
Morphology-Based Deep Learning
Approach for Predicting Osteogenic
Differentiation
Yiqing Lan1,2,3, Nannan Huang1,2,3, Yiru Fu1,2,3, Kehao Liu1,2,3, He Zhang1,2,3, Yuzhou Li1,2,3*
and Sheng Yang1,2,3*

1Stomatological Hospital of Chongqing Medical University, Chongqing, China, 2Chongqing Key Laboratory of Oral Diseases and
Biomedical Sciences, Chongqing, China, 3Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher
Education, Chongqing, China

Early, high-throughput, and accurate recognition of osteogenic differentiation of stem cells
is urgently required in stem cell therapy, tissue engineering, and regenerative medicine. In
this study, we established an automatic deep learning algorithm, i.e., osteogenic
convolutional neural network (OCNN), to quantitatively measure the osteogenic
differentiation of rat bone marrow mesenchymal stem cells (rBMSCs). rBMSCs stained
with F-actin and DAPI during early differentiation (day 0, 1, 4, and 7) were captured using
laser confocal scanning microscopy to train OCNN. As a result, OCNN successfully
distinguished differentiated cells at a very early stage (24 h) with a high area under the curve
(AUC) (0.94 ± 0.04) and correlated with conventional biochemical markers. Meanwhile,
OCNN exhibited better prediction performance compared with the single morphological
parameters and support vector machine. Furthermore, OCNN successfully predicted the
dose-dependent effects of small-molecule osteogenic drugs and a cytokine. OCNN-
based online learning models can further recognize the osteogenic differentiation of
rBMSCs cultured on several material surfaces. Hence, this study initially demonstrated
the foreground of OCNN in osteogenic drug and biomaterial screening for next-generation
tissue engineering and stem cell research.
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INTRODUCTION

BMSCs are the most frequently used subtype of stem cells with a vigorous proliferative and
differential capacity, making them a promising tool in tissue engineering, biomedicine,
biomaterials, and many other fields (Mauney et al., 2005; Guan et al., 2012; Chiu et al., 2014;
Yang et al., 2017; Farokhi et al., 2018; Qi et al., 2020). Assessing the osteogenic differentiation of
BMSCs is of great importance for these applications, but is challenging because of the time-
consuming process and low temporal-spatial resolution of conventional methods. For example,
polymerase chain reaction and western blot only assess the bulk expression level, while histochemical
staining, such as Alkaline phosphatase staining (ALP) and Alizarin red staining (ARS), often requires
14 days, 28 days, or even longer to induce observable biochemical changes (Waisman et al., 2019),
which hinders the high-throughput screening of small molecules, cytokines, and biomaterials.
Hence, an accurate, early-stage, and single-cell resolution method is urgently required to assess the
osteogenic differentiation of BMSCs for next-generation biomedical applications.
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During osteogenic differentiation, BMSCs tend to change
from a spindle-like shape to a polygon-like shape and are
enlarged in vitro (Fan et al., 2012), while the arrangement or
texture of the cytoskeleton also manifests distinct alterations
(Treiser et al., 2010; Oei et al., 2019). On the one hand, the
osteogenesis process is accompanied by augmented cell volume
and programmed cytoskeleton remodeling. On the other hand,
the direct modulation of cellular adhesive areas and cytoskeletal
texture substantially influence osteogenic differentiation
(McBeath et al., 2004; Engler et al., 2006; Zhang et al., 2015).
For instance, our previous studies demonstrated that the
regulation of the cytoskeleton by surface topography directly
mediates cell differentiation and is associated with the activation
of multiple adhesion and morphological proteins, such as FAK,
RhoA, and YAP (Zhang et al., 2015; Zhang et al., 2016; Li et al.,
2019). Therefore, the cellular morphology of BMSCs provides
invaluable information for osteogenic differentiation prediction
(Thomas et al., 2002; Marklein et al., 2016).

The cellular morphology data comprise a large number of
high-dimensional image features and are challenging for
prediction methods. Previously, machine learning models,
including the Bayesian linear regression (Cutiongco et al.,
2020) and support vector machine (SVM) (Chen et al., 2016;
Yelin et al., 2019; Chen et al., 2021), were successfully applied to
predict early-stage cell osteogenic differentiation based on the
cytoskeletal morphology of biomaterials with different micro-
environmental cues. Nonetheless, the data processing and
parameter optimization of conventional machine learning
require a high degree of specialized knowledge and
considerable human efforts. Fortunately, novel deep learning
methods can avoid these manual processes and achieve a high
performance (Moen et al., 2019), which has been successfully
applied to predict cellular senescence (Kusumoto et al., 2021),

neural stem cell differentiation (Zhu et al., 2021), and screening
drugs (X. Yang et al., 2019).

Herein, as illustrated in Figure 1, we established and trained a
deep learning model, called osteogenic convolutional neural
network (OCNN), on the high-content laser scanning confocal
microscope (LSCM) images of the rBMSCs during the early stages
of osteogenic differentiation. The predicted osteogenic scores
(POS) obtained from OCNN were verified using traditional
biomarkers. Subsequently, we compared the performance of
OCNN with single-cell morphological parameters and support
vector machine models. Lastly, we evaluated the performance of
the OCNN and its modification on the osteogenic differentiation
predictions of the rBMSCs cultured with different soluble drugs
and on different biomaterial substrates. We hope that this study
could preliminarily demonstrate the promising potential of deep
learning in stem cell research, drug screening, and novel
biomaterial development.

MATERIALS AND METHODS

Fabrication of Materials and
Characterization of Surface Topography
Titanium plates with different nano-topographies were fabricated
via sandblasting and acid etching, as previously described in our
work (Li et al., 2019). Pure titanium plates (diameter of 14 mm
and thickness of 1 mm, Chongqing University, Chongqing,
China) were polished to 600 grit. Smooth surfaces were
treated with 30 wt% HNO3 for 5 min. Micro surfaces were
created by blasting with 100 l m aluminum oxide particles and
incubated in 5 NHCl for 12 h and 30 wt%HNO3 for 5 min. Nano
surfaces were manufactured via treatment with a 50/50 v/v%
solution of 30% H2O2 and 2 N H2SO4 for 2 h. Titanium plates

FIGURE 1 | Schematic flow chart of the training, validation, comparison, and application procedures and outcomes of OCNN in this study.
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were ultrasonically washed with dd water and sterilized with
75 wt% ethanol and ultraviolet light.

The substrates were coated with hyaluronic acid (HA),
collagen I (Col-I), poly-dopamine (DOPA), and amyloid fibrils
as previously described briefly. The glass coverslips were cleaned
ultrasonically in ethanol and then rinsed with deionized water.
After air-drying and UV irradiation for 30 min, 1 ml aqueous
solution of HA (1 mg/ml), Col-I (0.1 mg/ml, PBS), DOPA (2 mg/
ml, 10 mM Tris-HCl, pH 8.5), and lysozyme (1 mg/ml, 50 mM
TCEP) were poured onto the substrate and allowed to react for
3 days, 3, 16, and 2 h, respectively. The topography of the
prepared titanium plates and glass coverslips with different
surface coatings was observed using high-resolution scanning
electron microscopy (SEM, Hitachi S-4700).

Cell Culture
The rBMSCs were collected from the bone marrow of 4–6-week-
old female rats as previously described (Ren et al., 2021) and
identified by flow cytometry and differentiation phenotypes
(Supplementary Figure S1). The cells were resuspended in
complete medium and transferred to a Petri dish, cultured at
37°C with 5% CO2. The medium was changed after 1 day and
2 days respectively. After achieving confluency of 80–90%, the
rBMSCs were digested, counted, and seeded on substrates with an
initial cell density of 5,000–10,000 cells/cm2. In addition, they
were cultured with Dulbecco’s Modified Eagle’s medium-low
glucose containing 10% FBS and 1% penicillin/streptomycin
and supplemented with PBS (basic medium, BA) or 10 nM
dexamethasone, 10 mM β-glycerophosphate, and 50 μM
ascorbic acid (osteogenic medium, OS). For the glass
coverslips, the rBMSCs were cultured for 0, 1, 4, and 7 days.
Whereas for the drug screening assays, they were cultured for 1
and 14 days, and for the biomaterial assays, they were cultured for
1 day. All animal operations were performed in accordance with
the guidelines of the Animal Care and Use Committee of China
and were approved by the ethics committee of Chongqing
Medical University Affiliated Hospital of Stomatology (Ethic
No. 2021033).

Data Acquisition and Pre-processing
The rBMSCs were washed with PBS three times, fixed with 4%
formaldehyde in Dulbecco’s phosphate-buffered saline (D-PBS),
and washed repeatedly. Subsequently, they were permeabilized in
0.2% Triton-X100 (PBS) for 5 min and washed with PBS three
times. Next, they were soaked in staining buffer containing
0.33 mM Alexa Fluor 488 phalloidin (Yisheng, China) and
10 mg/ml bovine serum albumin (PBS) for 1 h. After washing
three times with PBS, nuclei were stained with 0.3 mN 40, 6-
diamidino-2-phenylindole (DAPI, Beyotime, China) for 3 min
and then rinsed with PBS. Samples were observed and imaged
with LSCM at a magnification of ×200 (Leica TCS SP8,
Germany), and each 2-D image was taken at the maximum
projection of the z-stack and saved as a 1,024 × 1024-pixel
RGB image in the Tiff format.

For model development, single-cell images were cropped from
the original LSCM images (5–10 cells per image) to obtain
2,916 single-cell images, approximately 500–600 images in

each group (0, 1, 4, and 7 days with BA/OS). Notably, cells
adjunct to other cells were abandoned because of the potential
influence of cell-to-cell contact (Chen et al., 2016). The
fluorescence intensity was globally normalized to correct the
batch effect from different biological repeats.

rBMSC Osteogenic Differentiation Assays
An mRNA was extracted by lysing the cells with TRIzol (Takara,
Japan) and incubated with chloroform for 10 min, followed by
centrifugation at 12,000 rpm for 15 min at 4°C. Then, it was
purified using ethanol, resuspended in DEPC water (Biosharp,
Japan), and quantified using a Nanodrop spectrophotometer
(Thermo Scientific, Waltham, United States). Next, it was
reverse transcribed to cDNA by using the RNAiso Plus
reagent kit (Takara) and amplified using the ProFlex PCR
system (Thermo Scientific). Finally, the genes expression levels
were quantified using the Power SYBR Green PCR master mix
(Takara) in a real-time PCR machine (Applied Biosystems 7500,
Life Technologies, Waltham, United States). The primer
sequences used in this study are listed in Supplementary
Table S1.

For flow cytometry, the rBMSCs were digested, diluted with
PBS, and stained with FITC Mouse Anti-Rat CD90 (Biolegend,
San Diego, United States) and FITC Mouse Anti-Rat CD44
(Biolegend).

For immunofluorescence staining, they were fixed with 4%
formaldehyde, permeabilized with 0.2% Triton-X100, and
washed repeatedly. Then, they were blocked using 3% donkey
serum for 1 h and incubated overnight with a Runx-2 primary
antibody (1:200, Abcam, United Kingdom). After washing with
PBS three times, cells were incubated with the fluorescent
secondary antibody (1:350, Alexa 647, Jackson
ImmunoResearch, West Grove, United States) for 1 h. Finally,
the cytoskeleton and nuclei were stained according to the above-
mentioned procedure.

For drug screening, the rBMSCs were treated with an OS
medium accompanied by incremental concentrations of
alendronate sodium (1, 5, or 10 μM), simvastatin (0.1 μg/ml,
0.5 μg/ml or 1 μg/ml), 1α, 25-dihydroxyvitamin D3 (1, 10 or
100 nM) as well as BMP-2 (50 ng/ml, 100 ng/ml and 200 ng/ml).
After cultivation for 14 days, the cells were fixed with 4%
paraformaldehyde for 10 min and washed with PBS. Then,
they were stained with 1% Alizarin Red S (Solarbio) for
10 min and washed twice with PBS. The stained cells were
captured using a stereomicroscope (Zeiss SteREO
Discovery.V12, Germany) and quantified using ImageJ (NIH
Image, Bethesda, MD).

Development of Convolutional Neural
Networks
To develop OCNN, three classic deep learning models with pre-
trained weights (ImageNet), including VGG 16 (Simonyan and
Zisserman, 2014), Inception V3 (Szegedy et al., 2016), and
ResNet50 (He et al., 2016), were screened to select the
convolutional core. The transfer learning method was used to
extract the rBMSC features, and a binary classifier with softmax
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FIGURE 2 | Development and validation of a conventional, static, and baseline model (OCNN) for sensitive high-throughput and automatic osteogenesis prediction
on flat coverslips. (A) Visualization of diverse single-cell datasets. The styles from the network for all images in the cell dataset were embedded using t-SNE. Each point
represents a different LSCM image. Grey: basic (BA) group; light to deep blue: osteogenic (OS) group on days 0,1,4, and 7. Each photo: green, F-actin; blue, nuclei.
Scale bar, 50 µm. (B) 10-fold cross-validated ROC curves of Inception V3 at four-time points (validation dataset). The gray line represents each independent
validation; the red line represents the average ROC; the light red area represents the 95% confidence interval. (C) A randomly selected new test dataset was used to
evaluate the classification performance of OCNN (50 images of BA/OS group each). ROC curves at four-time points. The orange line represents the independent
validation. (D) The saliency map showed key identification regions for the prediction of BA or OS cells.
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FIGURE 3 | OCNN highly correlated with conventional biochemical markers and performed better than single morphological parameter and support vector
machine in osteogenic differentiation prediction. (A)Real-time PCR gene expression levels ofOsx,Runx2 relative toGAPDH in rBMSCs cultured in BA/OS for 0, 1, 4, and
7 days (B) BA/OS Images of 0, 1, 4, and 7 days were classified and scored according to OCNN. (C) Flow cytometry determination of the MSC-specific surface markers
(CD44, CD90) in OS groups at different induction times (0, 4, 7 days). (D) Images in the OS group of 0, 4, and 7 days were classified and scored according to
OCNN. (E) rBMSCs’ immunofluorescence staining of Runx2 protein cultured in both types of the medium on day 4. Green: F-actin; Blue: Nuclei; Red: Runx2 protein.
Scale bar: 100 µm. (F)Using the Nuclear/cytoplasm intensity ratio of Runx2 protein to define the extent of single-cell osteogenic differentiation and compared with OCNN

(Continued )
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activation was added to the top of the models for predictions. The
training process was conducted on a computer with an Intel Core
i7-9700F, 32 GB RAM, and an NVIDIA GeForce RTX 2080Ti
and implemented with Keras v.2.2.4 (http://github.com/fchollet/
keras). Detailed information about the training of convolutional
neural networks can be found in Supplementary Table S2.

During training, single-cell images were randomly distributed
into training and validation sets at a ratio of 9:1. Conventional
data augmentation was performed to reduce overfitting
(Supplementary Figure S2). The Adam optimizer was
adopted, and hyper-parameters (dropout ratio, learning rate,
and batch size) were optimized to improve the performance.
Ten-fold cross-validation was used to evaluate the prediction
performance of the three models. For online learning, OCNNwas
further supplemented with small training samples (50–100) from
different biomaterials.

To quantitatively measure the osteogenic differentiation in a
linear space, predicted osteogenic score (POS) was proposed by a
logit transformation of the final model output p for data scaling,
similarly to a previously described method to quantify the cell
senescence (Kusumoto et al., 2021):

POS � ln
p

1 − p

Single-Cell Morphological Parameters and
Support Vector Machines
Cell morphology was measured on single-cell images using an
open-source software Cellprofiler (the Broad Institute of Harvard
and MIT, United States) (Lamprecht et al., 2007), yielding
25 single-cell morphological parameters. Six representative
morphological parameters were selected by correlation analysis,
including three shape parameters (area, perimeter, aspect ratio)
and three texture parameters (contrast, correlation, and entropy).

Support vector machines were constructed using the Sci-kit
package in Python. Feature dimensions were reduced to three
from the morphological parameters using the linear kernel
support vector machine technique. Hyperparameter
optimization was conducted using the wrapping algorithm.

Evaluation of Model Performance
To evaluate the model performance, the true positive (TP), true
negative (TN), false positive (FP), and false negative (FN) values
were counted. Then, six measurements, including accuracy,
sensitivity, specificity, precision, recall, and F1-score, were
calculated as follows:

Sensitivity � TP
TP + FN

Specif icity � TN
TN + FP

Accuracy � TP + TN
TP + FP + TN + FN

Precision � TP
TP + FP

F1 − score � 2pPrecisionpRecall
Precision + Recall

The ROC curve was plotted based on the sensitivity and
1—Specificity scores, and the AUC value was computed.

Statistical Analysis
The statistical charts were created using Origin 2018 (OriginLab,
Northampton, United States), and the data were presented as
mean ± standard deviations. For comparison between two
groups, the unpaired Student’s t-test was used, and a value of
<0.05 was considered statistically significant. For correlation
analysis, a value of <0.05 was considered statistically significant.

RESULTS

Morphological Characteristics of rBMSCs
Under LSCM
To investigate the morphological changes of the rBMSCs during
the early stages of osteogenic differentiation, we collected the
rBMSCs cultured in osteogenic (OS) and basal (BA) mediums
and then took LSCM images on days 0, 1, 4, and 7. As shown in
Figure 2A, via the naked eye observation, the cellular shape
changed from spindle-like to more extensive, and the
cytoskeleton arrangement seemed to become more complex
and crossed after induction for 4 days. However, by depositing
25 objective morphological parameters into two-dimensional
t-SNE (Van der Maaten et al., 2008), we found a clear left-to-
right shift of group OS starting from day 1, while group BA
exhibited a more randomized distribution, which partially
overlapped with the OS group.

To recognize the distinct but overlapping underlying pattern
of the cellular morphology, we next developed OCNNmodels via
the transfer learning of single-cell images using three classical
deep learning models, VGG-16, Inception V3, and ResNet-50, as
shown in Supplementary Figure S3 and Supplementary Table
S3. Based on the general performance, we selected the pre-trained
Inception V3 as the convolutional core of the OCNN to perform
our follow-up studies. As shown in Figure 2B, the OCNN showed
average AUCs of 0.936, 0.953, and 0.967 on days 1, 4, and 7,
respectively, in 10-fold internal cross-validation. To validate
the model generalization ability, OCNN was further tested on
an independent, external dataset from biological repeats at

FIGURE 3 | predicting score on day 4. Data are shown asmean. p values by two-sided Student’s t-test. *: p＜ 0.05; ***: p＜ 0.001. (G) Schematic diagram of Cellprofiler
software for cell localization and cell morphology capture. (H) Cell morphology was measured on the cell images of the validation dataset of 0, 1, 4, and 7 days using
CellProfiler software (United States), and six representative morphological parameters were selected: area, perimeter, aspect ratio (shape); contrast, correlation, and
entropy (texture). Box plots were used to observe the differences between the BA/OS groups on the six parameters. (I) ROC curves of deep learning, support vector
machines (SVM), and six parameters, comparing the classification performance of four-time points.
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four-time points, which also showed satisfactory AUCs of 0.919,
0.850, and 0.906 on days 1, 4, and 7, respectively (Figure 2C). The
AUCs on day 0 were 0.555 (internal validation) and 0.520
(external validation), which is expected, since day 0 implies
that cells had not received any treatment.

To better understand the morphological differences
recognized by OCNN, we visualized the important regions
that are relevant to the predictions via a Saliency Map
(Simonyan, Vedaldi, et al., 2014), which reflected the
activation of specific pixels upon specific predictions.
Interestingly, as shown in Figure 2D, the nucleus and peri-

nucleus cytoskeleton were mostly activated for the BA
predictions, while more cytoplasmic cytoskeletons were
activated in the OS prediction, probably reflecting the
importance of the cytoskeleton in stemness or osteogenic
differentiation. Nuclear morphology is an important indicator
of cell function and is correlated with osteogenic differentiation
via lamin A/C under external forces, nano-topography, and
chemical coatings (Werner et al., 2017). On the other hand,
the strong stress fibers of the cytoskeleton drew considerable
concern in the OS group, as revealed in previous findings (Engler
et al., 2006) that the intensity and arrangement of F-actin and

FIGURE 4 |OCNN for drug screening. (A) The predicted osteogenic score (POS) of the rBMSCs cultured with different concentrations of simvastatin on day 1 and
Alizarin red staining on day 14 was quantified by ImageJ. Linear fits were performed using the POS and Alizarin red staining areas to calculate the correlation, p＜ 0.05.
(B) The predicted osteogenic score (POS) of the rBMSCs cultured with different concentrations of alendronate sodium on day 1 and Alizarin red staining on day 14 was
quantified by ImageJ. Linear fits were performed using the POS and Alizarin red staining areas to calculate the correlation, p＜0.05. (C) The predicted osteogenic
score (POS) of the rBMSCs cultured with different concentrations of VD3 on day 1 and Alizarin red staining on day 14 was quantified by ImageJ. Linear fits were
performed using the POS and Alizarin red staining areas to calculate the correlation, p＜0.05. (D) The predicted osteogenic score (POS) of the rBMSCs cultured with
different concentrations of BMP-2 on day 1 and Alizarin red staining on day 14 was quantified by ImageJ. Linear fits were performed using the POS and Alizarin red
staining areas to calculate the correlation, p＜0.05.
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non-muscle myosin-II plays an important role inMSC osteogenic
differentiation. Considered together, these data showed the
plausibility of the binary prediction models based on deep
learning trained via nucleus and cytoskeleton morphology
images.

It was worth noting that a small proportion of the images were
incorrectly classified when using the OCNN, indicating that there
may be some degree of differences in the level of single-cell
differentiation within the stem cell population under
nonosteogenic and osteogenic induction conditions, which
cannot be classified via deep learning (Supplementary
Figure S4).

Biochemical Changes and
Morphology-Based Predictions During
Osteogenic Differentiation Compared with
OCNN
Next, we analyzed the consistency between OCNN predictions
and conventional biochemical measurements, including qRT-
PCR, flow cytometry, and immunofluorescence staining. To

compare in a one-dimensional linear space, we came up with
the concept of the predicted osteogenic score (POS), a logit
transformation value from the OCNN output for each single-
cell image, as a modified method from previous studies.

As illustrated in Figure 3A, we first compared the POS with
the mRNA expression level of two osteogenic markers, osterix
(Osx) and runt-related transcription factor 2 (Runx2), on days 0,
1, 4, and 7. From the result, there were no significant differences
in both Runx2 and Osx gene expression from the BA/OS groups
on days 0 and 1. The Osx gene expression in the OS group was
upgraded on day 4 (n � 3, p < 0.05) and day 7 (n � 3, p < 0.05),
and the Runx2 gene expression in the OS group was upgraded on
day 7 (n � 3, p < 0.05). In comparison, the POS was significantly
upregulated from day 1 (n � 50 cells from three biological repeats,
p < 0.001), indicative of the early sensitivity of OCNN
(Figure 3B).

Second, to scrutinize the POS at the single-cell level, we
compared it with the flow cytometric analysis of the cell
surface markers in the OS group on days 0, 4, and 7. On
day 0, the rBMSCs had a high expression of mesenchymal
stem cell marker CD90, which decreased with time; however,

FIGURE 5 |OCNN prediction and OCNN-based online learning for rBMSCs on titanium surfaces. (A) (D) (G) (J) SEM images of control and three different titanium
surfaces: smooth, micro, and nano, scale bar � 300 nm. (B) (E) (H) (K) LSCM images of the rBMSCs on control and three different titanium surfaces: smooth, micro, and
nano. Basal medium (BA), osteogenic supplementmedium (OS). Induction time: 24 h; green: F-actin; blue: nuclei. Scale bar, 100 µm. (C) (F) (I) (L)Comparison of OCNN
prediction and OCNN-based online learning results using ROC curves. Black line: OCNN prediction; red line: OCNN accompanied with online learning.
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there were still partial overlaps with the results of day 0 (Dhaliwal
et al., 2016) (Figure 3C). This decreasing trend was more evident
for CD44 than CD90. Similarly, the POS also showed a right-shift
tendency, similar to flow cytometry (Figure 3D).

Then, to visually inspect the POS, we compared it with the
immunofluorescence staining of Runx2 at the protein level on
day 4 (Figure 3E), since the spatial distribution of this nuclear
transcription factor could reflect the osteogenic differentiation (Z.
Chen et al., 2019). Compared with group BA, the red staining of
Runx2 in the OS group was more concentrated in the nucleus,
which is consistent with previous findings. Subsequently, we
performed a correlation analysis of the Runx2 nuclear/
cytoplasm ratio and POS (Figure 3F) and found a significant
correlation (p < 0.05) with a moderate relationship (r � 0.4978).
Based on these results, the POS is consistent with conventional
biochemical markers; thus, laying the biological basis for further
applications.

Single-cell morphological parameters have been widely
suggested to be associated with cell phenotypes (Bakal et al.,
2007; Prasad and Alizadeh, 2019; Wu et al., 2020), and some
machine learning methods based on these features have been
recently developed to predict osteogenesis. We extracted 25
morphological parameters (Figure 3G; Supplementary Figure
S5) and selected six typical features that were significantly
correlated with the cell phenotypes (Figure 3H;
Supplementary Figure S6), suggesting the upregulation of the
cell area, perimeter, cytoskeleton correlation, and entropy, as well
as the aspect ratio and cytoskeleton contrast during osteogenesis.
Support vector machine models were then developed based on
these parameters.

We then compared the prediction performance between
single-cell morphological parameters, support vector
machine, and OCNN in a biologically independent dataset
(n � 20) (Figure 3I). As expected, no model could
distinguish cells in the two groups on day 0. Impressively,
OCNN achieved a fantastic AUC of 0.998 on day 1, which
was higher than that of the support vector machine (AUC �
0.807) and single-cell morphological parameters (AUCs ranged
from 0.579 to 0.775). The advantage of the OCNN was
maintained at day 4 (AUC � 0.993) and day 7 (AUC � 0.972)
compared to those of other methods. It is worth noting that
three highly correlated morphological parameters during every
support vector machine training process were displayed: area,
perimeter, and contrast on day 0; area, aspect ratio, and
perimeter on day 1 and day 4; and area, perimeter, and
entropy on day 7. From the results, it can be concluded that
the area and perimeter are significant indicators for
distinguishing cellular morphology. In addition, these results
further support the idea of using deep-learning-based models in
cell phenotype analysis.

Screening of Osteogenic Small Molecule
Drugs
We examined the application potential of OCNN in predicting
the osteoinduction ability of small molecule drugs or cytokines at
an early stage (Figure 4). First, we examined the effects of

simvastatin (Figure 4A), whose osteogenic induction ability
was reported by enhancing the Rho/actin/cell rigidity pathway
as well as increasing the actin filament organization and cell
rigidity (Tai et al., 2015). We calculated the POS from the
rBMSCs supplied with 0.1, 0.5, and 1 μg/ml simvastatin on
day 1 (n ≥ 50), and alizarin red staining was carried out on
day 14. The Pearson analysis revealed a significant correlation
(p < 0.05) with a very strong relationship (r � 0.9407) between the
OCNN prediction at the early stage (day 1) and the final
osteogenesis in vitro.

Second, we examined the dose-dependent osteogenic
induction ability of the two small molecules via other
biochemical mechanisms (Figures 4B,C). Alendronate sodium
affected the osteogenic differentiation by activating ERK and JNK
(Fu et al., 2008), while 1α, 25-dihydroxyvitamin D3 (VD3)
activated the nuclear vitamin D receptor (VDR) and promoted
the osteogenic differentiation (Lou et al., 2017) (He et al., 2020).
The Pearson correlation coefficient was 0.9257 (p < 0.05) for
alendronate sodium and 0.8411 (p < 0.05) for 1α, 25-
dihydroxyvitamin D3. These results suggested that the OCNN
was able to distinguish osteogenic phenotypes modulated by
different biochemical signals.

Lastly, we examined the predictive ability of the OCNN under
the influence of a classic osteogenic growth factor, i.e., bone
morphogenetic protein 2 (BMP-2, Figure 4D). Bone
morphogenetic proteins (BMPs) are effective regulators of
osteoblast proliferation and differentiation, and among them,
BMP-2 has been the most studied cell growth factor in the
bone tissue regeneration field (Salazar et al., 2016). The Pearson
analysis revealed a significant correlation (p < 0.05) with a strong
relationship (r � 0.9090) between the OCNN prediction and BMP-
2 induced osteogenesis. Collectively, these results demonstrate the
feasibility and reliability of OCNN for drug screening.

OCNN Prediction and OCNN-Based Online
Learning for Cells on Titanium Surfaces and
Chemical Coatings
The substrate characteristics of biomaterials are of great
importance and have a significant impact on cell morphology.
Therefore, we hypothesized that the baseline OCNN may not be
suitable for predicting osteogenic differentiation in this scenario.
This dilemma may be tackled by the idea of online learning,
which implies supplying small additional samples to the baseline
model, due to the migratory nature of deep learning (Lobo et al.,
2018).

To examine this hypothesis, we fabricated titanium surfaces
with different nanotopographies: smooth, micro, and nano, as
described in our previous work. Glass coverslips were chosen as
the control and were flat with no extra features under SEM
(Figure 5A). On day 1, the cell morphology in the OS group
exhibited no visible changes to the naked eye (Figure 5B).
However, the baseline OCNN model still captured certain
underlying patterns; thus, achieving a satisfactory AUC of
0.990 (Figure 5C).

For titanium surfaces, the smooth group (Figure 5D) is flat
with no obvious ridges or nanoscale features, while the micro
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group (Figure 5G) showed numerous ridges and grooves, and the
nano group (Figure 5J) showed dense nano-features. On day 1,
the cell morphology on these substrates showed extreme
inconsistency and diversity; thus, no patterns in group BA/OS
could be observed with the naked eyes (Figures 5E,H,K).
Interestingly, the baseline OCNN also performed poorly in
predictions on titanium surfaces, with AUCs of 0.740 (smooth,
Figure 5F), 0.783 (micro, Figure 5I), and 0.401 (nano,
Figure 5L). Fortunately, after supplying small data (n �
50–100 and 1/16–1/8 of baseline training data) to the baseline
OCNN, the AUC increased to 0.868 (smooth), 0.896 (micro), and
0.673 (nano).

Next, we examined the performance of the baseline and online
OCNNs on several common chemical coatings, including
collagen I (Col-I), hyaluronic acid (HA), amyloid fibrils, and
poly-dopamine (DOPA). On Col-I (Figure 6A) and HA
(Figure 6D) coatings, no micro or nanostructures were
observed under SEM, similar to the glass coverslips. Under
LSCM, the cell morphology in group BA/OS could not be

distinguished by the naked eye at day 1 (Figures 6B,E).
However, unlike on the glass coverslips, the baseline OCNN
could not predict the phenotypes associated with the OS on Col-I
(AUC � 0.460) but canmoderately predict on HA (AUC � 0.797),
suggesting that the chemical components of substrates have an
essential influence on cell phenotypes (Arora et al., 2020). After
supplying online data, the AUC increased to 0.946 (Col-I,
Figure 6C) and 0.799 (HA, Figure 6F). This result
demonstrates the ability of online OCNN to distinguish cells
cultured in microenvironments with different chemical cues.

Amyloid fibrils and DOPA coatings exhibited microspheres
with diverse shapes and continuity (Figures 6G,J); thus,
representing a mixture of different nanotopographies and
chemical components. Under LSCM, the cell morphology in
group BA/OS could not be distinguished with the naked eyes
on day 1 (Figures 6H,K). The predictions of the baseline OCNN
were acceptable in the amyloid fibrils (AUC � 0.698, Figure 6I)
but performed poorly in DOPA (AUC � 0.424, Figure 6L). These
results further suggest that the material properties of the

FIGURE 6 | OCNN prediction and OCNN-based online learning for rBMSCs on chemical coatings. (A) (D) (G) (J) SEM images of four different chemical coatings:
collagen I, hyaluronic acid, amyloid fibrils, and poly-dopamine, scale bar � 1 µm. (B) (E) (H) (K) LSCM images of the rBMSCs on four different chemical coatings: collagen
I, hyaluronic acid, amyloid fibrils, and poly-dopamine. Basal medium (BA), osteogenic supplement medium (OS). Induction time: 24 h; green: F-actin; blue: nuclei. Scale
bar, 100 µm. (C) (F) (I) (L) Comparison of the OCNN prediction and OCNN-based online learning results using ROC curves. Black line: OCNN prediction and red
line: OCNN accompanied with online learning.
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substrates, including the nanotopography and chemical
components, can substantially reform the cell morphology,
which may explain the controversial association between
certain cell phenotypes and final cell fate (Arora et al., 2020).
After supplying online data, the AUC increased drastically to
0.851 (amyloid fibrils) and 0.992 (DOPA).

DISCUSSION

In this paper, we show that the CNNs can be trained with images
taken by a laser confocal microscope and then classify images
with slight morphological variations correctly. We applied three
classical deep learning CNNs VGG-16, Inception V3, and
ResNet-50 for transfer learning and achieved accuracy higher
than 80% on the validation set except for day 0. Then the selected
OCNN models from above also achieved excellent results on the
independent test set. We believe that several conditions allowed
us to achieve such high accuracy with the trained neural
networks. First, we set the cell seeding at a suitable density for
the study. Second, the starting size of the single-cell images is a
uniform 640*640 pixels, which ensured the size and uniformity of
the original input data. Third, by certain image pre-processing
methods, for example, rotation, mirror flip, and scale, the number
of images provided to CNN was increased and the training effect
gained better than that of images without image processing.

We validated the prediction results of OCNN by conventional
biochemical markers to verify the osteogenic differentiation
phenotypes of rBMSCs at the corresponding training time
points and there was a good fit between them, which laid the
foundation for the subsequent application of OCNNs. In
addition, the feature extraction of single-cell images was
performed by Cellprofiler, and the classical shape and material
parameters were selected to distinguish the single-cell phenotypes
at uniform time points. Also, the SVM models that integrated
these parameters were applied simultaneously. Neither single-cell
parameters nor SVM models could reach the classification
accuracy of OCNNs, reflecting the superiority of OCNNs.

For further application of OCNNs, we conducted dose-
relevant predictions of osteogenic drugs and online learning-
based predictions for cells cultured on different material surfaces,
both of which yielded well results. In the drug screening part, we
examined the ability of OCNN in predicting the osteoinduction
ability of small molecule drugs or cytokines at an early stage and
the results were in high consistency with 14-days alizarin red
staining results. On OCNN-based online learning for cells on
material surfaces, it can be seen that by online tuning the base
model with a small amount of data, better prediction effects can
be obtained, overcoming the phenotypical alterations on
substrates with different nanotopographies and chemical
components.

Compared with previous studies, this study presents several
advances. First, previous relative studies adopted some machine
learning techniques like linear discriminant analysis (Marklein
et al., 2016), unsupervised clustering (Khayal et al., 2018), and
bayesian linear regression (Cutiongco et al., 2020), to trace the
osteogenic differentiation of stem cells, requiring considerable

human efforts to select features and construct models, which are
avoided by applying deep learning methods. Second, when we
focus on image-based deep learning in the biomedical area, many
other deep learning methods like YOLO (Li et al., 2021), GANs
(Rubin et al., 2019; Sirinukunwattana et al., 2021) were applied
and achieved good results. Compared with those methods, we
conducted the evaluations of more parameters (Accuracy,
Sensitivity, Specificity, Precision, F1-score, AUC) with
satisfactory results. Furthermore, the strong correlation
between OCNN’s predictions and osteogenic biomarkers was
reached, and applications in osteogenic drug and biomaterial
screening were implemented by OCNN and OCNN-based online
learning. Third, cell morphology showed distinct changes and
extensive versatility on substrates with different topography and
chemical components. Moreover, conventional approaches
usually need to train different models to associate cell
phenotypes with microenvironment cues, which demands a
large amount of data. By applying online learning techniques
to OCNN, deep learning models can drastically improve their
performance with a small amount of additional data.

Nonetheless, this study has several limitations. First, only the
2D cellular morphological characteristics were studied. Some 3D
characteristics, such as cell volume and cell sphericity, are tightly
correlated with 3D microenvironment cues and may have a
substantial impact on the fate of cells (Bao et al., 2019;
Remuzzi et al., 2020). Second, despite the cytoskeleton, more
features such as nuclear skeleton, nuclear transcription factors,
and chromatin morphology are also related to osteogenic
differentiation. Multicolor immunofluorescent staining can
capture more of this high-dimensional information
simultaneously; thus, improving the prediction accuracy and
generalizability. Prospectively, for future OCNN development
on 3D and high-throughput data, advanced network structures
and cloud-based techniques need to be constructed to tackle the
increased computational complexity and the consumption of
computing power. Last, in the original data acquisition
process, automatic single-cell identification and segmentation
procedures were lacking. In future studies, an automatic
technique shall be carried out to accelerate the whole process
by some algorithms like the watershed method (Ng et al., 2006),
YOLO (Redmon et al., 2016), or U-net (Ronneberger et al., 2015).

In conclusion, to predict the osteogenic differentiation of
rBMSCs, a deep learning model, OCNN, was successfully
developed based on single-cell LSCM images. The output of
the OCNN and POSs correlated well with conventional
biomarkers. OCNN showed better predictions than single
morphological parameters and support vector machines. It
successfully predicted the dose-dependent osteogenic effects of
three small molecule drugs (simvastatin, alendronate sodium,
and 1α, 25-dihydroxyvitamin D3) and the osteogenic cytokine
BMP-2. Moreover, OCNN with online learning successfully
predicted the phenotypes associated with osteogenic
differentiation on different biomaterial substrates. Therefore,
this study preliminarily proved the application value and
promising prospect of deep learning-based techniques in
osteogenic drug screening, biomaterial development for bone
tissue engineering, and cell-matrix interaction research.
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