ulysin (GNLY). It is well known that human NK cells
secrete lytic granules upon activation. The lytic granules
essentially utilize these cytotoxic molecules as the major
mechanisms for their cellular cytotoxicity [130–135].
This may be extrapolated to NK EV killing mechanisms
(Figure 3), which can be classified into three groups.

1) Perforin-granzyme mediated entry
Perforin is a pore-forming protein that allows delivery
of the pro-apoptotic proteins into the cytoplasm of the
target cells, subsequently inducing target cell death by
apoptosis [134,135]. Perforin in lytic granules (pH ~5)
is inactive. It is associated with its chaperone calreticu-
lum, a Ca2+-binding protein that protects CTL from
auto-digestion during biogenesis of the granules.
Perforin becomes active in the synapse (pH ~7 and in
the presence of calcium), oligomerizing with ~20 mole-
cules into a large polyperforin pore complex [136,137].
NK EV-associated perforin may follow the same path
to insert itself into a plasma membrane and generate
pores so as to release cytotoxic proteins into the cyto-
plasm of target cells [109]. In addition, following endo-
cytosis, perforin may form pores on the endosomal
membrane, releasing granzyme B into the target cell
[138]. In either case, NK EV-associated perforin and
granzymes may activate upon fusion of NK EVs with
the plasma or endosomal membrane of target cells,
subsequently inducing apoptosis through caspase-
dependent and -independent manners.

Granzyme A is a tryptase that induces caspase-inde-
pendent cell death through histone digestion and by
facilitating endogenous DNase access to DNA during
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granule-mediated apoptosis. Granzyme A can directly
target the SET complex in ER for proteolysis.
Proteolysis of SET releases the inhibition of DNase
NM23-H1, resulting in the single-strand DNA nicks
most commonly associated with granzyme A-mediated
cell death [139,140]. Granzyme A can also target the
mitochondria, leading to loss of mitochondrial trans-
membrane potential and the accumulation of reactive
oxygen species (ROS) [141], but this process does not
lead to the release of cytochrome C, or other mitochon-
dria-associated apoptotic molecules. Thus, granzyme A
induces caspase-independent cell death pathways.

Granzyme B may be the most active member in the
granzyme family. After entry into the target cell cytosol,
granzyme B activates initiator caspases (such as cas-
pases-8, -9, -10) and then promotes apoptosis through
two main pathways. First, granzyme B can directly pro-
cess effector caspases-3 and -7 to promote apoptosis
[139,140,142,143]. Second, granzyme B-mediated pro-
teolysis of the BH3-only protein BID exposes a myris-
tolyation signal that induces the oligomerization of BAX
and/or BAK in the mitochondrial outer membrane.
That oligomerization event facilitates cytochrome C

release into the cytosol, assembly of the apoptosome
and effector caspases (e.g. caspases-3, -7) activation
with the ensuing caspase cascade, subsequently leading
to cell death.

2) Receptor–ligand mediated interaction
NK EVs-associated ligands (e.g. FasL) may interact with
receptors (e.g. Fas or CD95) on the plasma membrane
of target cells, and lead to trimerization of the receptors
and subsequent formation of the death-inducing signal-
ling complex (DISC) [144]. DISC activates the initiator
caspases (e.g. caspase-8, -10) and subsequently can
induce the death signals in two directions: (a) direct
activation of effector caspases-9, -3 and -7, without the
involvement of mitochondria; (b) formation of apopto-
somes (mitochondrial proteins, dATP and Apaf-1), lead-
ing to activation of effector caspases-3 and -7 [143],
consequently, dismantling the target cells.

3) Granulysin mediated action
There is no evidence to date for a specific granulysin
receptor for cytotoxicity, but granulysin itself can bind
to the membrane of target cell through electrostatic

Figure 3. Mechanisms of NK-cell derived EVs interacting with target cells. NK cell-derived EVs express molecules involved in
cytotoxicity: perforin-granzyme mediated fusion, receptor–ligand mediated reaction, granulysin mediated electrostatic interaction.
The cytotoxic proteins of NK EVs may rely on the three mechanisms to activate the caspase cascade, and induce cell apoptosis. PFN,
perforin; GzmA, granzyme A; GzmB, granzyme B; GNLY, granulysin; DISC, death-inducing signalling complex; BID, BH3-interacting
domain.
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interaction based on the positive charge on its
N-terminus [142]. Granulysin is also able to go
through the polyperforin pores. Granulysin appears to
scissor through the cell membrane, causing ion fluxes
[145]. Cytosolic calcium levels increase while potas-
sium levels decrease as a result of activation of cal-
cium-dependent potassium pump [145]. The increase
in intracellular calcium, decrease in potassium and
granulysin itself in the presence of ATP all contribute
to mitochondrial damage [146]. The damage of mito-
chondria results in loss of electrostatic potential, release
of cytochrome C and activation of effector caspases
(e.g. caspases-3, -7) [130]. Granulysin can also activate
a sphingomyelinase associated with the cell membrane
to generate ceramide [147]. Finally, granulysin can
damage endoplasmic reticulum and activates caspase-
7 to induce apoptosis in target cells [131]. Thus, multi-
ple mechanisms have been proposed for the granuly-
sin-induced apoptosis. Taken together, it is conceivable
that lytic molecules of NK EVs may rely on at least
three mechanisms to activate the cell-death signalling
network [124,148] (Figure 3). Noticeably, it is possible
that other cytotoxic factors are yet to be identified. The
multiple killing mechanisms associated with NK EVs
raise the possibility that NK EV-based delivery of cyto-
toxic molecules may be exploited as an entirely new
approach to treat cancers and other diseases [59].

EVs bearing NK ligands may evade immune
surveillance and responses

The release of NK EVs is able to induce apoptosis of
cancer cells. In opposition, cancer-derived EVs carrying
NK ligands may neutralize immune surveillance and
responses. NK cells attacking tumour cells are mediated
by active receptors including NKG2D, NKp44, NKp46,
NKp30 and DNAM-1 [57]. Amongst them, NKG2D is
one of the most-studied receptors [125]. Ligands for
human NKG2D consist of two groups of molecules, six
UL16-binding proteins (ULBP1-6) and the MHC class I
chain-related proteins A and B (MICA/B). While
NKG2D ligands are absent from most normal cells,
expression is induced upon stress and malignant trans-
formation. NK cells may use NKG2D as a detector system
to target inflamed and malignant cells and play a crucial
role in anti-tumour immune surveillance [149]. However,
by shedding the NKG2D soluble ligands, tumour cells
may evade immune responses. The shed NKG2D ligands
bind to NK cell NKG2D receptors, creating competition
for the receptor sites. This immune evasion through
secreted EV-NKG2D ligands has been observed in pros-
tate [150], leukaemia [151] and ovarian cancer [152]. It
has also been reported that human NKG2D ligand

MICA*008 is shed by tumour cells in EVs, resulting in a
marked loss of cytotoxic function of NK cells [153,154].
In sum, NK ligand-bearing cancer EVs selectively induce
downregulation of NKG2D receptor expression and inhi-
bit degranulation on NK cells, resulting in compromised
cytotoxicity and reduced anti-tumour immune surveil-
lance [152]. Intriguingly, human placenta is also able to
secrete EVs with NKG2D ligands. The released ligands
downmodulate the related receptors for immunosuppres-
sive function. The findings underline a role for NKG2D
ligand-bearing placental EVs in fetal immune escape,
rendering placenta as a unique immunosuppressive
organ [155]. Thus, EVs play versatile roles in many
aspects of immune responses.

‘Theranostic’ applications of immune cell-
derived EVs

The discovery of nano-sized EVs released by various cell
types has profound relevance to basic and clinical
research for immune modulation and autoimmune dis-
eases [156]. There are various nano-biomedical applica-
tions of EVs, ranging from nanoplatform-based
diagnostics to the development of novel therapeutics.
The ability of immune cell-derived EVs to either
enhance or suppress immune activity makes them
attractive candidates for several applications [157].
They might constitute an ideal tool for ‘theranostics’
(i.e. therapy + diagnostic = theranostics) (Table 1).

Diagnostic markers

EVs have been isolated and purified mainly from body
fluids, such as blood, urine, ascites, saliva and bronch-
oalveolar lavage fluid. Many studies have shown sig-
nificant differences in both qualitative and quantitative
analyses of EVs in healthy individuals versus patients
with certain diseases (e.g. cancer and renal disease)
[158]. These differences plus accessibility make EVs
an excellent candidate biomarker. EVs are particularly
suitable for this purpose. First, they travel through the
bloodstream and can be easily isolated from bodily
fluids such as plasma, serum and urine. Second, they
receive surface markers from their cells of origin, and
they may be easily identified after isolation. Third, they
express unique markers, such as specific miRNA and
mRNA [123], or protein components from defined cell
types [8,59].

Immune cell-derived EVs usually contain a unique
biomarker for immune diagnosis. For example, in
transplantation, Tregs cells identify the allogeneic anti-
gen of donor and the receptor on the surface of DCs,
and only after activation do Tregs cells secrete EVs.
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Therefore, it is feasible to evaluate the viability and
function of Tregs cells by detecting the level of EVs
secreted from Tregs cells in vivo for transplantation
evaluation [159]. Similarly, circulating immune cell-
derived EVs can be disease-specific biomarkers of
severity of inflammation. For example, the levels of
circulating EVs from CD4+ and CD8+ T cells have
been elevated in patients with chronic hepatitis C,
and the levels of circulating EVs from iNKT cells and
CD14+ macrophages/monocytes are elevated in
patients with nonalcoholic fatty liver or nonalcoholic
steatohepatitis. The level of these EVs in the sera is in
correlation to the severity of the disease and is thus a
viable diagnostic tool for the degree of these liver
inflammatory conditions [160,161]. It is expected that
the identification of novel biomarkers from immune
cell-derived EVs will grow rapidly.

Therapeutic interventions

The ability of immune cell-derived EVs to modulate
immune responses suggests they could be used as a
therapeutic approach for a broad spectrum of diseases.
In that regard, to date, pre-clinical studies of DC-
derived EVs have demonstrated potent activity [162].

DC-derived EVs potentially may be utilized as a
therapy for immune regulation against HIV-1 infec-
tion. A low dosage release of DCs-derived EVs appears
to be more beneficial against HIV-1 infection in

comparison with a high dose in terms of immune
response. Additionally, the release of the EVs with the
capacity to modulate the immune system seemingly is
not related to the DC maturation stage [162]. DC-
derived EVs have also been applied to brain diseases.
Using electroporation, the siRNA against glyceralde-
hyde-3-phosphate dehydrogenase is fused with DC-
derived EVs, which can effectively deliver in vivo and
lead to deleted expression of the target gene in neu-
rons, microglia and oligodendrocytes, resulting in a
specific gene knockdown in the brain in a mouse
model of Alzheimer’s disease [163]. EVs can promote
CNS myelination and may be used to regulate inflam-
mation in brain trauma and neurodegenerative disor-
ders [164].

Different strategies for delivering therapeutic mole-
cules using DC-derived EVs have been proposed for
the treatment of autoimmune diseases [165]. For exam-
ple, IL-4, FasL or indoleamine-pyrrole 2,3-dioxygenase
(IDO) can be gene transferred into DCs, and such DC-
derived EVs have the capacity to ameliorate early-stage
disease in a murine model of collagen induced arthritis
[166–168]. The use of DC-derived EVs may be a better
therapeutic compared with DCs for the treatment of
autoimmune diseases such as rheumatoid arthritis
[169]. Immature bone marrow DCs are able to secrete
tolerogenic exosomes, which are involved in the sup-
pression of immune responses in a rat model of experi-
mental autoimmune myasthenia gravis. These EVs
upregulate levels of IDO/Treg and decrease synthesis

Table 1. Immune cells-derived EVs-based immune-theranostic applications.
Cell source Composition Engineering strategy Biogenesis mechanism Target cell/diseases References

Diagnostic markers
Tregs EVs Increasing Treg-EVs Transplantation evaluation [159]
CD4+/CD8+ Tc EVs Increasing CD4+/CD8+ T-EVs Chronic hepatitis C [160,161]
iNK Tc EVs Increasing iNKT-EVs Liver inflammatory [160,161]
MØ/monocytes EVs Increasing MØ/monocytes-EVs Liver inflammatory [160,161]

Therapeutic uses
DC
DC
DC

HIV-1 Ag
genetic material

MBP/miR-219
siRNA against target gene

EE stimulated

AP
deliver gene

deliver MBP/miR-219

HIV-1 infection
Alzheimer’s disease

brain Trauma/neurodegenerative
disorders

[162]
[163]
[164]

DC
DC

IL-4/FasL/IDO
EVs

Modified gene Deliver IL-4/FasL/IDO
increasing IDO/Treg Decreasing

Ab

CIA
EAMG

[166–168]
[170]

DC EVs Activating CD4+ T MI [171]
DC EVs IFN-γ stimulated Boosting NK cell NSCLC [172,173]
MØ Modified genetic

material
Plasmid encoding Deliver gene Parkinson’s disease [174,175]

Treg EVs Autologous Treg cells Immunosuppressive effects Renal allograft transplantation [123,159]
NK Cytotoxic

proteins
IL-15 stimulated Deliver cytotoxic proteins Haematologic malignancy

Solid tumour
[58,59]
[129,157]

Vaccination
DC Specific antigen TLR-3 ligand poly(I:C) Deliver antigens Human melanoma [176]
Tc OVA antigen Counteract T-cell anergy Chronic infection [177]

DC Specific antigen
Convert CTL exhaustion

Polyclonal CD4+Tc Viral diseases [178,179]

Tc: T cell; AP: antigen presentation; MBP: myelin basic protein; EE: environmental enrichment; CIA: collagen-induced arthritis; EAMG: experimental
autoimmune myasthenia gravis; MI: myocardial infarction; NSCLC: non-small cell lung cancer; LCL: lymphoblastic cell lines; OVA: ovalbumin.
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of anti-R97-116 IgG, IgG2a and IgG2b antibodies
[170]. Moreover, DC-derived EVs can mediate the
activation of CD4+ T cells through an endocrine
mechanism, leading to improved cardiac function and
wound healing after myocardial infarction [171]. DC-
derived EVs are also applicable to anti-cancer treat-
ments. For example, DC-derived EVs-based phase I
and II clinical trials have been conducted in advanced
malignancies, and these agents have proven to be fea-
sible and safe [172]. A phase II trial confirmed the
capacity of DC-derived EVs to boost the NK cell arm
of anti-tumour immunity in patients with advanced
non-small cell lung cancer (NSCLC) [173].

Macrophages-derived EVs are able to modulate
immune responses and are used in some disease treat-
ments. For example, the plasmid encoding therapeutic
protein (e.g. catalase or glial cell line-derived neuro-
trophic factor) has been applied to transfect macro-
phages [174,175]. After injection of transfected
macrophages into mice with Parkinson disease, the
EVs that contain modified genetic material are released,
resulting in significant improvement in motor function
[174,175]. After transplantation, transfer of EVs of auto-
logous Treg cells prolongs survival and renal allograft
function [159]. Therefore, Treg-derived EVs might be a
new approach to induce transplantation tolerance [123].

Human NK cells secrete EVs that contain typical NK
markers (e.g. CD56) and lytic proteins (e.g. granulysin,
granzymeA, granzyme B, perforin, FasL) [58,59]. Thus, it
is possible that NK EVs may be utilized as a novel
approach to treat cancer [157]. A study suggested that
NK EVs increased the proliferation rate of NK cells and
enhancedNK-mediated cytotoxicity to humanmelanoma
cancer cells (B16F10/F cells) [129]. In addition, a large-
scale isolation of activated NK EVs from ex vivo expan-
sion cultures has been developed and has been shown to
be cytotoxic to several tested cancer cell lines including
ALL (SupB15, NALM-6), neuroblastoma (CHLA-136,
CHLA-255) and breast carcinoma (MCF7) [59].

Vaccination

Immune-cell-derived EVs have immunomodulatory
properties. Thus, engineering immune-cell-derived EVs
containing specific biomolecules and small-molecule
drugs that are able to be delivered to the target cells
may stimulate the patient’s immune system to recognize
and destroy tumour cells or pathogens. Studies have
shown that DC-derived EVs in vivo and in vitro can
induce antigen-specific CD4+ and CD8+ T-cell reactions
and strengthen in vivo anti-tumour immunity [81,165].
Furthermore, EVs from DCs loaded with specific anti-
gens and matured with the Toll-like receptor (TLR)-3

ligand poly(I:C) as inhibitory signal resulted in reduced
tumour growth, limited metastasis burden and, most
importantly, prolonged survival of a mouse model of
human melanoma. These studies indicate that poly(I:C)
is a promising candidate for the production of DC-
derived EVs vaccines with immune stimulatory proper-
ties suitable for the immunotherapy of cancer [176].
Overall, DC-derived EVs are promising vaccine candi-
dates for the treatment of cancer.

In recent years, the immune cell-derived EVs as a
vaccine against infectious diseases have gained wide-
spread attention. A novel ovalbumin (OVA)-specific T
cells-derived EVs has been generated in a chronic
infection mouse model. The exosome-targeted T-cell-
based vaccine counteracts T-cell anergy and converts
CTL exhaustion via CD40L signalling through the
mTORC1 pathway after i.v. infecting C57BL/6 mice
with the OVA-expressing adenovirus AdVova [177].
In addition, T-cell-based vaccines that comprise poly-
clonal CD4+ T cells armed with antigen-specific DC
released exosomes may have applications in the treat-
ment of viral infection, including HIV-1 [178,179].

Prospect

Immune-cell-derived EVs are a cellular product with
multiple features that make them suitable for clinical
applications. They can be prepared from individual
patients for autologous use. Moreover, immune-cell-
derived EVs have advantages over whole cell-based
therapies in regard to manufacture, storage, transport,
and transplantation. For example, NK EV preparations
are stable in −80°C for at least one year [59], making
them readily available ‘off-the-shelf’. The administra-
tion of EVs instead of cells might also reduce some of
the risks associated with cellular therapy (e.g. cytokine
release syndrome, graft-versus-host disease) [180].
Notably, NK EVs may be altered to improve targeting
and cytotoxicity via engineering of NK cells [181].
Finally, it is known that EVs can cross the blood–
brain barrier [182], and thus, they may be able to
enter cancer sanctuary sites such as the central nervous
system. Thus, the potential advantages of immune cell-
derived EV-based applications versus whole cell-based
applications provide a rationale to develop an EV-
based immunotherapy.

Several key issues pertaining to the use of EVs in
clinical require further exploration, such as standardiza-
tion, optimization, quality control, development of
release criteria standards, and further study of the biology
and mechanism of EV communication with target cells
[3]. Overall, the potential of immune cell-derived EVs in
immuno-theranostic applications is highly promising.
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