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Are Current Antifungal Drug Targets Sufficient for the Treatment of
Systemic Mycosis?
Systemic and invasive mycoses caused by primary and opportunistic fungal pathogens have
been emerging as global problems because of the increase in the number of immunocompro-
mised individuals, due to solid-organ transplants, anti-cancer chemotherapy, and extended
human lifespan. A recent report estimated that fungal pathogens, such as Cryptococcus neofor-
mans, Candida albicans, and Aspergillus fumigatus, are responsible for more than 1 million
deaths annually [1]. Despite this, the availability of antifungal drugs or targets for antifungal
drug development are very limited. This is unlike the situation of bacterial pathogens and, to
an extent, the eukaryotic parasites (which is serious enough) because the animals share a more
recent common ancestor with the fungi than other pathogens. Ergosterol and its biosynthetic
enzymes are the most popular antifungal drug targets because of the structural distinguishabil-
ity of ergosterol from cholesterol in mammalian cell membranes. Polyene macrolides directly
bind to ergosterol and generate lethal transmembrane channels that leak essential cellular ions
and perturb osmotic balances, which leads to cell death [2]. Azole and allylamine derivatives
are inhibitors of the ergosterol biosynthetic pathway that inhibit 14α-demethylase and squa-
lene epoxidase, respectively, eventually leading to the accumulation of toxic precursors of
ergosterol in the cell membrane and subsequent impairment of membrane integrity [3].
Another promising antifungal drug target is the fungal cell wall. Echinocandin inhibits β-
1,3-glucan synthase and impairs cell wall integrity [4]. Nucleotide biosynthesis is also, some-
what unexpectedly, an appropriate antifungal drug target. For example, flucytosine itself does
not have antifungal activity; however, after its uptake into cells, it is rapidly converted to 5-fluo-
rouracil, which inhibits DNA and protein synthesis by cytosine deaminase, absent in humans
[5]. However, all these antifungal drugs have problems, such as toxicity (e.g., hepatotoxicity
and nephrotoxicity), frequent emergence of resistance, and a limited spectrum [2–5]. To over-
come these problems, novel antifungal drug targets and drugs need to be discovered and
developed.

Can Transcription Factors Serve As Novel Antifungal Drug
Targets?
Transcription factors (TFs) are attractive as novel antifungal drug targets because they are evo-
lutionarily divergent between fungi and humans (even among fungal species) and hence can be
exploited as selective drug targets. In general, TFs have been considered poor drug targets

PLOS Pathogens | DOI:10.1371/journal.ppat.1004936 July 16, 2015 1 / 7

OPEN ACCESS

Citation: Bahn Y-S (2015) Exploiting Fungal
Virulence-Regulating Transcription Factors As Novel
Antifungal Drug Targets. PLoS Pathog 11(7):
e1004936. doi:10.1371/journal.ppat.1004936

Editor: Deborah A. Hogan, Geisel School of
Medicine at Dartmouth, UNITED STATES

Published: July 16, 2015

Copyright: © 2015 Yong-Sun Bahn. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Funding: This work was supported by National
Research Foundation of Korea grants (nos 2008-
0061963 and 2010-0029117) from MEST. The
funders had no role in study design, data collection
and analysis, decision to publish, or preparation of
the manuscript.

Competing Interests: The author has declared that
no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1004936&domain=pdf
http://creativecommons.org/licenses/by/4.0/


because drugs that target them would have to specifically disrupt protein–nucleic acid or pro-
tein–protein interactions, rather than simply binding to an active pocket in an enzyme [6].
However, accumulated evidence thus far strongly demonstrates that TFs are chemically tracta-
ble [7–9]. Natural or synthetic chemicals or peptidomimetics have been identified based on
their ability to inhibit hetero- or homo-dimerization of TFs, TF-binding DNA elements,
DNA-binding domains of TFs, or the interaction between a TF and its essential modulating
proteins, as summarized in Fig 1. Among the TF-targeting small molecules listed in Fig 1,
nutlins, which are specific MDM2-p53 antagonists, are being evaluated in the early clinical tri-
als for cancer treatment [10]. To this end, chemical biologists employ yeast two-hybrid or one-
hybrid reporter assays; fluorescence resonance energy transfer (FRET) assays; small-molecule
microarrays; or structure-based, computational, virtual, drug-protein docking simulations as
screening tools [7–9]. Besides the approach using small molecules, other approaches using
polyamides, small interfering RNAs, TF decoy oligonucleotides, and synthetic peptides have
been employed to inhibit TFs [7–9]. Therefore, along with these recent technical breakthroughs
in chemical biology fields, structural information and elucidation of the DNA-binding element
and any co-regulators for a given virulence-regulating TF could pave the way for developing
novel antifungal agents and therapeutic methods.

Fig 1. Potential mechanisms for the chemical modulation of transcription factors. Transcription factors (TFs) are illustrated as a modular structure
consisting of a DNA-binding domain (DBD) and regulatory domain (RD). MP indicates any modular protein (coactivator or masking protein). Although TFs are
assumed to be homodimers here, they could have monomeric, multimeric, heterodimeric, or other structural configurations. In this overview, chromatin-
remodeling enzymes, RNA polymerase and its multiple cofactors, all of which are required for general transcriptional induction of a gene, are not illustrated.
The function of a TF can be perturbed by inhibiting TF dimerization (A), masking the DNA binding element (B), TF DNA binding domain (C), or inhibiting
interaction between the TF and its modulator protein (D). Detailed reference information for each developing or developed TF inhibitor under each category
can be obtained from the following review articles: [7–9].

doi:10.1371/journal.ppat.1004936.g001
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HowMuch Have Transcription Factors Been Functionally
Characterized in Human Fungal Pathogens?
Due to the reasons described above, the functional characterization of fungal TFs, particularly
their role in pathogenicity, has been in high demand. To this end, several large-scale functional
genomic analyses of fungal TFs have been independently performed in two major human fun-
gal pathogens, C. albicans and C. neoformans. Nobile and Mitchell generated 83 TF mutants of
C. albicans and addressed their roles in biofilm formation [11]. Homann et al. characterized
the in vitro functions of 166 TFs under 50 different growth conditions [12]. However, neither
study directly addressed their roles in the pathogenicity of C. albicans. Subsequently, Noble
et al. generated homozygous mutant strains for 674 genes and discovered 115 infectivity-atten-
uated mutants [13]. Among these, 13 virulence-regulating TFs were discovered. In C. neofor-
mans, three large-scale functional analyses of TFs have been performed thus far. Liu et al.
generated gene-deletion mutants for 58 TFs as a part of large-scale gene deletion project and
discovered 20 TFs that are involved in the lung infectivity of C. neoformans [14]. More recently,
Jung et al. generated gene-deletion mutants for 155 non-essential, sequence-specific DNA-
binding TFs and evaluated their virulence and infectivity potentials in both insect and murine
models [15]. They discovered that 45 TFs are involved in either virulence or infectivity of C.
neoformans. Furthermore, for the purpose of constructing model-driven comprehensive tran-
scriptional networks for capsule biosynthesis in C. neoformans, Maier et al. analyzed 41 TF
mutants with altered capsule production and found 10 infectivity-related TFs [16]. Besides
these large-scale studies, a number of studies characterizing the function of individual TFs in
the pathogenicity of C. albicans and C. neoformans have been performed. Therefore, a plethora
of information is available for selecting potential TF targets that could be exploited for the
development of TF-targeting antifungal drugs.

What Transcription Factors Could Be Broad-Spectrum Antifungal
Drug Targets?
Comparison of functional TF analysis data of both C. albicans and C. neoformans provides an
insight into what kinds of TFs could be exploited as broad- or narrow-spectrum antifungal
drug targets. TFs that have been demonstrated to be involved in infectivity or virulence of C.
albicans and C. neoformans are summarized in Fig 2. The following six TFs were found to be
commonly involved in the virulence of both fungal pathogens: Crz1, Nrg1, Rim101, Bcr1/
Usv101, Zap1/Zap104, and Brg1/Gat201.

Interestingly, except Brg1/Gat201, Crz1, Nrg1, Rim101, Bcr1/Usv101, and Zap1/Zap104, all
encode C2H2 zinc finger-type TFs. Crz1 is a direct downstream target of fungal calcineurin, a
Ca2+/calmodulin-dependent protein phosphatase that modulates ion homeostasis, pH
response, cell wall integrity, thermotolerance, developmental processes, and/or the virulence of
a variety of human fungal pathogens including C. albicans, C. neoformans, and A. fumigatus
[17]. The role of Rim101 and Nrg1 is similar to that of Crz1 in cell wall integrity; deletion of
RIM101 and NRG1 alters cell wall integrity in both C. neoformans [18,19] and C. albicans
[20,21]. Furthermore, Rim101 and Nrg1 are functionally well connected for modulating cellu-
lar pH responses in human fungal pathogens. Notably, however, deletion of RIM101 reduces
the virulence of C. albicans [22] but increases the virulence of C. neoformans due to abnormal
stimulation of immune responses [18,23], suggesting that Rim101 may not be a good broad-
spectrum antifungal drug target. Rim101 negatively regulates Nrg1, which represses the expres-
sion of ENA1, a Na+/K+ transporter, in both C. albicans and C. neoformans [24,25]. In C. neo-
formans particularly, deletion of ENA1 completely abolishes virulence [24]. Therefore, their
roles in pH response and cation homeostasis may also affect the virulence of fungal pathogens.
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The function of Usv101 has been recently characterized in C. neoformans by Jung et al. [15]
and Maier et al. [16]. The usv101Δmutant had a reduced pulmonary infectivity, whereas it was
shown to have an increased lung infectivity by Liu et al. [14]. This discrepancy seems to result
from differences in the parental strains used for each study. The usv101Δmutant exhibits
increased capsule production, but decreased melanin synthesis, in the H99S and KN99α back-
grounds. The latter phenotypic trait may be responsible for its reduced infectivity. By contrast,
the CMO18 strain is inherently defective in melanin synthesis. Therefore, only capsule
enhancement could be reflected in the increased lung infectivity of the usv101Δmutant in the
CMO18 strain. The closest C. albicans ortholog of Usv101 is Bcr1, which regulates biofilm for-
mation and expression of cell-surface adherence genes [11]. Deletion of ZAP104 severely
diminishes both capsule production and mating efficiency in C. neoformans [15], among
which the former trait may affect the virulence of C. neoformans. The closest C. albicans ortho-
log of Zap104 is Zap1/Csr1. Zap1 is not only a regulator of zinc homeostasis but also regulates
filamentous growth and biofilm maturation of C. albicans in positive and negative manners,
respectively [26].

BRG1/GAT201 encodes a GATA-type TF. In C. neoformans, Gat201 regulates both capsule-
dependent and-independent antiphagocytic mechanisms in C. neoformans [27]. Deletion of
GAT201 severely reduces the lung infectivity of C. neoformans [14,15]. Surprisingly, Gat201
regulates about 16% of the C. neoformans genome, suggesting that it is one of the master regu-
lators [27]. The closest C. albicans ortholog of Gat201 is Brg1 (also known as Gat2), which
plays a major role in hyphal elongation in C. albicans by recruiting the histone deacetylase
Hda1 to the promoters of hypha-specific genes, while the cAMP/PKA-dependent removal of
Nrg1 is required for hyphal initiation [28]. Furthermore, Brg1 also promotes biofilm develop-
ment [29]. The fact that both overexpression and deletion of BRG1 attenuated the virulence of
C. albicans [30,31] suggests that orchestrated in vivo regulation of BRG1 is critical for its
pathogenicity.

Fig 2. Virulence-regulating transcription factors inCandida albicans andCryptococcus neoformans. (A) The Venn diagram demonstrates TF genes
whose deletion affects (either reduces or enhances) the pathogenicity (infectivity and/or virulence) of C. albicans andC. neoformans. List of virulence-
regulating TFs was mainly retrieved from large-scale functional genetic studies of C. neoformans andC. albicans TFs [11,13–16] and a curatedC. albicans
genome database (http://www.candidagenome.org/). (B) Virulence-related cellular functions of TFs that could be exploited as broad-spectrum antifungal
drug targets. Deletion of NRG1, BRG1/GAT201, BCR1/USV101, ZAP1/ZAP101, or CRZ1 is known to reduce the virulence of C. albicans andC. neoformans.
Deletion of RIM101 enhances the virulence of C. neoformans but reduces the virulence of C. albicans.

doi:10.1371/journal.ppat.1004936.g002
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Notably, mutants of Crz1, Nrg1, Usv101, Gat201, and Zap104 exhibit increased susceptibil-
ity to polyene or azole drugs [15], suggesting that these broad-spectrum target TFs could also
be exploited as combination therapeutic targets of antifungal drugs that are already clinically
available. However, regardless of orthologous relationship for the common virulence-regulat-
ing TFs between C. neoformans and C. albicans, the homologous region is mainly restricted to
the DNA binding region. Therefore, it will be still challenging to develop a broad-spectrum
antifungal agent that specifically targets the TFs.

How About Exploiting Narrow-Spectrum Antifungal Drug Targets?
Although broad-spectrum antifungal drugs are generally favored from an industrial perspec-
tive, they have some potential drawbacks. For example, any known or unknown commensal or
mutualistic fungal species in humans could be broadly affected, which may affect the balance
of the normal microflora and cause secondary infection with other unwanted pathogens. In
fact, C. albicans is part of the normal microflora in the gastrointestinal tract of healthy individ-
uals. Therefore, if the identity of a fungal pathogen could be determined in the early stage of
mycoses, pathogen-specific, narrow-spectrum targets could be even more optimal, and any
drugs targeting such TFs would be expected to have less toxic effects (Fig 2). Several evolution-
arily divergent, virulence-regulating TFs could be exploited as narrow-spectrum antifungal
drugs.

Among many narrow-spectrum TF target candidates, Efg1 is the best characterized in C.
albicans. Efg1, which is mainly controlled by the cAMP/PKA pathway, controls hyphal devel-
opment and white-opaque phenotypic switching, both of which are critically involved in the
pathogenicity of C. albicans [32]. In C. neoformans, HXL1, which is a bona fide downstream
transcription factor of the Ire1 kinase in the unfolded-protein response pathway, is most nota-
ble, as its structure is evolutionarily divergent from its counterpart in humans (Xbp1) and its
deletion completely abolishes the virulence of C. neoformans [33]. Another major benefit of
targeting Efg1 or Hxl1 is that their inhibition strongly enhances the susceptibility to azole
drugs [33,34], suggesting that they could be exploited as both single and combination thera-
peutic methods.

Perspectives
As large-scale functional genomics data of fungal TFs become more readily available and their
roles in fungal pathogenicity are uncovered, chemical biologists will become more interested in
developing TF-targeting antifungal agents. To provide an efficient drug screening system
exploiting virulence-regulating TFs, the following data need to be accumulated: (1) identifica-
tion of direct DNA-binding elements; (2) structural characterization and functional domain
analysis; (3) identification of any essential interacting partners, particularly co-activators; and
(4) identification of any upstream regulators and downstream effector proteins. The core con-
sensus DNA-binding motif for Crz1, CDRE (calcineurin-dependent response element), has
been shown to be present in some fungi [17]. Recently, Maier et al. identified DNA-binding
motifs for Gat201, Nrg1, and Usv101 by chromatin immunoprecipitation-sequence analysis in
C. neoformans [16]. This information will be useful in constructing any drug-screening system
for identifying direct inhibitors of TF-DNA interactions. In conclusion, a further in-depth
molecular and genetic analysis of the virulence-regulating TFs will provide new insight into
developing novel classes of antifungal agents that could resolve the problems associated with
the currently available drugs.
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