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Abstract

Background

Hemorrhagic fever with renal syndrome (HFRS) is a rodent-associated zoonosis caused

by hantavirus. The HFRS was initially detected in northeast China in 1931, and since 1955

it has been detected in many regions of the country. Global climate dynamics influences

HFRS spread in a complex nonlinear way. The quantitative assessment of the spatiotempo-

ral variation of the “HFRS infections-global climate dynamics” association at a large geo-

graphical scale and during a long time period is still lacking.

Methods and findings

This work is the first study of a recently completed dataset of monthly HFRS cases in East-

ern China during the period 2005–2016. A methodological synthesis that involves a time-fre-

quency technique, a composite space-time model, hotspot analysis, and machine learning

is implemented in the study of (a) the association between HFRS incidence spread and

climate dynamics and (b) the geographic factors impacting this association over Eastern

China during the period 2005–2016. The results showed that by assimilating core and city-

specific knowledge bases the synthesis was able to depict quantitatively the space-time

variation of periodic climate-HFRS associations at a large geographic scale and to assess

numerically the strength of this association in the area and period of interest. It was found

that the HFRS infections in Eastern China has a strong association with global climate

dynamics, in particular, the 12, 18 and 36 mos periods were detected as the three main

synchronous periods of climate dynamics and HFRS distribution. For the 36 mos period

(which is the period with the strongest association), the space-time correlation pattern of the

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006554 June 6, 2018 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: He J, Christakos G, Wu J, Cazelles B, Qian

Q, Mu D, et al. (2018) Spatiotemporal variation of

the association between climate dynamics and

HFRS outbreaks in Eastern China during 2005-

2016 and its geographic determinants. PLoS Negl

Trop Dis 12(6): e0006554. https://doi.org/10.1371/

journal.pntd.0006554

Editor: Townsend Peterson, The University of

Kansas, UNITED STATES

Received: February 27, 2018

Accepted: May 22, 2018

Published: June 6, 2018

Copyright: © 2018 He et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: Patient data are

protected by the China CDC and are unsuitable for

public sharing. The HFRS data is not allowed to be

publicly shared due to local infection disease law.

Interested parties can apply for the data by

contacting the Data-center of China Public Health

Science (http://www.phsciencedata.cn/Share/ky_

sjml.jsp?id=59761d3e-ca3c-4c65-a6a5-

67be1d2fb692) or email data@chinacdc.cn.

https://doi.org/10.1371/journal.pntd.0006554
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0006554&domain=pdf&date_stamp=2018-06-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0006554&domain=pdf&date_stamp=2018-06-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0006554&domain=pdf&date_stamp=2018-06-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0006554&domain=pdf&date_stamp=2018-06-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0006554&domain=pdf&date_stamp=2018-06-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0006554&domain=pdf&date_stamp=2018-06-18
https://doi.org/10.1371/journal.pntd.0006554
https://doi.org/10.1371/journal.pntd.0006554
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.phsciencedata.cn/Share/ky_sjml.jsp?id=59761d3e-ca3c-4c65-a6a5-67be1d2fb692
http://www.phsciencedata.cn/Share/ky_sjml.jsp?id=59761d3e-ca3c-4c65-a6a5-67be1d2fb692
http://www.phsciencedata.cn/Share/ky_sjml.jsp?id=59761d3e-ca3c-4c65-a6a5-67be1d2fb692
mailto:data@chinacdc.cn


association strength indicated strong temporal but rather weak spatial dependencies. The

generated space-time maps of association strength and association hotspots provided a

clear picture of the geographic variation of the association strength that often-exhibited clus-

ter characteristics (e.g., the south part of the study area displays a strong climate-HFRS

association with non-point effects, whereas the middle-north part displays a weak climate-

HFRS association). Another finding of this work is the upward climate-HFRS coherency

trend for the past few years (2013–2015) indicating that the climate impacts on HFRS were

becoming increasingly sensitive with time. Lastly, another finding of this work is that geo-

graphic factors affect the climate-HFRS association in an interrelated manner through

local climate or by means of HFRS infections. In particular, location (latitude, distance to

coastline and longitude), grassland and woodland are the geographic factors exerting the

most noticeable effects on the climate-HFRS association (e.g., low latitude has a strong

effect, whereas distance to coastline has a wave-like effect).

Conclusions

The proposed synthetic quantitative approach revealed important aspects of the spatio-

temporal variation of the climate-HFRS association in Eastern China during a long time

period, and identified the geographic factors having a major impact on this association.

Both findings could improve public health policy in an HFRS-torn country like China. Fur-

thermore, the synthetic approach developed in this work can be used to map the space-

time variation of different climate-disease associations in other parts of China and the

World.

Author summary

China has the largest number of HFRS infections in the world (9045 cases in 2016). Pre-

vious studies have found that HFRS infections are related to climate. However, the spa-

tiotemporal distribution of the association between HFRS outbreaks at a large scale and

global climate dynamics (i.e., over Eastern China during the period 2005–2016), as well

as the identification of the geographic factors impacting this association have not been

studied yet. This is then the dual focus of the present study. Strong synchronicities

between global climate change and HFRS infections were detected across the entire

study area that were linked to three main time periods (12, 18 and 36 mos). Specifically,

strong and weak associations with non-point effects were detected in the south and mid-

dle-north parts of the study region, respectively. The climate impacts on HFRS were

becoming increasingly sensitive with time. On the other hand, the geographic location

(north coordinate, distance to coastline, east coordinate) makes a considerable contribu-

tion to the climate-HFRS association. As regards land-use, grassland and woodland

were found to play important contributing roles to climate-HFRS association. Certain

space-time links between global climate dynamics and HFRS infections were confirmed

at a large spatial scale and within a long time period. The above findings could improve

both the understanding of the HFRS transmission pattern and the forecasting of HFRS

outbreaks.

Spatiotemporal variation of climate-HFRS association in Eastern China
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Introduction

Hantaviruses are RNA viruses that belong to the Hantaviridae family. Hantavirus infection

causes hemorrhagic fever with renal syndrome (HFRS) to humans. As a rodent-borne infec-

tious disease, the main domestic animals in China carrying hantavirus (including Hantaan
virus, HTNV, and Seoul virus, SEOV) are Apodemus agrarius and Rattus norvegicus [1, 2]. Spe-

cifically, HTNV can survive for more than 96 days outside the host’s body under wet condi-

tions at a temperature of 4˚C [3]. Having a high viability in the environment, the viruses can

be transmitted to humans by contacting to virus contaminated material, such as inhalation of

aerosols generated by urine or saliva, ingestion of infected food, or directly by rodents bites

[4]. It has been reported that the HFRS death rate in China was 2.89% during the years 1950–

2014 [5]. In China, during the period 1998–2007 the number of male patients was three times

higher than that of female patients, 87.32% of the documented HFRS cases were 15 to 60 years

old, and 70% of them were farmers [6]. HFRS remains a major concern in China, because,

although a declining HFRS trend has been observed at a global scale in China, there still exist

certain local regions that continue to display increasing HFRS trends [7].

The HFRS infections exhibit a well-defined annual cycle that corresponds to the local vari-

ability of climate factors, anthropogenic activity and land-use change [8–10]. Specifically, a

trophic cascade has been found between local climate and HFRS infections, i.e., the local pre-

cipitation and temperature affecting the living environment and primary food production,

also contribute to the growth of the rodent population and the probability of interaction

between infected rodents and humans [11]. To explore the climate effects on HFRS infections,

previous studies have used quantitative techniques that explicitly incorporate climate factors

in the estimation of the number of HFRS cases or the disease incidence. For example, Li et al.

[12] employed a seasonal autoregressive integrated moving average model and found that the

HFRS cases in Heilongjiang Province were closely associated with relative humidity, maxi-

mum temperature, and the southern oscillation index. Using a structure equation model,

Guan et al. [13] observed that the HFRS incidence in Huludao City was correlated with tem-

perature, air pressure, virus-carrying index, precipitation and relative humidity; using a Bayes-

ian time-series Poisson adjusted model was found that the HFRS outbreak was related to

preceding rainfall of 2–3 months ago [14]. Moreover, the principal components regression

model, the multivariate polynomial distributed lag model, and the Poisson regression model

have been used to explore climate-HFRS associations in Shenyang City, Chenzhou City, and

the Elunchun and Molidawahaner counties, respectively [15–17]. Local characteristics of these

associations were investigated in these studies, specifically the climate factors with consider-

able contributions to human HFRS infections (including the El Niño index). However, none

of these studies was concerned with the large-scale investigation of the variation of the cli-

mate-HFRS association. Hence, a systematic quantitative study of the climate-HFRS associa-

tions at a large space-time scale is still lacking.

As a global climate phenomenon, El Niño-Southern Oscillation (ENSO) has been found to

have a large impact on local precipitation and temperature [18, 19] and to affect local ecologi-

cal conditions and animal lives, including disease-related rodents [20]. It has been suggested

that ENSO played a significant role in driving the inter-annual variation of rodent- or vector-

borne diseases, such as dengue fever and hantavirus cardiopulmonary syndrome [21–25].

Moreover, in previous studies ENSO has exhibited a multiannual variability, whereas a signifi-

cant variation of multiannual periodicities has been reported for HFRS at several small regions

of China [11, 26, 27]. Therefore, it is interesting to explore the internal association (co-varia-

tion) between ENSO and HFRS. Considering its global impact on climate, ENSO is regarded

as a global climate dynamics index in the investigation of climate-HFRS associations. Although
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earlier studies showed that wavelet analysis is a powerful tool in handling non-stationary time

series [28], it cannot individually handle simultaneously several time series distributed at a

large spatial scale, which is the case of the Chinese HFRS data of interest in this work. On the

other hand, Bayesian maximum entropy (BME, [29, 30]) is a powerful data modeling approach

that can jointly assimilate any number of time series at various spatial locations by means of

spatiotemporal random field modeling. BME integrates the available core (or general) knowl-

edge about the effects of global climate dynamics on local HFRS infections with site-specific

information in a realistic space-time domain. It is a versatile quantitative method that can

study non-stationary, non-linear and non-Gaussian systems, which is why it has been success-

fully used in many scientific disciplines, such as environmental sciences, ecology, public health

and epidemiology (for a review, see, e.g., [31]).

In view of the above considerations, the present work proposes a synthetic quantitative

approach to study the spatiotemporal variation of the “global climate dynamics-HFRS” associ-

ation in Eastern China under conditions of in-situ uncertainty. This approach has four main

components: (a) Wavelet coherency analysis is used to assess quantitatively the association

between global climate dynamics and HFRS at each city. (b) BME is used to estimate the

strength of this association at a large domain and depict its spatiotemporal characteristics in

terms of detailed maps. (c) The geographic boundaries of strong vs. weak associations are

determined by hotspot analysis. (d) Lastly, a gradient boosting machine (GBM) model is used

to investigate the specific impacts of the relevant geographic information on the global climate

dynamics-HFRS association.

Materials and methods

Data collection

Ethics statement. The present study was approved by Institute of Disease Control and

Prevention and Chinese Center for Disease Control and Prevention. All the HFRS data were

anonymously analyzed for the consideration of confidentiality.

The HFRS dataset. Yan et al. [32] have reported that approximately 86.4% of the total

number of HFRS cases occurred in Eastern China and the Sichuan basin. Accordingly, in this

study we used a recently completed dataset consisting of monthly HFRS cases at 127 cities in

Eastern China during the period of January 2005-December 2016 collected by the China Infor-

mation System for Disease Control and Prevention (CISDCP). These cities are distributed in

19 provinces, autonomous regions and metropolitan areas in Eastern China with a total area

of approximately 2,820,000 Km2, including Beijing, Tianjin, Inner Mongolia, Heilongjiang,

Jilin, Liaoning, Hebei, Henan, Shaanxi, Shanxi, Shandong, Hubei, Hunan, Anhui, Jiangsu,

Zhejiang, Jiangxi, Fujian, and Guangdong, see Fig 1 (the corresponding HFRS incidence map

covering 127 cities can be found in S1 Fig). Fig 1 shows that the northeastern and western

parts of the study region have a high number of HFRS infection cases (the quantitative analysis

in this work was performed in terms of the number of HFRS cases).

Multivariate El Niño southern oscillation index. The multivariate El Niño southern

oscillation index (MEI) is calculated in terms of six oceanic and meteorological variables,

namely, sea level pressure, zonal and meridional components of surface wind, sea surface tem-

perature, surface air temperature, and total cloudiness fraction of sky. As regards MEI inter-

pretation, large positive MEI values indicate the presence of El Niño phenomena, whereas

large negative MEI values indicate the presence of La Nina phenomena [33]. Accordingly,

MEI is regarded as a proxy describing global climate dynamics quantitatively, especially in

terms of worldwide temperature and precipitation levels [34]. Since climate has been associ-

ated with HFRS spread and outbreaks, in this work we used the MEI to explore the association

Spatiotemporal variation of climate-HFRS association in Eastern China
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between HFRS distribution in China and the global climate dynamics. The MEI dataset is

available at http://www.esrl.noaa.gov/psd/enso/mei/table.html.

Geographic data. During 2015, in the region of interest six land-use types were consid-

ered: cropland, woodland, grassland, water, urban, and barren (see S2 Fig). At each location of

interest, the number of pixels for each land-use type within a 50 Km radius buffer was calcu-

lated using the ArcGIS 10.2 software (each pixel represents an area of 1 Km2). Distances to

coastline and elevations were obtained by means of the national administrative map and a digi-

tal elevation model, respectively. All the geographic data were provided by the Data Center for

Resources and Environmental Sciences of the Chinese Academy of Sciences (RESDC; http://

www.resdc.cn).

Synthetic methodological framework

S3 Fig presents an outline of the synthetic methodological framework used in this work. More

detailed information about the various components of this framework is given below.

Wavelet coherency analysis. The association between global climate dynamics and HFRS

cases at each Chinese city was measured by the mathematical “magnifying glass” of wavelet

coherency analysis [35, 36]. This method expresses quantitatively the internal co-variation

Fig 1. Distribution of HFRS cases in the study area during the period 2005–2016.

https://doi.org/10.1371/journal.pntd.0006554.g001
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between two time series in terms of the synchronicity strength of the trends of the two series.

In the present study this implies that the larger the coherency value is, the stronger is the asso-

ciation between global climate dynamics and HFRS infections. The month-to-month time

series pairs (HFRS cases at a city and corresponding MEI) were used to implement wavelet

coherency analysis in three steps: (1) the two time series were separately transformed by Mor-

let wavelets, (2) the two wavelet-transformed series were subsequently cross-wavelet trans-

formed to obtain the wavelet cross-spectrum, and (3) the wavelet coherency was finally

derived by using the spectrum of each series to normalize the cross-spectrum as follows,

Wðt; aÞ ¼
1
ffiffiffi
a
p

ðþ1

� 1

ZðtÞ c
�
ð
t � t

a
Þdt; ð1aÞ

WZ1Z2
¼WZ1

W�

Z2
; ð1bÞ

CZ1Z2
ðt; aÞ ¼

khWZ1Z2
ðt; aÞik

khWZ1Z1
ðt; aÞik

1=2
khWZ2Z2

ðt; aÞik
1=2
; ð1cÞ

where Z1 and Z2 denote the MEI and HFRS case series, respectively, C(�) is the Morlet wavelet,

α and τ represent the scale factor and time shift, respectively, and the �, <�> and ||�|| denote

the complex conjugate, smoothing and modulus operator, respectively. The larger the function

Cz1z2
in Eq (1c) is, the stronger is the coherency of the time series Z1 and Z2, i.e., the HFRS

infections are more closely linked to global climate dynamics. The three steps above were

repeated 127 times (one for each city) to obtain the coherency between MEI and HFRS cases at

each city. The mean wavelet coherency spectrum was calculated at each province (autonomous

region and metropolitan area) to better understand the varying impacts of climate dynamics

on HFRS infections in various parts of Eastern China.

Spatiotemporal mapping of the coherence strength between MEI and HFRS cases. At

each city a separate coherency time series can be generated to characterize the temporal vari-

ability of the MEI-HFRS association strength. The association between MEI and HFRS was

visualized quantitatively with the help of the specific bands (high values) of the wavelet coher-

ency spectra at the various cities. The mean and variance of wavelet coherency at all cities were

derived from the spectra across the time-frequency domain. Subsequently, two criteria were

used for selecting the global character bands: high mean wavelet coherency values in the char-

acter bands represent a strong MEI-HFRS association, and not very small variances within

the same bands capture the variability of this association at various cities. Given the selected

bands, the mean value of the corresponding band coherency values at each time instance can

be obtained at each city to construct space-time coherency data set.

The BME theory was used to estimate the coherency (strength of MEI-HFRS association),

C(p), as a function of the point p = (s,t) in the space-time domain of interest (the vector s
denotes spatial coordinates and the scalar t denotes time). In BME theory, a spatiotemporal

random field model (S/TRF; [37, 38]) represents the composite geographic-chronological vari-

ation of the coherency values in conditions of in situ uncertainty. The fact that coherency C(p)

is modeled as an S/TRF implies that it is mathematically described by a probability density

function (pdf) fC(p; χ), where χ is a possible S/TRF realization (coherency value) at space-

time point p with probability of occurrence determined by the pdf. In this case, BME con-

structs the pdf by integrating the core (or general) knowledge base (G-KB, consisting of the

theoretical C(p) mean and covariance models) and the site-specific knowledge base (S-KB,

including the mean coherency values). Note that only hard data (i.e., coherency values) were

considered as the site-specific knowledge base in this study. The basic set of BME equations of
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spatiotemporal coherency modeling and mapping are

ð

dχ ðg � g Þ eμ�g ¼ 0; ð2aÞ

ð

dχ ξ eμ�g ¼ a fC; ð2bÞ

where α is a normalization parameter, g represents the available G-KB, g denotes the expected

value of g, μ are coefficients expressing the relative importance of g so that μ � g = Siμigi, and ξ
represents the S-KB (technical details can be found in the relevant literature; e.g., [31]; and

references therein). By solving the above set of equations, the coherency values at unsampled

points on a 10km × 10km × 1mo space-time grid covering the study area and period of interest

were estimated by BME for mapping purposes. In particular, the SEKS-GUI software library

[39] was selected to produce these space-time coherency maps. Using a 10-fold cross validation

technique, the BME performance was subsequently evaluated in terms of three accuracy indi-

cators: the mean absolute error (MAE), the root mean squared error (RMSE), and the R2 of the

simple linear regression model relating observed and predicted values.

Hotspot analysis of the coherency strength maps. Due to the fact that climate exerts

non-point impacts on HFRS infections, the coherency values between HFRS and climate

dynamics are expected to exhibit local cluster characteristics. In this case, hotspot analysis can

efficiently assess high- vs. low-valued coherency clusters across space [40], i.e., it can identify

strong vs. weak associations between global climate dynamics and HFRS infected areas. Specif-

ically, a hot spot means that the coherency values at a given and the neighboring locations are

all high; naturally, a low spot means the opposite, i.e., the coherency values at a given and the

neighboring locations are all low. In Arcgis 10.2, the functions (Getis-Ord Gi�) of hotspot anal-

ysis are as follows,

G�i ¼
Pn

j¼1
wi;jcj � C

Pn
j¼1

wi;j

S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nPn

j¼1
w2
i;j � ð
Pn

j¼1
wi;jÞ

2

n� 1

q ; ð3aÞ

C ¼
Pn

j¼1
cj

n
; ð3bÞ

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

j¼1
c2
j

n
� C2

r

; ð3cÞ

where cj is the coherency value at location j, C and S denote, respectively, the mean and vari-

ance of the coherency values at all locations, n is the total number of locations, and wi,j is the

spatial weight between locations i and j. By using the corresponding tool “Hot Spot Analysis

(Getis-Ord Gi�)” in ArcGIS 10.2, hot vs. cold spots were determined and mapped at 0, 90, 95,

and 99% significance level. In general, the spatial heterogeneity of a map can be either local

or stratified. Hotspot analysis provides information about local spatial heterogeneity. In this

study, we also employed q-statistics to test the spatial stratified heterogeneity [41].

Gradient boosting machine. The gradient boosting machine (GBM; [42, 43]) is a very

flexible machine learning approach that is highly customizable to the particular needs of the

study of interest [44]. One of the attractive GBM features, compared to other statistical classifi-

ers, is that the relative importance of an explanatory variable can be determined and the partial

dependence of each variable can be obtained [42]. After a number of iterations, the GBM

selects an optimal function y ¼ F̂ðxÞ relating the explanatory variables denoted by the vector x
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with the response variable y by minimizing the loss function L(y,F(x)). Then, the basic GBM

equations are

FtðxÞ ¼ Ft� 1ðxÞ þ bthðx; atÞ; ð4aÞ

at ¼ arg min
a;r

XN

i¼1
½�
@L½yi; FðxiÞ�

@FðxiÞ
jFðxÞ¼Ft� 1ðxÞ

� rhðxi; aÞ�; ð4bÞ

bt ¼ arg min
b

XN

i¼1
L½yi; Ft� 1ðxiÞ þ bhðxi; atÞ�; ð4cÞ

where t = 1,2,. . .,K denotes the interaction time, N is the number of data, h(x;a) is a function

called the “base learner” with vector parameter a = (a1,a2,. . .) that can be calculated by solv-

ing Eq (4b). Technically, h(x;a) is usually considered as an L terminal node regression tree, β
are expansion coefficients calculated by solving Eq (4c) so that after K iterations the final

function F(x) is obtained. Specifically, cropland, woodland, grassland, water, urban, barren

(in a 50km buffer), elevation, distance to coastline, and spatial coordinates (using Krasovsky

1940 Albers projection in ArcGIS 10.2) were selected as the explanatory variables for assess-

ing the coherency maps obtained by BME. This process was computationally implemented

by using the "gmb" package of the R statistics software. Similarly, the 10-fold cross validation

technique was employed to test the performance of the GBM model in terms of MAE, RMSE

and R2.

Results

Wavelet coherency analysis

In total, 127 wavelet coherency spectra were obtained (one at each city in Eastern China) by

means of wavelet coherency analysis (S4 Fig). By averaging the wavelet coherency spectra in

each Chinese province and autonomous region, the mean wavelet coherency spectra at 19

provinces, autonomous regions and metropolitan areas were calculated and plotted in S5 Fig.

These figures indicate that the closer the provinces are, the more similar are the corresponding

wavelet coherency figures. For illustration, S5B–S5D Fig show that the shapes of the wavelet

coherency plots are almost the same, and the only small differences visually observed are in the

coherency values. At the three provinces (Heilongjiang, Jilin, Liaoning) strong coherencies

(high coherency values shown in S5B–S5D Fig) exist between HFRS and global climate

dynamics during three main period bands, i.e., 12, 18 and 36 mos. Among the three provinces,

Heilongjiang has the largest coherency value during the 36 mos band, as displayed in S5B Fig.

Wavelet coherency analysis thus confirmed quantitatively that the association between HFRS

cases and global climate dynamics shows a strong coherency during the 3-yrs (36-mos) multi-

annual oscillations of the entire period 2005–2016; this phenomenon is also observed in terms

of the global statistics of Fig 2. The same three period bands (12, 18 and 36 mos) with high

coherency values can be detected in terms of the characteristic bands of Fig 2A, which depict

the inter-association between HFRS cases and global climate dynamics. Furthermore, by com-

paring the coherency variances at all cities in Fig 2B, we found that the coherency during the

36-mos band has the lowest variance among the three main bands, thus suggesting that the

HFRS-climate association is more consistent during the 36-mos band. Therefore, the 30–42

mos bands were selected as coherency character bands expressing HFRS-climate associations

for further analysis.
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Spatiotemporal mapping of the association between HFRS and global

climate dynamics

Given the selected character bands (30–42 mos), the mean coherency values for the entire

2005–2016 period were calculated at each city (thus providing the space-time coherency

dataset needed for further processing). This dataset was then analyzed using the SEKSGUI

software library [39]. The calculated empirical covariance values shown in S6 Fig imply that

the coherency between HFRS and global climate dynamics is spatially dependent and temporal

sustained. To the empirical covariance values we fitted the theoretical space-time model of

coherency variation
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where |h| and τ denote the spatial distance (in meters) and temporal separation (in months),

respectively. The numerical 10-fold cross validation results confirmed that BME generates

accurate coherency estimates (the corresponding accuracy indicators were R2 = 0.991,

MAE = 0.00271, and RMSE = 0.0139). Hence, the SI section presents several of these BME-gen-

erated spatiotemporal maps that offer a detailed picture of the strength of the climate-HFRS

association in Eastern China for each month of the period 2005–2016 (144 maps, in total).

To avoid the edge-effects of wavelet coherency analysis at the first and last year, the 120

maps of the period 2006–2015 were used to explore further the climate-HFRS association pat-

tern across the study area (Fig 3A). Based on the calculated coherency values, the region can be

divided vertically into four parts (south, middle-south, middle-north and north parts) suggest-

ing that local characteristics can affect the association. In particular, the south and middle-

north parts have the highest and the lowest coherency values, respectively, whereas the other

two parts exhibit mediocre coherency values. A few low coherency sections were observed

in the south, middle-south and north parts of the study region. In S8–S17 Figs, several cities

were closely associated with global climate dynamics during the entire period 2006–2015

with consistently high coherency values. Moreover, the presence of an upward climate-HFRS

Fig 2. Global statistics of wavelet coherency spectra at all Chinese cities considered. A Mean wavelet coherency spectrum, and B variance of wavelet

coherency spectrum at all cities. Purple line represents the influence cone that delimits the region that is totally not influenced by edge effects.

https://doi.org/10.1371/journal.pntd.0006554.g002

Spatiotemporal variation of climate-HFRS association in Eastern China

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006554 June 6, 2018 9 / 22

https://doi.org/10.1371/journal.pntd.0006554.g002
https://doi.org/10.1371/journal.pntd.0006554


coherency trend during the period 2013–2015 indicated that the level of climate impacts on

the HFRS disease is becoming increasingly sensitive during this period (see S15–S17 Figs).

Notice that the coherency values at several locations increased during 2014 implying that the

HFRS infections at these locations became more closely associated with global climate dynam-

ics than during previous years (S16 Fig).

For the entire study region, the spatial heterogeneity of Fig 3A is weak, implying that both

high values and low values are clustered geographically. This phenomenon is tested by hotspot

analysis. In fact, more obvious clusters can be found in Fig 3B, see the geographic distribution

of the hot and cold spots corresponding to the HFRS-global climate association map of Fig 3A

(the distribution of the spots in Fig 3B delimits geographically high- and low-valued clusters).

Actually, compared to Fig 3A and 3B makes it much easier to define visually the boundaries of

the hot and cold spots. Four distinct parts of the HFRS-global climate association pattern can

be detected in these figures, including the south, middle-south, middle-north and north parts

of the study area. Most clusters with high association coherency (i.e., hot spots) are located in

the south part of the study area, whereas most clusters with low coherency (cold spots) are

located in the middle-north part. Notice that some hot spots are close to each other, and the

same is true for some cold spots. As a result, a large spatial continuous hop spot area as well as

a large cold spot area are generated; e.g., see the south and the middle-north parts of Fig 3B.

The other two parts don’t exhibit any noticeable distributions of continuous non-point hot/

cold spots. Yet, a number of point hot/cold spots can be still found at certain places of the

Fig 3. Association between HFRS cases and global climate dynamics. A Map of the association strength, and B map of the association hot spots. The

N, M-N, M-S and S represent the north, middle-north, middle-south and south parts of the study region, respectively.

https://doi.org/10.1371/journal.pntd.0006554.g003
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study area. The corresponding monthly hotspot maps are displayed in the SI section of this

work (S31 and S32 Figs).

Furthermore, the spatial stratified heterogeneity revealed in Fig 3 was tested in terms the

q-statistic. The result showed that the maps of Fig 3 exhibit strong stratified heterogeneity

(q = 0.80 with significance 1.68E-09). The same process was applied in S7–S30 Figs, in which

cases it was found that the q-values ranged from 0.65 to 0.84 with the associated significance

ranging from 1.18E-09 to 2.00E-09 (S33 Fig).

Impact of geographic factors on the association between HFRS and global

climate dynamics

Multiple linear regression modeling was initially used to test the relationship between the ten

explanatory variables introduced above (i.e., cropland, woodland, grassland, water, urban,

barren, elevation, distance to coastline and spatial coordinates) and the response variable

(association strength). The results showed that all ten variables have a significant influence

on the climate-HFRS association (in all ten cases, it was found that p< 0.05; see S1 Table),

whereas the R2 value of linear regression was equal to 0.30 with p< 2.2 × 10−16.

All explanatory variables together with the response variable were used to construct

the GBM model. The performance of the model was evaluated in terms of a 10-fold cross

validation method. It was found that the accuracy indicator values were R2 = 0.94, MAE =

8.71 × 10−5 and RMSE = 9.33 × 10−3, which is a much better performance than that of the

multiple linear regression model. Fig 4A shows the relative importance of the ten explanatory

variables on the climate-HFRS association obtained by the GBM model. The five most

important explanatory variables were the “north coordinate” (latitude), “distance to coast-

line”, “east coordinate” (longitude), “grassland” and “woodland” with relative importance

scores 37.84%, 27.75%, 11.29%, 4.56%, 4.55%, respectively. The corresponding partial depen-

dence plots for the “north coordinate”, “distance to coastline”, “east coordinate”, “grassland”

and “woodland” are displayed in Fig 4B–4F. These partial dependence plots show the effect

of each geographic factor on the climate-HFRS association after accounting for the average

effects of all other factors in the GMB model. An apparent negative relationship was detected

between the “north coordinate” and the climate-HFRS association (Fig 4B), i.e., the more

northward is located the city the weaker is the climate-HFRS association (this is especially

valid in the south part of the study region depicted in Fig 3A). On the other hand, an increas-

ing trend with local fluctuations was found between “distance to coastline” and the climate-

HFRS association (Fig 4C). The nonlinear (wave-like) variation effect of the “east coordi-

nate” on the climate-HFRS association was clearly revealed in the plot of Fig 4D (e.g., the

smooth trend of the “east coordinate” has a global sine shape with local wave fluctuations).

The partial dependence of grassland exhibits a rapid increase-decrease-stable trend as a func-

tion of the grassland area (Fig 4E). The positive relationship between the climate-HFRS asso-

ciation and woodland is shown in Fig 4F. The other partial dependence plots can be found in

the SI section (S34 Fig). Furthermore, we also constructed another GBM# model in the SI

section (the symbol “#” was used to distinguish it from the GBM model discussed above)

that excluded the spatial coordinates of the ten explanatory variables in order to avoid possi-

ble interactions of the geographic factors with spatial coordinates and to obtain additional

insight about the geographic factors effects on the climate-HFRS association. Comparing the

results in SI (S1 Text and S35 Fig) with the plots of Fig 4 above, similar conclusions can be

drawn about the effects of the geographic factors investigated by the GBM# and by the GBM

models.
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Fig 4. Relative importance of various explanatory variables (A) and the partial dependence (black lines) of the five most important variables

(i.e., north coordinate, distance to coastline, east coordinate, grassland, woodland, B-F) of the GBM model. Blue lines denote partial

dependence trends calculated by local polynomial regression with the surrounding shadow indicating the 95% confidence interval.

https://doi.org/10.1371/journal.pntd.0006554.g004
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Discussion

Public health scientists and officers are concerned with questions like: “Are the HFRS out-

breaks in a geographical region associated with global climate dynamics?” “How global climate

dynamics affects the HFRS transmission pattern at a large spatial scale?” “Which geographic

factors have significant impacts on the climate-HFRS association?” Answers to these and simi-

lar questions can offer valuable information for HFRS early warning, monitoring, and control

purposes. The present work developed a novel synthetic quantitative analysis that can help

answer these scientific questions. Methodologically, this approach is based on an integration

of wavelet analysis, Bayesian maximum entropy, hotspot analysis and gradient boosting

machine techniques. To the best of our knowledge, this is the first study that uses such a syn-

thetic framework to assess climate-HFRS associations at a large geographic scale (Eastern

China, covering an area of about 2.8 million Km2) and during a relatively long time period

(2005–2016). The study is characterized by the originality of the HFRS dataset and the large

amount of local and regional information available about several features of the climate-HFRS

association in the time-frequency and the space-time domains.

A main outcome of the present study is the successful quantitative investigation of the asso-

ciation between global climate dynamics and human HFRS infections by wavelet analysis.

Wavelet analysis uses the global climate index MEI (a proxy expressing global climate dynam-

ics quantitatively) that has been found to be suitable for large-scale analysis of ecological pro-

cesses [45]. It has been postulated in the literature that climate affects HFRS infections by

influencing rodent-borne physiology and interaction in a complex system [46, 47]. For exam-

ple, high positive MEI values infer the presence of El Niño phenomena, leading to higher pre-

cipitation levels in southeastern China during the months of December through May [48].

Hence, sufficient precipitation will help the reproduction of rodents, directly impacting the

probability of rodent-human contacts and human infections. In this work, it was found that

the large-scale HFRS surveillance dataset collected at 127 cities in Eastern China during 2005–

2016 and the global climate dynamics records available exhibit a strong synchronicity in multi-

annual cycles, including 1, 1.5 and 3 yrs periods (Fig 2, S4 and S5 Figs). This finding provides

strong quantitative support to an earlier claim that HFRS infections are closely associated with

global climate dynamics through complicated nonlinear dynamics, including multiannual and

seasonal variational patterns of both climate dynamics and rodent population [20, 49–51].

Another outcome of this work is related to the fact that wavelet analysis detected a strong

association coherence between global climate dynamics and HFRS infections in Eastern

China at 3 yrs cycle, indicating that both climate index and HFRS infections possess character

multi-cycles with a 3 yrs period [36]. In this sense, this work confirmed at a large scale (Eastern

China), what previous studies have observed at a local scale, particularly, in Changsha city,

Xi’an city and Pingyi county the HFRS variation was found to be characterized by 1 and 3 yrs

cycles [14, 26, 52]. Public health officers may appreciate this work’s finding that the corre-

sponding wavelet coherency spectra in S4 Fig provide local information about the climate-

HFRS association that can improve the understanding of the HFRS transmission pattern.

Additionally, these results can be regarded as a general knowledge base for HFRS monitoring,

controlling and forecasting purposes or for further research (e.g., global climate dynamics can

serve as a potential predictor of the trends of human infections by HFRS).

We further explored the features of the climate-HFRS association by integrating informa-

tion about the temporal variation of the association at Eastern China cities using the BME the-

ory. The space-time variability of the climate-HFRS association represented quantitatively by

the coherency covariance model showed a strong temporal dependence (S6A and S6C Fig),

indicating that the climate-HFRS association exhibits low temporal variation, i.e., it remains
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stable locally. Moreover, a strong short-range spatial dependence with weak long-range heavy

tails were also observed in the covariance model plots (S6A and S6B Fig). The interpretational

implication of these covariance features is that the climate-HFRS association has different local

characteristics than global synchronicity. The BME-generated maps of the spatiotemporal var-

iation of the climate-HFRS association strength (coherency values) included high-resolution

monthly maps (10Km × 10Km) covering the entire study area during the period 2005–2016

(S7–S18 Figs). In addition to the global findings of this work mentioned earlier, the composite

spatiotemporal covariance plot of climate-HFRS association (S6 Fig) indicates the presence

of a weak local heterogeneity combined with a strong stratified heterogeneity. In other words,

clusters of high and low coherency values in the maps of climate-HFRS association reveal

some interesting local features of the spatial variability of the climate-HFRS association.

At this point, another potentially significant finding was the presence of an upward cli-

mate-HFRS coherency temporal trend, especially during the period 2013–2015, which

indicated that the climate impacts on HFRS in Eastern China were becoming increasingly sen-

sitive with time. This phenomenon may be due to the fact that the frequency of extreme pre-

cipitation events shows a temporally increasing trend in the monsoon region of Asia [53, 54],

which includes a large part of the study region. As has been reported in the relevant literature

[55], winter temperatures are warming faster than summer temperatures, with the warm-

event indices increasingly significantly with time (the temperature and precipitation effects on

HFRS infections in the Eastern China region are further discussed below).

Public health officers may find it useful to study and evaluate, as appropriate, the geographi-

cal distribution of the climate-HFRS association in the BME-generated maps, like that of Fig

3A. The same is true as regards the strong and weak associations throughout Eastern China

that are clearly outlined in the hot vs. cold spot map of Fig 3B. Hence, using such maps public

health officers can assess, in quantitative terms, the strength of the climate-HFRS association

at a specific location compared to the strength of the association at other locations (e.g., more

attention should be paid to climate dynamics at hot spot locations). In a similar context, the

health officers of a city in China may benefit by any effective HFRS control measures previ-

ously implemented in other cities with similar climate-HFRS association patterns.

In light of the above findings and inferences, an important further objective of this work

was to investigate potential geographic determinants of the variation of climate-HFRS associa-

tions in Eastern China during 2005–2016. Generally, global climate dynamics is a macroscopic

natural process at the earth scale exerting certain impacts on microscopic climate in local or

regional domains with specific geographic features. In other words, local geographic informa-

tion may either strengthen or weaken the link between global climate dynamics and HFRS

infections by revealing local climatic conditions that can affect the rodents’ living environment

[10, 11]. Accordingly, a machine learning technique, GBM, was employed to investigate the

complex non-linear relationship between geographic factors and the climate-HFRS association

in the Eastern China region. Interestingly, the most important determinants of the geographic

variation of climate-HFRS association were found to be the spatial coordinates of a location

and the distance to coastline (Fig 4A). If, e.g., an extreme (strong or weak) climate-HFRS asso-

ciation is detected at a specific location of Eastern China, it suggests that large-scale climate-

driven effects dominate the association at this location. Notice that the geographical depen-

dence of the climate-disease link has been observed in other parts of the World. Klempa [56],

e.g., showed that in different parts of Europe climate dynamics affects hantavirus and its reser-

voir hosts in more than one ways.

Such findings would be valuable for local health management purposes, since, as was sug-

gested earlier, health officers in hot spot areas should pay more attention to the global climate

effects on HFRS transmission (this kind of information is known to help disease control and
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monitoring efforts, [57]). Notice that a location with a low “north coordinate” (latitude) is

linked to a much stronger climate-HFRS association than one with a high “north coordinate”;

Fig 4C and 4D reveal a simultaneous wave-like effect on the climate-HFRS association of the

“distance to coastline” and the “east coordinate” (longitude), respectively. This observation

suggests that HFRS outbreaks in coastal cities or riverbanks were particularly vulnerable to

global climate dynamics (thus confirming in the Eastern China case a similar result obtained

by Rosenzweig et al. [58]). Interestingly, as is shown in the SI section (S1 Text and S35 Fig), if

the GBM# model is used (that excludes spatial coordinates from the list of geographic factors

under consideration) the partial dependencies of the geographic factors exhibit a few minor

differences compared to the GBM model above. These findings deduced that interaction

effects exist between the geographic factors, and that the GBM# model can provide additional

information concerning the possible effects of the geographic factors.

Yet another objective of this work was to study the way geographic factors impact climate-

HFRS associations in Eastern China. We considered that a better investigation of the phenom-

enon is possible if the impacts of the geographic factors on the climate-HFRS association were

divided into two parts, including impacts on climate and impacts on HFRS infections (rodent

population). When the geographic factors have significant effects on both local climate and

HFRS infections, they were expected to also impact the climate-HFRS association. Global cli-

mate dynamics drives local climate with various consequences (changing microclimatic condi-

tions, including temperature, precipitation and evapotranspiration; see, [59]). For example,

temperature variation over the western pacific region (including China) is controlled by

ENSO [60]. In this work (Fig 4B), it was observed that global climate dynamics has more sig-

nificant effects along the coastal regions of south China than in other parts of the country. In

addition, global climate fluctuations can cause local precipitation variation [61]. Precipitation

events will directly increase the primary food production for rodents, improve virus survival

and stimulate rodent reproduction [62–64]. Precipitation can affect rodent population indi-

rectly, by positively influencing the growth of grassland and woodland. Studies have shown

that the normalized difference vegetation index NDVI can represent grassland and woodland,

to a certain extent [65, 66]. It has also been proven that NDVI and the enhanced vegetation

index (EVI) are highly correlated with rodent (deer mouse) density [67]. Hence, grassland

and woodland have a significant contribution on the number of HFRS hosts and can further

impact the climate-HFRS association (Fig 4E and 4F). Moreover, woodland can develop a sta-

ble ecosystem with strong stability and resilience during a low precipitation season [68, 69].

Specifically, woodland can improve water resource conservation or primary food production

for rodents’ consumption, which also benefit the rodent population in a positive way and can

further impact the climate-HFRS association. This is why the partial dependence of woodland

shows a monotonically increasing trend as a function of woodland coverage (see Fig 4F).

Beyond precipitation, warm winter temperatures can improve the survival of rodents [11],

thus further impacting the climate-HFRS association. In this work, it was found that because

of the higher winter temperatures occurring in the south part (with low “north coordinate”)

than in the north part of the study area (thus, improving the rodents’ living conditions in the

south compared to the north), there exists a stronger climate-HFRS association in the south

with large-scale effects (Figs 3 and 4B). As a result, a growing rodent population will increase

the probability of virus transmission among rodents, and, subsequently, will increase the prob-

abilities of rodent-human contacts and HFRS infections among humans [14, 70]. In sum, the

geographical factors have two main ways of affecting the climate-HFRS association: by impact-

ing local climate and by directly impacting HFRS infections (these two ways are related, since

they both enable the growth of local rodent populations which, in turn, increase the probability

of rodent-human contact and infection). Hence, by taking these geographic factors into
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consideration, public health officers may improve their understanding of the climate-HFRS

association.

It is hoped that the synthetic quantitative approach (developed in this work to map the

space-time variation of climate-HFRS association in Eastern China) could be also applied in

the study of different climate-disease associations in other parts of China or the world. Lastly,

future work should be directed toward integrating the general knowledge and the site-specific

information of the present study to forecast HFRS outbreaks at a large spatial scale covering

the entire China.
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S1 Fig. Distribution of HFRS incidence in the study area during the period 2005–2016.

Population in 2015 was used to standardize the HFRS cases in each city. The unit of HFRS

incidence is cases/100,000 population.

(TIF)

S2 Fig. Land use types of study area in 2015.

(TIF)

S3 Fig. Workflow of the synthetic methodological framework.

(TIF)

S4 Fig. Wavelet coherency spectra between global climate dynamics and HFRS infections

at 127 cities in the study area. Purple line represents the cone of influence that delimits the

region that is not influenced by edge effects; black line shows a = 5% significance level com-

puted based on 500 bootstrap.

(GIF)

S5 Fig. Zonal wavelet coherency spectra at 19 provinces, autonomous regions and metro-

politan areas in the study area. A–S represent Inner Mongolia, Heilongjiang, Jilin, Liaoning,

Beijing, Tianjin, Hebei, Shanxi, Shandong, Shaanxi, Henan, Jiangsu, Anhui, Hubei, Zhejiang,

Hunan, Jiangxi, Fujian and Guangdong, respectively.

(TIF)

S6 Fig. Empirical and fitted theoretical covariance model of climate-HFRS association. A

Composite space-time empirical and fitted theoretical covariance; B empirical and fitted theo-

retical covariance when T-lag equals to 0; C empirical and fitted theoretical covariance when

S-lag equals to 0.

(TIF)

S7 Fig. Strength of the climate-HFRS association in 2005.
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S8 Fig. Strength of the climate-HFRS association in 2006.

(TIF)

S9 Fig. Strength of the climate-HFRS association in 2007.

(TIF)
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S10 Fig. Strength of the climate-HFRS association in 2008.

(TIF)

S11 Fig. Strength of the climate-HFRS association in 2009.

(TIF)

S12 Fig. Strength of the climate-HFRS association in 2010.

(TIF)

S13 Fig. Strength of the climate-HFRS association in 2011.

(TIF)

S14 Fig. Strength of the climate-HFRS association in 2012.

(TIF)

S15 Fig. Strength of the climate-HFRS association in 2013.

(TIF)

S16 Fig. Strength of the climate-HFRS association in 2014.

(TIF)

S17 Fig. Strength of the climate-HFRS association in 2015.

(TIF)

S18 Fig. Strength of the climate-HFRS association in 2016.

(TIF)

S19 Fig. Hotspot map of climate-HFRS association in 2005.

(TIF)

S20 Fig. Hotspot map of climate-HFRS association in 2006.

(TIF)

S21 Fig. Hotspot map of climate-HFRS association in 2007.

(TIF)

S22 Fig. Hotspot map of climate-HFRS association in 2008.

(TIF)

S23 Fig. Hotspot map of climate-HFRS association in 2009.

(TIF)

S24 Fig. Hotspot map of climate-HFRS association in 2010.

(TIF)

S25 Fig. Hotspot map of climate-HFRS association in 2011.

(TIF)

S26 Fig. Hotspot map of climate-HFRS association in 2012.

(TIF)

S27 Fig. Hotspot map of climate-HFRS association in 2013.

(TIF)

S28 Fig. Hotspot map of climate-HFRS association in 2014.

(TIF)

S29 Fig. Hotspot map of climate-HFRS association in 2015.

(TIF)
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S30 Fig. Hotspot map of climate-HFRS association in 2016.

(TIF)

S31 Fig. Strength of the climate-HFRS association in various months during the period

2005–2016.

(TIF)

S32 Fig. Hotspot of the climate-HFRS association in various months during the period

2005–2016.

(TIF)

S33 Fig. Q-statistics and its significance of the monthly coherency maps during 2005–

2016.

(TIF)

S34 Fig. Partial dependence of the other five geographic factors in GBM model (including

spatial coordinates).

(TIF)

S35 Fig. Relative importance of various explanatory variables and the partial dependence

of various geographic factors in GBM# model (excluding spatial coordinates).

(TIF)

Acknowledgments

We would like to thank Mr. Qutu Jiang (Ocean College, Zhejiang University, Zhoushan) and

Mr. Jimi He (the Chinese University of Hong Kong, Shenzhen) for their assistance with the R

language coding.

Author Contributions

Conceptualization: Junyu He, George Christakos.

Data curation: Quan Qian, Di Mu, Yong Wang, Wenwu Yin, Wenyi Zhang.

Formal analysis: Junyu He.

Investigation: Junyu He, George Christakos, Jiaping Wu.

Methodology: Junyu He, George Christakos, Bernard Cazelles.

Software: Junyu He, George Christakos, Bernard Cazelles.

Validation: Junyu He.

Visualization: Junyu He, George Christakos, Wenyi Zhang.

Writing – original draft: Junyu He, George Christakos.

Writing – review & editing: Junyu He, George Christakos, Jiaping Wu, Bernard Cazelles,

Quan Qian, Di Mu, Yong Wang, Wenwu Yin, Wenyi Zhang.

References

1. Song G. Epidemiological progresses of hemorrhagic fever with renal syndrome in China. Chinese medi-

cal journal. 1999; 112(5):472–7. PMID: 11593522

2. Zhang Y-Z, Zou Y, Fu ZF, Plyusnin A. Hantavirus Infections in Humans and Animals, China. Emerging

Infectious Diseases. 2010; 16(8):1195–203. https://doi.org/10.3201/eid1608.090470 PMID: 20678311

Spatiotemporal variation of climate-HFRS association in Eastern China

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006554 June 6, 2018 18 / 22

http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0006554.s032
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0006554.s033
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0006554.s034
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0006554.s035
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0006554.s036
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0006554.s037
http://www.ncbi.nlm.nih.gov/pubmed/11593522
https://doi.org/10.3201/eid1608.090470
http://www.ncbi.nlm.nih.gov/pubmed/20678311
https://doi.org/10.1371/journal.pntd.0006554


3. Hardestam J, Simon M, Hedlund KO, Vaheri A, Klingström J, Lundkvist Å. Ex Vivo Stability of the

Rodent-Borne Hantaan Virus in Comparison to That of Arthropod-Borne Members of the Bunyaviridae

Family. Applied and Environmental Microbiology. 2007; 73(8):2547–51. https://doi.org/10.1128/AEM.

02869-06 PMID: 17337567

4. Liu J, Xue F, Wang J, Liu Q. Association of haemorrhagic fever with renal syndrome and weather fac-

tors in Junan County, China: a case-crossover study. Epidemiology & Infection. 2013; 141(4):697–705.

5. Jiang H, Du H, Wang LM, Wang PZ, Bai XF. Hemorrhagic Fever with Renal Syndrome: Pathogenesis

and Clinical Picture. Frontiers in Cellular and Infection Microbiology. 2016; 6:1. https://doi.org/10.3389/

fcimb.2016.00001 PMID: 26870699

6. Luo C-w, Chen H-x. Epidemiological characteristics and the strategy of vaccination on hemorrhagic

fever with renal syndrome in the last 10 years, in China. Zhonghua Liu Xing Bing Xue Za Zhi. 2008; 29

(10):1017–9. PMID: 19173887.

7. Lin H, Zhang Z, Lu L, Li X, Liu Q. Meteorological factors are associated with hemorrhagic fever with

renal syndrome in Jiaonan County, China, 2006–2011. International journal of biometeorology. 2014;

58(6):1031–7. https://doi.org/10.1007/s00484-013-0688-1 PMID: 23793957

8. Zhang W-Y, Wang L-Y, Liu Y-X, Yin W-W, Hu W-B, Magalhaes RJS, et al. Spatiotemporal Transmis-

sion Dynamics of Hemorrhagic Fever with Renal Syndrome in China, 2005–2012. PLOS Neglected

Tropical Diseases. 2014; 8(11):e3344. https://doi.org/10.1371/journal.pntd.0003344 PMID: 25412324

9. He J, Christakos G, Zhang W, Wang Y. A Space-Time Study of Hemorrhagic Fever with Renal Syn-

drome (HFRS) and Its Climatic Associations in Heilongjiang Province, China. Frontiers in Applied Math-

ematics and Statistics. 2017; 3(16). https://doi.org/10.3389/fams.2017.00016

10. Tian H, Yu P, Bjørnstad ON, Cazelles B, Yang J, Tan H, et al. Anthropogenically driven environmental

changes shift the ecological dynamics of hemorrhagic fever with renal syndrome. PLOS Pathogens.

2017; 13(1):e1006198. https://doi.org/10.1371/journal.ppat.1006198 PMID: 28141833

11. Tian H, Yu P, Cazelles B, Xu L, Tan H, Yang J, et al. Interannual cycles of Hantaan virus outbreaks at

the human–animal interface in Central China are controlled by temperature and rainfall. Proceedings of

the National Academy of Sciences. 2017; 114(30):8041–6. https://doi.org/10.1073/pnas.1701777114

PMID: 28696305

12. Li C-P, Cui Z, Li S-L, Magalhaes RJS, Wang B-L, Zhang C, et al. Association between Hemorrhagic

Fever with Renal Syndrome Epidemic and Climate Factors in Heilongjiang Province, China. The Ameri-

can Journal of Tropical Medicine and Hygiene. 2013; 89(5):1006–12. https://doi.org/10.4269/ajtmh.12-

0473. PMID: 24019443

13. Guan P, Huang D, He M, Shen T, Guo J, Zhou B. Investigating the effects of climatic variables and res-

ervoir on the incidence of hemorrhagic fever with renal syndrome in Huludao City, China: a 17-year data

analysis based on structure equation model. BMC Infectious Diseases. 2009; 9(1):109. https://doi.org/

10.1186/1471-2334-9-109 PMID: 19583875

14. Tian H-Y, Yu P-B, Luis AD, Bi P, Cazelles B, Laine M, et al. Changes in Rodent Abundance and

Weather Conditions Potentially Drive Hemorrhagic Fever with Renal Syndrome Outbreaks in Xi’an,

China, 2005–2012. PLOS Neglected Tropical Diseases. 2015; 9(3):e0003530. https://doi.org/10.1371/

journal.pntd.0003530 PMID: 25822936

15. Zhang W-Y, Guo W-D, Fang L-Q, Li C-P, Bi P, Glass GE, et al. Climate Variability and Hemorrhagic

Fever with Renal Syndrome Transmission in Northeastern China. Environmental Health Perspectives.

2010; 118(7):915–20. https://doi.org/10.1289/ehp.0901504 PMID: 20142167

16. Liu X, Jiang B, Gu W, Liu Q. Temporal trend and climate factors of hemorrhagic fever with renal syn-

drome epidemic in Shenyang City, China. BMC Infectious Diseases. 2011; 11(1):331. https://doi.org/

10.1186/1471-2334-11-331 PMID: 22133347

17. Xiao H, Tian H-Y, Gao L-D, Liu H-N, Duan L-S, Basta N, et al. Animal Reservoir, Natural and Socioeco-

nomic Variations and the Transmission of Hemorrhagic Fever with Renal Syndrome in Chenzhou,

China, 2006–2010. PLOS Neglected Tropical Diseases. 2014; 8(1):e2615. https://doi.org/10.1371/

journal.pntd.0002615 PMID: 24421910

18. Engelthaler DM, Mosley DG, Cheek JE, Levy CE, Komatsu KK, Ettestad P, et al. Climatic and environ-

mental patterns associated with hantavirus pulmonary syndrome, Four Corners region, United States.

Emerging Infectious Diseases. 1999; 5(1):87–94. https://doi.org/10.3201/eid0501.990110 PMID:

10081675

19. L’Heureux ML, Tippett MK, Barnston AG. Characterizing ENSO coupled variability and its impact on

North American seasonal precipitation and temperature. Journal of Climate. 2015; 28(10):4231–45.

20. Stenseth NC, Ottersen G, Hurrell JW, Mysterud A, Lima M, Chan KS, et al. Studying climate effects on

ecology through the use of climate indices: the North Atlantic Oscillation, El Niño Southern Oscillation

and beyond. Proceedings of the Royal Society of London Series B: Biological Sciences. 2003; 270

(1529):2087–96. https://doi.org/10.1098/rspb.2003.2415

Spatiotemporal variation of climate-HFRS association in Eastern China

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006554 June 6, 2018 19 / 22

https://doi.org/10.1128/AEM.02869-06
https://doi.org/10.1128/AEM.02869-06
http://www.ncbi.nlm.nih.gov/pubmed/17337567
https://doi.org/10.3389/fcimb.2016.00001
https://doi.org/10.3389/fcimb.2016.00001
http://www.ncbi.nlm.nih.gov/pubmed/26870699
http://www.ncbi.nlm.nih.gov/pubmed/19173887
https://doi.org/10.1007/s00484-013-0688-1
http://www.ncbi.nlm.nih.gov/pubmed/23793957
https://doi.org/10.1371/journal.pntd.0003344
http://www.ncbi.nlm.nih.gov/pubmed/25412324
https://doi.org/10.3389/fams.2017.00016
https://doi.org/10.1371/journal.ppat.1006198
http://www.ncbi.nlm.nih.gov/pubmed/28141833
https://doi.org/10.1073/pnas.1701777114
http://www.ncbi.nlm.nih.gov/pubmed/28696305
https://doi.org/10.4269/ajtmh.12-0473
https://doi.org/10.4269/ajtmh.12-0473
http://www.ncbi.nlm.nih.gov/pubmed/24019443
https://doi.org/10.1186/1471-2334-9-109
https://doi.org/10.1186/1471-2334-9-109
http://www.ncbi.nlm.nih.gov/pubmed/19583875
https://doi.org/10.1371/journal.pntd.0003530
https://doi.org/10.1371/journal.pntd.0003530
http://www.ncbi.nlm.nih.gov/pubmed/25822936
https://doi.org/10.1289/ehp.0901504
http://www.ncbi.nlm.nih.gov/pubmed/20142167
https://doi.org/10.1186/1471-2334-11-331
https://doi.org/10.1186/1471-2334-11-331
http://www.ncbi.nlm.nih.gov/pubmed/22133347
https://doi.org/10.1371/journal.pntd.0002615
https://doi.org/10.1371/journal.pntd.0002615
http://www.ncbi.nlm.nih.gov/pubmed/24421910
https://doi.org/10.3201/eid0501.990110
http://www.ncbi.nlm.nih.gov/pubmed/10081675
https://doi.org/10.1098/rspb.2003.2415
https://doi.org/10.1371/journal.pntd.0006554


21. Hales S, Weinstein P, Souares Y, Woodward A. El Niño and the dynamics of vectorborne disease trans-

mission. Environmental Health Perspectives. 1999; 107(2):99–102. PMID: 9924003

22. Hjelle B, Glass GE. Outbreak of Hantavirus Infection in the Four Corners Region of the United States in

the Wake of the 1997–1998 El Nino—Southern Oscillation. The Journal of Infectious Diseases. 2000;

181(5):1569–73. https://doi.org/10.1086/315467 PMID: 10823755

23. Cazelles B, Chavez M, McMichael AJ, Hales S. Nonstationary Influence of El Niño on the Synchronous

Dengue Epidemics in Thailand. PLOS Medicine. 2005; 2(4):e106. https://doi.org/10.1371/journal.pmed.

0020106 PMID: 15839751

24. Patz JA, Campbell-Lendrum D, Holloway T, Foley JA. Impact of regional climate change on human

health. Nature. 2005; 438:310. https://doi.org/10.1038/nature04188 PMID: 16292302

25. Johansson MA, Cummings DAT, Glass GE. Multiyear Climate Variability and Dengue—El Niño South-

ern Oscillation, Weather, and Dengue Incidence in Puerto Rico, Mexico, and Thailand: A Longitudinal

Data Analysis. PLOS Medicine. 2009; 6(11):e1000168. https://doi.org/10.1371/journal.pmed.1000168

PMID: 19918363

26. Xiao H, Tian H-Y, Cazelles B, Li X-J, Tong S-L, Gao L-D, et al. Atmospheric Moisture Variability and

Transmission of Hemorrhagic Fever with Renal Syndrome in Changsha City, Mainland China, 1991–

2010. PLOS Neglected Tropical Diseases. 2013; 7(6):e2260. https://doi.org/10.1371/journal.pntd.

0002260 PMID: 23755316

27. Xiao D, Wu K, Tan X, Yan T, Li H, Yan Y. The impact of the vaccination program for hemorrhagic fever

with renal syndrome in Hu County, China. Vaccine. 2014; 32(6):740–5. https://doi.org/10.1016/j.

vaccine.2013.11.024. PMID: 24252696
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