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Abstract

The heterogeneity of mRNA and protein expression at the single-cell level can reveal funda-

mental information about cellular response to external stimuli, including the sensitivity, tim-

ing, and regulatory interactions of genes. Here we describe a fully automated system to

digitally count the intron, mRNA, and protein content of up to five genes of interest simulta-

neously in single-cells. Full system automation of 3D microscope scans and custom image

analysis routines allows hundreds of individual cells to be automatically segmented and the

mRNA-protein content to be digitally counted. Single-molecule intron and mRNA content is

measured by single-molecule fluorescence in-situ hybridization (smFISH), while protein

content is quantified though the use of antibody probes. To mimic immune response to bac-

terial infection, human monocytic leukemia cells (THP-1) were stimulated with lipopolysac-

charide (LPS), and the expression of two inflammatory genes, IL1β (interleukin 1β) and

TNF-α (tumor necrosis factor α), were simultaneously quantified by monitoring the intron,

mRNA, and protein levels over time. The simultaneous labeling of cellular content allowed

for a series of correlations at the single-cell level to be explored, both in the progressive mat-

uration of a single gene (intron-mRNA-protein) and comparative analysis between the two

immune response genes. In the absence of LPS stimulation, mRNA expression of IL1β and

TNF-α were uncorrelated. Following LPS stimulation, mRNA expression of the two genes

became more correlated, consistent with a model in which IL1β and TNF-α upregulation

occurs in parallel through independent mechanistic pathways. This smFISH methodology

can be applied to different complex biological systems to provide valuable insight into highly

dynamic gene mechanisms that determine cell plasticity and heterogeneity of cellular

response.

Introduction

Gene and protein expression in response to external stimuli have been most commonly

observed at the ‘bulk’ level, resulting in average values of expression over large numbers of
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individual cells. While these studies can be informative, understanding the heterogeneity of

gene expression at the single-cell level provides increased contextual information about the

kinetics and fundamental regulatory mechanisms of these genes.[1] Additionally, single-cell

measurements are critical for applications where rare cells, or heterogeneity of gene expression

within a population of cells, can lead to drastically different biological outcomes such as cellu-

lar response to cancer treatment and host immunity to pathogen infection.[2, 3]

A number of recent advances have enabled quantitative measurements of gene expression

at the single-cell level. For most of these techniques, there is an intrinsic balance between the

number of genes analyzed and the number of cells analyzed. Techniques that examine a rela-

tively large number of genes, such as qPCR and single-cell sequencing methods, have demon-

strated a high range of gene measurements (96 for qPCR; >20,000 for sequencing) with a

limited number of single-cells examined (few-hundreds for qPCR; tens for sequencing).[4–7]

Furthermore, these techniques are generally dependent upon amplification systems to increase

the amount of signal for detection. There is no such thing as a noise-free amplifier and low

counts of copies/cell can be particularly challenging to measure.[8, 9] This difficulty of accu-

rately measuring low copy numbers is compounded by the fact that the vast majority of genes

exhibit ‘bursting’ behavior, where a large fraction of cells exhibit low expression. Although cor-

recting for the noise and bias of amplification systems at low copies is an active field,[9, 10]

sensitivity is ultimately limited by the amplifiers themselves.

Imaging-based techniques such as single-molecule fluorescence in-situ hybridization

(smFISH) are able to image thousands of cells with single-molecule sensitivity without amplifi-

cation and provide spatial information, but are generally limited to examining a few (~2–4)

genes at a time with probes whose fluorescence emission does not overlap. In smFISH, the tar-

get sequence of interest is targeted with many (~20–50) short oligonucleotide probes labeled

with a single fluorophore.[11, 12] Following hybridization, a relatively the bright diffraction

limited spot comprised from ~20–50 fluorophores can be imaged on a conventional fluores-

cence microscope. Complementary fluorescent quenchers have also been demonstrated to

reduce the background of unbound fluorescent probes where signal to noise is key, such as the

labeling of small RNA (sRNA) of limited nucleotide lengths (~200).[13] It is also worth noting

the development of barcode labeling techniques that apply successive rounds of imaging and

hybridization to increase the number of genes analyzed.[14–16]

Single-cell mRNA labeling techniques have revealed that the expression of many genes is a

stochastic process, often characterized by large distributions of content,[7, 17, 18] which have

previously been characterized as ‘gene expression noise.’ However, recent work has shown

that unlike the traditional conception of ‘noise,’ these distributions of heterogeneous expres-

sion are informative and can yield fundamental information about the sensitivity, timing, and

regulatory mechanisms of genes.[1, 19] Beyond the distribution shapes, correlations of mRNA

and protein expression at the single-cell level provide additional insight into the regulatory

mechanism (e.g. Does A make B? Does A repress B? Are A and B unrelated or controlled by

another external factor?).

Here we describe an automated platform for the acquisition and quantification of gene con-

tent at the single-cell level using smFISH and apply this system to examine the expression of

two inflammatory biomarkers, IL1β and TNF-α, in THP-1 cells following stimulation with

lipopolysaccharide (LPS), a cell wall component of Gram negative bacteria. Multiple studies

have already examined this relationship at the bulk level.[20, 21] IL1β and TNF-α are key

mediators of host immunity during pathogen infection and other inflammatory conditions.

[22] Prescription drugs targeting both IL1β and TNF-α have been demonstrated as effective

tools for the remediation of pain and symptoms in a wide range of chronic inflammatory dis-

eases such as rheumatoid arthritis[22–25], gout[22], diabetes[22, 26, 27], and Crohn’s disease
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[28]. In our single-cell studies, we found that mRNA expression of IL1β and TNF-α became

correlated in response to LPS stimulation and that IL1β and TNF-α upregulation occurred

through independent mechanistic pathways. Furthermore, one can incorporate the single cell

data into quantitative predictions about the kinetics of gene regulation, including transcription

initiation, transcription elongation, mRNA export, and mRNA decay.[29] Understanding the

heterogeneity of IL1β and TNF-α responses at the single-cell level will provide further insights

into the regulatory mechanisms of these genes and potentially lead to the development of

more effective treatments for infectious and inflammatory diseases.

Materials and methods

Acquisition hardware

A conventional wide-field microscope (Olympus IX71), arc lamp (Olympus U-RFL-T), and

high NA objective (Olympus UAPON: 1.49 numerical aperture 100X oil immersion) are used

to excite and image the fluorescent mRNA, intron, and protein data in three dimensions, with

scanning performed in XY with a 2D Thorlabs stage (BSC102) and Z-scanning performed

with a Z Piezo (Physik Instrumente, PI-721.20). Images are acquired with a Hamamatsu

ORCA-Flash 4.0 camera with appropriate exposure times, as short as 10 ms for DAPI and as

long as ~1000 ms for the mRNA-FISH stains, depending upon signal levels. All acquisition

hardware is automated in LabVIEW to acquire Z-scans across a wide XY space, resulting in

images of thousands of individual cells per hour. Optical filters are chosen to best match the

excitation/emission spectra of the fluorescence probes including DAPI (Semrock 1160B),

FITC (Semrock 3540B), Quasar 570 (Chroma 49304), CAL Flour Red 610 (Chroma 49306),

Quasar 670 (Chroma 49009), and a bright field channel. Up to five fluorescent channels as well

as a bright field image are acquired at each spatial point and the raw image data is stored for

offline analysis.

Software: mRNA counting and image segmentation

A custom MATLAB script is used to count the number of mRNA in each cell. In summary,

this routine: 1) automatically finds and segments the individual cells based upon a bright-field

image, the nuclear stain (DAPI), and the smFISH channel; 2) filters the image to help detect

near-diffraction limited spots using a Laplacian of a Gaussian filter; 3) thresholds the filtered

image data (S1 Fig); 4) fits all of the mRNA ‘spots’ using a GPU accelerated algorithm, and 5)

assigns all ‘spots’ to the segmented cells and exports data for further analysis. This process is

repeated to quantify the intron bursting sites, with different LOG filter parameters applied and

further thresholding controls implemented to ensure accurate selection of bursting sites.

Segmentation

As shown in Fig 1, our algorithm utilizes three images at each XY position (DAPI, Bright

Field, and smFISH channel) to segment and outline each individual cell. Firstly, a conventional

edge detection and watershed filter is used on the DAPI image to find and count each individ-

ual nuclei. Generally, this channel shows high signal/noise and clear edges of the nuclei, as cell

plating is done at a density enabling spatially distinct (not overlapped) nuclei. The segmenta-

tion of the nuclei serves two purposes: 1) it enables counting mRNA and intron contents inside

verses outside nuclei and 2) it labels and counts each spatially distinct nuclei as an individual

cell to begin the segmentation process. Following identification and counting of each individ-

ual nuclei, a phase congruency filter is utilized to outline the edges of the cell from the bright-

field image data. Additionally, the fluorescent channel from the smFISH channel is filtered
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(Laplacian-of-Gaussian) and thresholded to ensure that spatial locations with high gene

expression and fluorescent staining are included within the cell boundaries.Next each of the

three channels (DAPI, Bright-field, and smFISH) are individually thresholded to create three

binary images. All three binary images are added together, yielding a single image with inten-

sity values between 0–3. Anything greater than or equal to 1 is considered part of a cell and is

again thresholded to form another binary image. Some basic image transforms are performed

(dilations, erosions, median filter, and void filling), and the cells are watershed from their cen-

tral nuclei (DAPI channel) to their edges to create the final masks. Comparison of this auto-

mated process to a manual segmentation are consistent with each other, both in terms of total

number of cells counted and cellular mRNA counts, to within a few percent (S2–S4 Figs, S1

Table).

Cell culture

A human monocytic cell line THP-1 (ATCC, TIB-202) was cultured in a humidified incubator

with 5% CO2 at 37˚C in R10% medium: RPMI-1640 Medium (with glutamine, no phenol red,

Gibco) supplemented with 10% fetal bovine serum (FBS, ATCC). Cells were passaged every 5

days, and used for experiments from age 90–180 days.

RNA extraction

106 THP-1 cells were seeded into 6cm sterile dishes with 100nM phorbol 12-myristate

13-acetate (PMA, Sigma) for 48hrs at 37˚C. Cells were stimulated with 0.5mg/mL lipopoly-

saccharide (LPS, E. coli O55:B5, Sigma) and incubated for the indicated time-points up to

Fig 1. Automated cell segmentation process. The bright-field image (A) and nucleus data from a DAPI stain (B) are utilized to segment the cells. The

combination of the DAPI data, the smFISH channel, and the phase congruency filtered bright field data (C) are utilized to create a binary image (D). A

watershed from the nucleus data and the binary image are utilized to create the final segmented image (E).

https://doi.org/10.1371/journal.pone.0215602.g001
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8hrs at 37˚C. Cells were washed in PBS (Invitrogen) and lysed in 500μL RLT Buffer (Qiagen)

containing 1% beta-mercaptoethanol (Sigma). Total RNA from 106 THP-1 cells was

extracted using the RNeasy Mini Kit (Qiagen), eluted in 50μL RNase-free distilled water

(Invitrogen), and treated with DNase for 1hr at 37˚C using the Turbo DNA-free kit (Invitro-

gen). RNA concentration was measured using a NanoDrop spectrometer, and the RNA was

then stored at -80˚C.

Quantitative PCR

Quantitative PCR (qPCR) was performed in 96-well optical reaction plates (Applied Biosys-

tems) using Taqman RNA-to-CT One-Step Kit (Applied Biosystems) with the following Taq-
man qPCR probes (with FAM-MGB reporter): human TLR4 (# Hs00152939_m1, Amplicon

length: 89), human IL1-beta (# Hs01555410_m1, Amplicon length: 91), human TNF-alpha

(# Hs00174128_m1, Amplicon length: 80), human GAPDH (# Hs99999905_m1, Amplicon

length: 122), and human Actin-beta (# Hs99999903_m1, Amplicon length: 171). Each reac-

tion contained 40ng RNA in 25μL final volume. Reverse transcription was run for 30min at

48˚C.

Slide preparation and RNA smFISH staining

Chambered cover-glass slides (#1.0 borosilicate glass, 8 wells, Lab-Tek) were coated with a

sterile bovine fibronectin solution (1 μg/well in PBS, Sigma) overnight at 4˚C. 105 THP-1 cells/

well were seeded onto slides in R10% medium containing 100nM PMA for 48hrs at 37˚C.

Cells were serum-starved in RPMI-1640 Medium (no FBS) for 2hrs at 37˚C and stimulated

with 100μg/well LPS for the indicated time-points at 37˚C. Cells were washed in PBS, fixed in

paraformaldehyde (4% solution in PBS (v/v), Alfa Aesar) for 15min, washed twice in PBS, and

permeabilized in 70% ethanol in RNase-free distilled water (v/v) (ThermoFisher) for at least

1hr at 4˚C, up to 24hrs. Cells were then washed in PBS, blocked in bovine serum albumin (2%

solution in PBS (v/v), ThermoFisher) for 1hr, washed in PBS and then in RNA FISHWash
Buffer A (Stellaris) for 20 min. Unstimulated cells were washed and fixed at t = 0hrs after

serum starvation.

Cells were stained with the indicated combinations of custom-designed RNA FISH probes

(Stellaris, details in supplemental information S1 File) and/or antibodies (multiple sources,

details below). Probes and antibodies were diluted in RNA FISH Hybridization Buffer (Stel-

laris/Biosearch Technologies) to 100nM for mRNA probes and intron probes, 2μg/mL for pri-

mary antibodies, and 1μg/mL for secondary antibodies, then incubated with 100μL/well for

4hrs at 37˚C. Staining conditions were made in duplicate on each slide. Following probe

hybridization, cells were washed three times in RNA FISHWash Buffer A for 30min each time

at 37˚C, stained with 100ng/mL DAPI solution (ThermoFisher) in RNA FISHWash Buffer A
for 20min at 37˚C, and washed in RNA FISHWash Buffer B (Stellaris) for 20min. Cells were

then washed in PBS and stored in 200μL/well SlowFade Gold Anti-Fade Mountant (Thermo-

Fisher), diluted 4x in PBS, for up to 7 days at 4˚C. Unless otherwise specified, all steps were

performed at room temperature, incubations were performed with 250μL/well, and wash steps

were performed with 500μL/well.

Antibodies used in analysis include: (1) Anti-TNF-alpha, mouse monoclonal antibody

[clone 52B83] (Abcam); (2) Anti-IL1-beta, rabbit polyclonal antibody (Abcam); (3) Anti-

IL1-beta (Pro-form), rat monoclonal antibody [clone NJTEN3], APC (ThermoFisher); (4)

Anti-rabbit IgG H&L, goat antibody, Alexa Fluor 647 (Abcam); and (5) Anti-mouse IgG H&L,

goat antibody, Alexa Fluor 488 (Abcam).

Single-cell studies of infection
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Results

Kinetic response of IL1β and TNF-α over time

We applied smFISH and immunofluorescence to image the intron, mRNA, and protein

expression of IL1β and TNF-α in THP-1 cells in response to LPS stimulation over time. (Fig

2A and 2B) The single-cell distributions of gene expression are characterized by the both the

shape (Fig 2C–2F) and means of expression (Fig 3). These distributions can be fit reasonably

well by both log-normal and gamma functions, while a Poisson distribution fits the data poorly

(S5 and S6 Figs). Despite shifts in both mean and shape, the single-cell distribution of mRNA

content is indicative of ‘bursting behavior’ across all time-points.

In the first 60 min of LPS stimulation, transcription of both IL1β and TNF-α rapidly

increased to a mean of ~130 and ~170 copies mRNA/cell, respectively.(Fig 3) After 60 min,

IL1β mRNA levels continued to increase to a maximum of ~210 copies mRNA/cell at 240 min

and then tapered off to 130 copies by 480 min. In contrast, TNF-α expression decreased after

60 min to a mean of 80 copies/cell at 120 min and plateaued at that level through 480 min.

Similar trends are shown with additional biological replicates in the supporting information

(S7 Fig).

We also observed intron bursting sites (Fig 2, large green spots) that represent many (~100)

copies of a transcribed gene. Comparing the integrated fluorescence intensity of the intron

bursting sites to single intron copies leads to estimates that each bursting sites contains ~100

copies of the gene (S8 Fig). In the first 30 min, we saw a rapid increase in the number of intron

bursting sites for both IL1β and TNF-α (Fig 3). While IL1β continued to increase and peak at

~60 min with ~0.9 intron bursting sites/cell, the number of TNF-α bursting sites reached a

maximum of ~0.7 sites/cell at ~30 minutes of exposure before beginning to fall off.

The progressive maturation of each gene (intron-mRNA-protein) was examined by multi-

color labeling and imaging both mRNA and protein content over time.(Fig 4) IL1β showed a

progression of gene expression, with the upregulation of intron bursting sites, followed by

mRNA, then finally protein. While TNF-α shows a significant progression from intron burst-

ing sites to mRNA, only a modest increase in intracellular protein was observed.

Correlations over time (single-cell: mRNA-mRNA, mRNA-protein)

Beyond kinetic information, simultaneous imaging of multiple genes and multiple molecules

(including mRNA, introns, and protein) of interest allows for correlations of gene expression

at the single-cell level to be explored. Simultaneous imaging of IL1β and TNF-α mRNA (Fig 5)

was utilized to extract the correlation of mRNA expression over time (Fig 6).

As can be seen in Fig 6, initially, the correlation between IL1β and TNF-α mRNA is weak

(correlation coefficient of 0.36). However, after LPS stimulation, both genes are turned on

within a similar timescale and a positive correlation begins to emerge and become more preva-

lent. Between 4–8 hours, the genes are slowly becoming less correlated, which could be due to

the fact that while both IL1β and TNF-α are activated at similar timescales, IL1β signaling con-

tinues for sensitized cells, with overall mRNA expression peaking later.[30] We emphasize that

while there is a correlation amongst any pair of mRNAs due to the fact there is a correlation

between cell size and mRNA expression (e.g. larger cells contain more copies of a given

mRNA), this sized-based correlation is weaker than the correlation between mRNAs exhibited

with cells at peak correlation (1hr LPS) (S9 Fig). Moreover, the fact the correlation between

the two genes changes as a function of time following LPS exposure further indicates that these

correlations are not simply due to cell-size related effects.

Single-cell studies of infection
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Fig 2. Single-cell gene expression of IL1β and TNF-α. Example images of mRNA (small yellow/red spots) and intron bursting site

data (large green spots) for IL1β (A) and TNF-α (B) after 1hr of LPS stimulation overlaid with nuclear content (DAPI, blue). Each small

yellow spot is a single IL1β mRNA, each red spot is a single TNF-α mRNA, while each large green spot is an intron bursting site where

many (~100) copies of IL1β are being actively transcribed. Distributions of single-cell mRNA counts for IL1β (C) and TNF-α (D) are

upregulated with the addition of LPS. Intron bursting site distributions are also upregulated following the addition of LPS for both IL1β
(E) and TNF-α (F). Note that cells identified with 3 or 4 intron bursting sites result from errors in cell segmentation or come from cells

that are undergoing mitosis.

https://doi.org/10.1371/journal.pone.0215602.g002
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In addition to mRNA-mRNA correlations, we also can explore the correlation between

intron bursting sites for IL1β and TNF-α. We first note that the intron bursting sites of the two

genes are spatially distinct from each other (see Fig 7), which was expected given that IL1β is

encoded on chromosome 2 while TNF-α is encoded on chromosome 6. Much like the mRNA-

mRNA correlations, the single-cell correlation of intron bursting sites for IL1β and TNF-α are

initially uncorrelated (Fig 7), but display some correlation as expression of bursting sites

peaks. However, since the correlation of these bursting sites never gets particularly large, we

hypothesize that this correlation is in large part due to the similar timescale of the kinetic turn-

on for both IL1β and TNF-α.

Fig 3. Mean mRNA content (A) and intron bursting sites (B) over time for IL1β and TNF-α. Error bars are from the standard deviation of the mean

measured from three or four scans (of approximately 1000 cells) over 2 wells of biological replicates. (We note that the breadth of the single cell mRNA

distributions are much larger than the standard deviation of the mean shown as error bars above).

https://doi.org/10.1371/journal.pone.0215602.g003

Fig 4. Mean mRNA, intron bursting site, and protein content for IL1β (A) and TNFα (B) over time.

https://doi.org/10.1371/journal.pone.0215602.g004
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As shown in Fig 8, we see that correlation between mRNA-protein for IL1β steadily

increases over time. In contrast, the correlation between TNF-α mRNA and protein peaks at

~60 minutes then declines at the later time points.(Fig 9) This suggests that TNF-α has a more

rapid turnover (with a positive correlation emerging early before the mRNA has yet to decay).

We posit that the correlation of IL1β mRNA and protein, which emerges later, could be due to

the fact that it takes longer for the protein to turn on and that the IL1β mRNA may be longer

lived (and/or that IL1β transcription continues longer post-LPS stimulation).

Discussion

We have developed an automated platform for the quantification of gene expression to exam-

ine the response of IL1β and TNF-α to LPS over time at the single-cell level. Our results with

THP-1 immune cells demonstrate a rapid immune response to LPS stimulation and a complex

Fig 5. Simultaneous mRNA imaging of IL1β and TNF-α for single-cell corrolation of mRNA content. This image was taken

after 1 hr of LPS stimulation and exhibited relative high expression of both TNF-α (green) and IL1β (red).

https://doi.org/10.1371/journal.pone.0215602.g005
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relation between the genes. As expected, the first sign of gene expression for both IL1β and

TNF-α is visible at the intron bursting sites located in the cell nuclei, followed by subsequent

expression as mature mRNA predominantly in the cytoplasm. Additionally, the correlations

of mRNA-mRNA content at the single-cell level demonstrate that IL1β and TNF-α are

Fig 6. Scatter plots of IL1β-TNF-α mRNA correlation at the single-cell level. Each dot represents a single-cell). Without stimulation, the genes are weakly

correlated. Correlation peaks at 1 hour when both of these inflammation genes are highly active.

https://doi.org/10.1371/journal.pone.0215602.g006

Fig 7. Correlation of intron bursting sites. The correlation peaks at 30 minutes when gene transcription is highly active. We note that this peak in

correlation occurs earlier than the mRNA correlations. (Filtered intron image, raw data shown in S10 Fig).

https://doi.org/10.1371/journal.pone.0215602.g007
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uncorrelated without LPS stimulation, but become more correlated as gene expression peaks

(~1hr). This switch in correlation over time suggests that the external stimulus (LPS) indepen-

dently activates both IL1β and TNF-α upstream, with these genes initially having little inter-

play between each other.

IL1β and TNF-α regulate inflammatory responses in a variety of diseases and infections.

Both genes are examples of immediate-early rapidly-induced genes whose expression is

Fig 8. Scatter plot of mRNA-Protein correlation for IL1β and plot of correlation coefficient over time. Without LPS, there is a weak correlation between

mRNA and protein content for IL1β. After LPS stimulation we see an increase in correlation between the two.

https://doi.org/10.1371/journal.pone.0215602.g008

Fig 9. Scatter plots of TNF-α mRNA-Protein data and correlation plot over time.

https://doi.org/10.1371/journal.pone.0215602.g009
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thought to be controlled by a paused RNA polymerase II poised near the transcription start

site waiting for activation by specific stimuli.[30] However, IL1β and TNF-α have been

reported to exhibit different mechanisms for induction and tolerance in host immune

response. [30] In response to stimulus, TNF-α is thought to be only transcribed once, while

IL1 β is transcribed multiple times.[25] Upon subsequent LPS exposure, tolerized TNF-α
remained in an unresponsive state, whereas IL1β resumed transcription.[30] These observa-

tions are consistent with our finding that TNF-α mRNA content peaks shortly after LPS expo-

sure (1 hr), while IL1β has a similar initial reaction, but continues to be transcribed and peaks

significantly later in time (4 hrs). TNF-α has been reported to display rapid induction and

complete transcription shut down within a few hours of LPS treatment.[30] In contrast IL1β
was also rapidly induced, but not completely switched off, with continued expression seen for

many hours post-stimulation. Adamik et al further suggested that sustained expression of IL1β
resulted from continuous polymerase engagement and not from increased mRNA stabiliza-

tion. This interpretation agrees with our observations (Fig 3), which could be explained by the

fact that IL1β remains constitutively active after the first ~1hr.

The single-cell distributions of both mRNA and intron bursting sites appeared to exhibit

‘bursting’ behavior, characterized by distributions that are similar to an exponential decay,

with long tails of relatively rare highly response cells. While the means and decay rates of these

distributions change over time (Figs 2 and 6), even at high expression, the basic bursting shape

persists. This could suggest that the genes are never fully ‘ON,’ but instead they are still burst-

ing with a different kinetic rate (more time in ON state compared to no LPS).

The absolute value of mRNA expression change is similar to that quantified with qPCR

(S11 Fig), while the shapes of the distributions reflect bursting behavior, which suggests that,

even when turned ‘ON,’ the genes are produced in a ‘bursting mode’ as opposed to constitutive

expression. While bursting sites around the transcription site were readily visible, lone introns

for either TNF-α or IL1β were rare. This suggests that the splicing of IL1β and TNF-α occurred

rapidly around the same spatial location as the transcription site. Additionally, it should be

noted that the spatial location of the intron busting sites for both genes, particularly IL1β, were

generally near the edge of the nucleus. This location could be strategically positioned for the

rapid transmission of the mRNA into the cytoplasm.

Current drugs are being designed to target IL1β and TNF-α at the protein level. While this

is a reasonable and sensible effort, recent work has demonstrated the high potential of target-

ing RNA.[31] Compounds that have a potential to block transcription at the intron/mRNA

level could prove to be significant breakthroughs as therapeutics, and could be successfully

tested in an integrated platform such as ours.

We note the single-cell methodologies developed and exploited herein can be used for ultra-

sensitive measurement of rare genes of interest. While it can be easy to lose the signal from

such “outlier” cells/genes in a bulk measurement that requires amplification techniques, our

platform allows for direct quantification of such rare events.

Conclusion

An automated platform for acquisition and quantification of gene expression at the single-cell

level has been developed and demonstrated. The kinetic expression of IL1β and TNF-α con-

tent is measured with the quantification of intron bursting sites, single-molecule mRNA

counting, and protein content. When exposed to LPS, we see a rapid ON time of intron burst-

ing sites (~15 min) followed by an increase in mRNA expression (max at 1hr TNF-α, 4hr

IL1β). While initially uncorrelated, the mRNA expression of IL1β and TNF-α at the single-cell

level become correlated as gene expression peaks, a result that suggests that the regulation of

Single-cell studies of infection

PLOS ONE | https://doi.org/10.1371/journal.pone.0215602 April 19, 2019 12 / 16

https://doi.org/10.1371/journal.pone.0215602


each gene is independent of each other. This automated platform has the potential to be

applied to a variety of single-cell assays where ultrasensitive and quantitative measurement of

genes is critical such as cancer cell development, drug response, and persistent bacterial

infection.

Supporting information

S1 Table. Segmentation comparison: Manual vs automated. The comparison of manual and

automated segmentation processes shows that each yield similar IL1β- TNFα mRNA-mRNA

correlation plots, similar distribution shapes, and similar values of mRNA content.

(DOCX)

S1 File. RNA FISH probes. Stellaris custom RNA FISH probe sequences and their fluorescent

conjugates are detailed in this file. All probes are specific to mRNA unless otherwise stated.

(DOCX)

S2 File. Excel file containing raw data to recreate Fig 2, Figs 3 and 4, Figs 6–9.

(XLSX)

S1 Fig. Selection of smFISH threshold. Following Laplacian-of-Gaussian filtering on the raw

image data, the number of spots in the image across over a wide range of thresholds are calcu-

lated and plotted (Above). Additionally, the derivate of this plot (the change in spots/Thresh-

old) is calculated to further evaluate the threshold value where the number of spots/threshold

begins to become more constant. Beyond the above plots, the threshold values are examined

by eye (overlap selected spots with raw image data) to confirm that a suitable threshold value

has been selected. Finally, post-processing the fits of the spots can be utilized to gate out spots

that have poor fit quality (such as spots with too low/high amplitude/fluorescent intensity, or

too narrow/wide a width).

(TIF)

S2 Fig. Segmentation comparison: Manual vs automated mRNA scatter plots. Scatter plot

of single-cell mRNA correlation between IL1β and TNF-α with automated (blue) and manual

(red) segmentation.

(TIF)

S3 Fig. Segmentation comparison: Manual vs automated mRNA histograms. Histograms of

single-cell mRNA expression for IL1β and TNF-α with manual and automated segmentation

are consistent, with minimal deviations resulting from the segmentation process.

(TIF)

S4 Fig. Demonstration of cell boundaries determined by automated cell segmentation.

Example of automated segmentation, IL1β, TNF-α, and DAPI after 1 hour of LPS Stimulation.

(TIF)

S5 Fig. Fits to the single cell mRNA distributions (no stimulation). Fits of single-cell distri-

butions shown in Fig2 without LPS. These single-cell distributions are poorly characterized by

a Poisson distribution and reasonably characterized by both Log-normal and Gamma distribu-

tions.

(TIF)

S6 Fig. Fits to the single cell mRNA distributions (after LPS stimulation). Fits of single-cell

distributions shown in Fig 2 with LPS. These single-cell distributions are reasonably character-

ized by both Log-normal and Gamma distributions. The Poisson distribution poorly fits the
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single-cell mRNA data.

(TIF)

S7 Fig. Reproducibility of mRNA content vs time. Three additional biological replicates of

IL1β and TNFα content. In each biological replicate (A, B, and C), cells are seeded at various

times across a few months of experiments. We see consistency across the biological replicates,

both in terms of absolute mRNA counts and the time of peak expression.

(TIF)

S8 Fig. Intron bursting site size. Comparison of intron bursting sites (A,C) to single-mRNA

copies (B,D). Gaussian fit of the intensity of bursting sites are ~20 times brighter (amplitude)

and ~2–4 times wider (sigma) than single mRNA copies. Integrated intensity under curve is a

factor of ~100 larger for bursting sites than single-mRNA copies.

(TIF)

S9 Fig. mRNA-Area correlation. The correlation between cell area and mRNA counts for

IL1β and TNFα. While there is come correlation between area and mRNA content, it is not as

strong as peak mRNA-mRNA correlations (R = 0.80). Additionally, we see that the mRNA-

mRNA correlations change over time.

(TIF)

S10 Fig. Raw intron image: For comparison to filtered intron image. Raw unfiltered image

for intron-staining (left) and the correlation of intron bursting sites over time for IL1β and

TNF-α.

(TIF)

S11 Fig. Comparison between smFISH and qPCR. While there are some discrepancies in the

absolute value, we see general agreement between the bulk qPCR and mRNA data from single-

cell smFISH measurements.

(TIF)
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