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ABSTRACT
Metapopulation dynamics are jointly regulated by local and spatial factors.
These factors may affect the dynamics of local populations and of the entire
metapopulation differently. Previous studies have shown that dispersal can stabilize
local populations; however, as dispersal also tends to increase spatial synchrony,
its net effect on metapopulation stability has been controversial. Here we present
a simple metapopulation model to study how dispersal, in interaction with other
spatial and local processes, affects the temporal variability of metapopulations in a
stochastic environment. Our results show that in homogeneous metapopulations,
the local stabilizing and spatial synchronizing effects of dispersal cancel each other
out, such that dispersal has no effect on metapopulation variability. This result is
robust to moderate heterogeneities in local and spatial parameters. When local and
spatial dynamics exhibit high heterogeneities, however, dispersal can either stabilize
or destabilize metapopulation dynamics through various mechanisms. Our findings
have important theoretical and practical implications. We show that dispersal
functions as a form of spatial intraspecific mutualism in metapopulation dynamics
and that its effect on metapopulation stability is opposite to that of interspecific
competition on local community stability. Our results also suggest that conservation
corridors should be designed with appreciation of spatial heterogeneities in
population dynamics in order to maximize metapopulation stability.

Subjects Conservation Biology, Ecology, Mathematical Biology
Keywords Asymmetry, Dispersal, Metapopulation, Variability, Synchrony, Stability, Corridor,
Spatial heterogeneity

INTRODUCTION
One important question in spatial ecology is how spatial coupling of local populations

affects the dynamics and stability of metapopulations. Natural populations undergo

various sources of stochasticity and fluctuate permanently over time (Lundberg et al.,

2000). A common empirical measure of stability is the temporal variability of population

size (Pimm, 1984; Ives, 1995), which is closely related to the long-term persistence of the

population (Inchausti & Halley, 2003). Within a metapopulation, temporal variability can

be measured at both the local population and metapopulation scales. Ecological processes,

particularly dispersal, may affect the variability at different scales differently (Dey & Joshi,

2006; Vogwill, Fenton & Brockhurst, 2009).
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At the local scale, theoretical and empirical studies have widely documented that

dispersal can decrease population variability and hence local extinction rate through

spatial averaging or rescue effects (Lande, Engen & Sæther, 1998; Briggs & Hoopes,

2004; Vogwill, Fenton & Brockhurst, 2009; Abbott, 2011). However, the effect of dispersal

on metapopulation stability, i.e., the stability of the whole metapopulation, has been

controversial. While stabilizing local dynamics, dispersal also tends to increase the spatial

synchrony between local populations (Kendall et al., 2000; Ripa, 2000; Liebhold, Koenig

& Bjørnstad, 2004; Abbott, 2011). Such synchronizing effects have been demonstrated to

impair the persistence and stability of metapopulations (Heino et al., 1997; Earn, Levin

& Rohani, 2000; Gouhier, Guichard & Gonzalez, 2010; but see Blasius, Huppert & Stone,

1999). Therefore, dispersal is a double-edged sword (Hudson & Cattadori, 1999): it can

either decrease metapopulation variability and extinction rate through its local stabilizing

effects or increase them through its spatial synchronizing effects. Experimental studies have

reported stabilizing, destabilizing, or no effects of dispersal on metapopulation variability

(Dey & Joshi, 2006; Vogwill, Fenton & Brockhurst, 2009; Steiner et al., 2013). Given these

controversies, it is necessary to use theoretical models to quantitatively study the two

effects of dispersal together and understand the net effects of dispersal on stability at the

metapopulation scale.

Recently, we have developed a general framework that links population or ecosystem

stability across multiple scales (Wang & Loreau, 2014). When applied to a single-species

metapopulation, this framework shows that metapopulation variability can be calculated

as the product of local population variability and a metapopulation-wide measure of

spatial synchrony. Consequently, the net effect of dispersal on metapopulation variability is

determined by the relative strengths of its local stabilizing and spatial synchronizing effects.

This framework provides a useful tool to investigate how the effects of dispersal (or any

other factors) on variability scale up from population to metapopulation scales.

In this study, we use simple metapopulation models to investigate analytically how

dispersal, in interaction with other factors, regulates temporal variability at different scales.

In all our models, local populations have feasible and stable equilibria in the absence of

environmental stochasticity; however, due to environmental stochasticity, populations

fluctuate permanently around these equilibria. This assumption allows us to analyze our

models with the linearization approximation (see Methods). We first study a homogeneous

metapopulation in which local (i.e., local intrinsic growth rate and carrying capacity) and

spatial (i.e., dispersal) parameters are all identical among patches. In this case, we derive

analytic formulae that quantify the local stabilizing and spatial synchronizing effects of

dispersal. Interestingly, we show that these two effects cancel each other out, such that

dispersal has no net effect on metapopulation variability. We then consider more general

cases with spatially heterogeneous population dynamics and/or asymmetric dispersal rates.

Spatial heterogeneities in the environment (e.g., temperature, patch size, etc.) can result in

variation in population dynamics among patches (Brown et al., 2004; Strevens & Bonsall,

2011; De Roissart, Wang & Bonte, in press). In addition, dispersal can exhibit directionality

due to abiotic (e.g., water or wind flows; see Levine, 2003; Anderson, Hilker & Nisbet, 2012)
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or biotic (e.g., active dispersal; see Pulliam, 1988; Bowler & Benton, 2005) factors. It

remains unexplored how spatial heterogeneities in population dynamics and asymmetric

dispersal interact and affect the stability of metapopulations at multiple scales (but see Dey,

Goswami & Joshi, 2014). By studying metapopulation models with heterogeneous local

and spatial parameters, we identify several mechanisms by which dispersal can increase or

decrease metapopulation variability. Finally, we discuss the implications of our model for

landscape management.

METHODS
Model
Consider a metapopulation composed of m local patches. The dynamics of local

populations are governed by density-dependent growth and density-independent dispersal

between patches. We use a continuous-time model as follows:

dNi(t)

dt
= riNi(t) ·


1 −

Ni(t)

ki


− diNi(t) +


j≠i

dj

m − 1
· Nj(t) + Ni(t)εi(t) (1)

where Ni(t) represents the population size (or biomass) in patch i at time t, ri and ki

represent the intrinsic growth rate and carrying capacity in patch i, respectively, and di

represents the rate for each individual in patch i to immigrate into other patches. Here,

we consider an implicit spatial structure so that individuals from patch i have equal

probabilities to reach any other patch (di/(m − 1)). The random variables εi(t) represent

environmental stochasticity in the growth rate of population i at time t. For simplicity,

we assume that the environmental stochasticity is independent through time (i.e., white

noise). The spatial correlation of the white-noise variables εi(t) are characterized by

the covariance matrix Vε, for which we assume the following symmetric structure:

Vε(i,i) = σ 2 for any i and Vε(i,j) = ρσ 2 for any i ≠ j (see Appendix S1 for details).

Particularly, ρ represents the between-patch correlation in population environmental

responses.

Previous studies have often used discrete-time models to study metapopulation

dynamics in stochastic environments (e.g., Kendall et al., 2000; Ripa, 2000; Abbott, 2011). In

these models, the order of spatial and local processes can alter the results quantitatively

(Ripa, 2000). Our continuous-time model avoids this problem. In order to compare

it with previous models, however, we also study two discrete-time models that capture

essentially the same spatial and local processes, with distinct orderings of these processes

(Appendix S3). The results under the discrete-time models are qualitatively similar to

those of the continuous-time model (except for the effects of the intrinsic growth rate

r; see Appendix S3). We thus present only the continuous-time model in the main text.

Interested readers can find all the details about the discrete-time models in Appendix S3.

Solving for the covariance matrix
A common approach to study the temporal variability of stochastic dynamical systems

is to linearize the system around its stable equilibrium (Ives, 1995; Lundberg et al., 2000;
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Ripa & Ives, 2003; Greenman & Benton, 2005). This linearization approach provides

approximate analytic solutions for the stationary covariance matrix, on condition

that the dynamical system has a stable equilibrium in the absence of stochasticity and

undergoes moderate stochasticity. With this approach, we first derive the analytic solutions

for homogeneous metapopulations in which local and spatial dynamics have identical

parameters, i.e., for any i, ri = r, ki = k, di = d. In this case, the equilibrium local population

size is simply N∗
= k. Around Ni(t) = N∗ and εi(t) = 0, Eq. (1) can be linearized into the

following form (see Appendix S1):

d
−→
X (t)

dt
= J

−→
X (t) + N∗−→ε (t) (2)

where:

−→
X (t) =


N1(t) − N∗,...,Nm(t) − N∗

′
⇀
ε (t) = (ε1(t),...,εm(t))′

J =



−r − d
d

m − 1
···

d

m − 1
d

m − 1
−r − d

. . .
...

...
. . .

. . .
d

m − 1
d

m − 1
···

d

m − 1
−r − d


.

Note that J is the Jacobian matrix, and the equilibrium is locally stable when r > 0 (see

Appendix S1). Under the assumption of white noise, we can derive from Eq. (2) the

stationary covariance matrix of metapopulation dynamics (VN = Cov(
−→
X (∞))), which

is the solution of the following equation (Van Kampen, 1992; see Appendix S1):

VN J′
+ JVN + N∗2

· Vε = 0. (3)

For general cases with heterogeneous local and spatial parameters, we analyze two-patch

metapopulation models using similar procedures as above (see Appendix S2). First, by

ignoring environmental fluctuations, we compute the equilibrium local population sizes

(N∗
1 ,N∗

2 ) numerically. Our simulations suggest that there is always one globally stable

equilibrium, i.e., trajectories starting from different initial conditions all converge to the

same equilibrium. We then calculate the Jacobian matrix around this equilibrium:

J =


r1


1 −

2N∗
1

k1


− d1 d2

d1 r2


1 −

2N∗
2

k2


− d2

.
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Based on this Jacobian matrix and the covariance matrix of population environmental

responses, we can solve the stationary covariance matrix (see Appendix S2).

The covariance matrices are then used to calculate temporal variability at the population

and metapopulation scales (see ‘Temporal variability at multiple scales’). To evaluate the

accuracy of our linearized solutions, we also perform stochastic simulations based on the

nonlinear Eq. (1). Simulation results show that the linearization generally provides a good

approximation unless environmental stochasticity is large and exhibits a strong spatial

asynchrony (see Fig. SA1). Note that in natural ecosystems, environmental asynchrony

is not expected to be strong, because the environment generally exhibits positive spatial

correlations (Moran, 1953; Hudson & Cattadori, 1999). Therefore, the linearization

approach may provide a good approximation in natural ecosystems.

Temporal variability at multiple scales
Within a metapopulation, variability can be measured at alpha, beta, and gamma

scales, which correspond to local population variability, spatial asynchrony among local

populations, and metapopulation variability, respectively (Wang & Loreau, 2014). All these

measures can be derived from the mean (N∗
= (N∗

1 ,N∗
2 ,...,N∗

m)) and covariance matrix

(VN = Cov(
−→
X (∞))) of local population sizes. We use the coefficient of variation (CV),

i.e., the ratio of the standard deviation to the mean, to measure variability. For instance,

the temporal CV of population i is: CVi =

√
VN (i,i)
N∗

i
. Then, alpha variability is defined as the

square of the weighted average of the local population CV :

αCV =


i

N∗

i
j N

∗

j

· CVi

2

=


i

√
VN(i,i)
j N

∗

j

2

(4)

and gamma variability (γcv) is defined as the square of the temporal CV of total

metapopulation size:

γCV =


i,j VN(i,j)

j N
∗

j

2 . (5)

Beta variability or spatial asynchrony, is defined as the reciprocal of spatial population

synchrony: β = 1/ϕp, where the spatial synchrony is defined as:

ϕp =


i,j VN(i,j)

i

√
VN(i,i)

2 . (6)

Metapopulation variability is then linked to local alpha variability and spatial (a)

synchrony as follows: γcv = αcv · ϕp = αcv/β (Wang & Loreau, 2014). For the homogeneous

case, we derive analytic formulae for this multi-scale variability, which is summarized in

Table 1.
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Table 1 Analytic solutions for multi-scale variability and spatial synchrony in homogeneous

metapopulations. For clarity, we denote d′
= md/(m − 1) and ϕe =

1+(m−1)ρ
m . Note that by definition,

we have β = αcv/γcv and ϕp = 1/β.

Variability or synchrony Solution Solution under
d = 0

Population variability (αcv) αCV =
(r+d′

·ϕe)·σ
2

2r(r+d′)
αd=0

CV =
σ 2

2r

Spatial asynchrony (β) β1 =
r/ϕe+d′

r+d′ βd=0
1 =

1
ϕe

Spatial synchrony (ϕp) ϕP =
r+d′

r/ϕe+d′ ϕd=0
P = ϕe

Metapopulation variability (γcv) γCV =
σ 2

2r · ϕe γ d=0
CV =

σ 2

2r · ϕe

Dispersal-induced stability and synchrony
As demonstrated by previous studies, dispersal can simultaneously provide stabilizing and

synchronizing effects on local population dynamics (Abbott, 2011). The dispersal-induced

stability (Dα) can be defined as the ratio of alpha variability without dispersal to

that with dispersal (Abbott, 2011): Dα = αd=0
CV /αCV . Similarly, the dispersal-induced

synchrony (Dϕ) can be defined as the ratio of spatial synchrony with dispersal to that

without dispersal: Dϕ = ϕp/ϕ
d=0
p = βd=0/β. Dα and Dϕ quantify the local stabilizing

and spatial synchronizing effects of dispersal, respectively. The effect of dispersal on

metapopulation stability (Dγ ) is determined by the relative magnitudes of these two

effects, i.e., Dγ = γ d=0
CV /γCV = Dα/Dϕ . When Dγ is larger than 1, the local stabilizing effect

is larger than the spatial synchronizing effect, and thus dispersal decreases metapopulation

variability. Otherwise, dispersal increases metapopulation variability.

RESULTS
Multi-scale variability in homogeneous metapopulations
Through its stabilizing and synchronizing effects, respectively, dispersal decreases both

alpha and beta variability (Fig. 1). These dispersal-induced effects are stronger under lower

population growth rate, lower correlation of population environmental responses, and

higher number of patches (Fig. 2). Interestingly, in homogeneous metapopulations, the

dispersal-induced stability (Dα) is always identical to the dispersal-induced synchrony

(Dϕ); both equal the ratio of spatial population synchrony (ϕp) to the synchrony of

environmental responses (ϕe =
1+(m−1)ρ

m ) (see Appendix S1):

Dα = Dϕ =
ϕp

ϕe
. (7)

This implies that in homogeneous metapopulations, the effects of dispersal cancel

out at the metapopulation level and thus dispersal has no net effects on gamma

variability (Dγ = 1; see Table 1 and Fig. 1). These results, however, are based on linear

approximations, which are appropriate when the environment fluctuates moderately. In a

strongly fluctuating and asynchronous environment, simulations show that dispersal can
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Figure 1 Multi-scale variability in homogeneous metapopulations. Effects of the correlation in
environmental responses (ρ), number of patches (m), and dispersal rate (d) on multi-scale variability
in homogeneous metapopulations. Parameters: r = 0.5, σ 2

= 0.05, and m = 10 for (A–C) and ρ = 0 for
(D–F).
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Figure 2 Dispersal-induced stability (Dα) or synchrony (Dϕ) in homogeneous metapopulations. Note

that Dα = Dϕ. Parameters for the bold line: m = 10, ρ = 0, r = 0.5, and σ 2
= 0.05. Lines with marks

have same parameters except: m = 5 (triangle), ρ = 0.2 (square), r = 1 (circle).
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lines show results under ρ = 0 and 0.2, respectively. Other parameters: m = 10, σ 2

= 0.05.

provide weak stabilizing effects on gamma variability (Fig. SA1; see also Loreau, Mouquet &

Gonzalez, 2003).

The correlation of population environmental responses (ρ) and the number of patches

(m) affect the multi-scale variability mainly through their effects on the spatial synchrony

of population environmental responses (ϕe; see Table 1). As ρ increases and/or m decreases

(such that ϕe increases), alpha and gamma variability both increase, and the beta variability

decreases (Fig. 1). Besides, as the intrinsic growth rate (r) increases, the temporal

variability at alpha and gamma scales all decrease (Fig. 3). An increasing r also weakens

the spatial synchronizing effects of dispersal and environmental correlation and thereby

increases spatial asynchrony (Fig. 3B). Note that dispersal is required for spatial parameters

(ρ and m) to affect local alpha variability and for the local parameter (r) to affect spatial

asynchrony. When there is no dispersal (d = 0), alpha variability is independent of ρ and

m, and spatial asynchrony is independent of r (Table 1).

Effects of spatial heterogeneities on metapopulation variability
In two-patch metapopulations, when keeping dispersal rates symmetric between the two

patches, spatial heterogeneities in local parameters (r and k) generally increase gamma

variability (Fig. 4). However, when the larger population (larger k) has faster local

dynamics (larger r), such heterogeneity can contribute to reducing gamma variability

if environmental responses are highly synchronous (Fig. 4F). When local populations

have heterogeneous dynamics, increased (symmetric) dispersal rate tends to decrease

gamma variability (Figs. 4A–4D). However, when local populations differ in carrying

capacity (k), dispersal can be destabilizing, particularly when environmental responses

are highly synchronous (Figs. 4E and 4F). Finally, note that in the cases with low or

moderate heterogeneities in local parameters, symmetric dispersal has very limited effects

on metapopulation variability, just as it does in homogeneous metapopulations.

When keeping local dynamical parameters (r and k) homogeneous, asymmetry

in dispersal rates generally increases gamma variability (Figs. 5A and 5D). Under

the extreme case where one population does not disperse, the other population will

have decreased population size and increased variability as its dispersal rate increases

Wang et al. (2015), PeerJ, DOI 10.7717/peerj.1295 8/16

https://peerj.com
http://dx.doi.org/10.7717/peerj.1295/supp-2
http://dx.doi.org/10.7717/peerj.1295/supp-2
http://dx.doi.org/10.7717/peerj.1295


 

 

  

r1 = 1-s
k1 =1

r2 = 1+s
k2 =1

d

 

 

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

0.03

0.04

0.05

0.06

0.07

 

 

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

0.025

0.03

0.035

 

 

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

0.016

0.018

0.02

0.022

0.024

 

 

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

 

 

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

 

 

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

0

0.01

0.02

0.03

0.04

0.05

0

0.005

0.01

0.015

0.02

0.025

0

2

4

6

8

10
x 10

3

φ e
= 

0
φ e

= 
1

Spatial asymmetry (s)

D
is

pe
rs

al
 ra

te
 (d

)

(a) (c) (b) 

(d) (f) (e) 

x 10-3

r1 = 1
k1 =1-s

r2 = 1
k2 =1+s

d r1 = 1-s
k1 =1-s

r2 = 1+s
k2 =1+s

d

Figure 4 Effect of spatial heterogeneities in local dynamical parameters and of (symmetric) dispersal
rate on gamma variability in two-patch metapopulations. (A–C): gamma variability when environ-
mental responses are perfectly asynchronous (ϕe = 0); (D–F) gamma variability when environmental
responses are perfectly synchronous (ϕe = 1). The two patches differ in their intrinsic population growth
rate (r) and/or carrying capacity (k), where a larger s indicates a higher heterogeneity. Other parameters:
σ 2

= 0.05. See Figs. SA2 and SA3 for the patterns of variability at other scales.

Figure 5 Effects of asymmetric dispersal on gamma variability in two-patch metapopulations (with
homogeneous/heterogeneous local dynamics). (A–C): gamma variability when environmental re-
sponses are perfectly asynchronous (ϕe = 0); (D–F) gamma variability when environmental responses are
perfectly synchronous (ϕe = 1). Symmetry in dispersal rates occurs along the 1:1 diagonal; asymmetry
increases as one moves away from this diagonal. Note that along the 1:1 diagonal, gamma variability have
similar patterns as those in respective panels in Fig. 4. Other parameters: σ 2

= 0.05. See Figs. SA4 and
SA5 for the patterns of variability at other scales.
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(see Appendix S2). Consequently, the metapopulation is dominated by one population

(the non-dispersing one) and thereby exhibits larger variability (Figs. 5A and 5D).

However, spatial heterogeneities in local population dynamics can alter this prediction

qualitatively. For instance, if the non-dispersing population has faster local dynamics

(larger r), its dominance may contribute to reducing gamma variability, especially when

environmental responses are highly synchronous (Fig. 5E). Moreover, when local dynamics

are highly heterogeneous, the metapopulation is most stable when dispersal rates exhibit

moderate asymmetries. More specifically, gamma variability is lowest when the faster

population has a moderately higher dispersal rate (Figs. 5B and 5E), or when the larger

population has a moderately higher dispersal rate in asynchronous environments (Fig. 5C)

or has a moderately lower dispersal rate in synchronous environments (Fig. 5F).

DISCUSSION
We have used dynamical models to study the role of dispersal, in interaction with other

spatial and local factors, in regulating the stability of metapopulations at multiple

scales. Both the local stabilizing and spatial synchronizing effects of dispersal have been

documented in previous studies (reviewed in Abbott, 2011), and are again demonstrated

by our models. One remarkable finding is that in homogeneous metapopulations, the

local stabilizing effect of dispersal is always identical to its spatial synchronizing effect;

consequently, dispersal has no net effect on the variability of the whole metapopulation

(Fig. 1). This result is robust to moderate heterogeneities in local and spatial parameters

(Figs. 4 and 5), and is consistent with findings from experiments with the same settings

(i.e., experimental metapopulations with stable and homogeneous local populations; see

Vogwill, Fenton & Brockhurst, 2009). In deterministic metapopulation models, previous

studies have shown that random dispersal does not alter stability properties of the

linearized system when local population dynamics are homogeneous (reviewed in Briggs

& Hoopes, 2004). Here we have further shown that dispersal does not affect the temporal

stability of homogeneous metapopulations in a fluctuating environment.

In heterogeneous metapopulations, spatial heterogeneities in local dynamical

parameters or dispersal rates generally increase metapopulation variability. However,

when local dynamics are heterogeneous, dispersal can provide stabilizing effects on

metapopulation variability in several ways. First, by linking populations with fast and slow

dynamics, dispersal can decrease gamma variability by either stabilizing both populations

(Fig. SA2) or providing stronger stabilizing effects on the slower population and weaker

destabilizing effects on the faster populations (Fig. SA3; see also Briggs & Hoopes, 2004;

Ruokolainen et al., 2011). In particular, a moderately higher dispersal rate of the faster

population can produce lowest gamma variability (Fig. SA5; see also Dey, Goswami &

Joshi, 2014). Second, a much higher dispersal rate of the slower population can leave the

metapopulation dominated by the faster population, which decreases gamma variability in

highly synchronous environments (Fig. 5E). Third, in highly synchronous environments,

while symmetric dispersal rate between small and large patches can be destabilizing

(Fig. 4), a relatively higher dispersal rate of the smaller population can result in a zero
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net spatial flow of individuals, which decreases alpha and gamma variability (Fig. SA5).

Finally, in highly asynchronous environments, dispersal can also provide stabilizing effects

by reducing spatial synchrony. Specifically, a higher dispersal rate of the larger population

can increase spatial evenness, which decreases spatial synchrony (Wang & Loreau, 2014)

and thereby reduce gamma variability (Fig. SA4). Similarly, when asymmetries in dispersal

rates operate in opposite ways—for instance the faster population has a much higher

dispersal rate or a moderately lower rate, or the larger population has a higher (smaller)

dispersal rate in (a)synchrounous environments—dispersal can increase the variability of

the whole metapopulation.

It is interesting to compare the role of dispersal in metapopulation stability with that of

interspecific competition in community stability. In metapopulations, populations interact

through dispersal in physical space; in competitive communities, populations interact

through interspecific competition in an abstract niche space. Remarkably, the effects of

dispersal in our models are just opposite to those of competition in community stability. As

shown in previous studies, competition can increase species variability but simultaneously

decrease species synchrony; in symmetric communities with identical species parameters,

these two effects cancel each other out and consequently competition has no effect on

community stability (Hughes & Roughgarden, 1998; Ives, Gross & Klug, 1999; Loreau &

De Mazancourt, 2008; Loreau & De Mazancourt, 2013). In asymmetric communities, an

increasing asymmetry in competitive abilities generally increases community variability

(Hughes & Roughgarden, 1998; Loreau & De Mazancourt, 2013); however, a moderately

higher competitive ability of the slower species, or a much higher competitive ability of

the faster species, can decrease community variability (Loreau & De Mazancourt, 2013).

All these effects demonstrate the opposite roles played by interspecific competition in

community stability and dispersal in metapopulation stability. These contrasting patterns

could be understood from the fact that competition reduces the population size of

recipient species while dispersal increases the size of recipient populations. This is reflected

in the Jacobian matrices in which competition and dispersal produce negative and positive

interaction coefficients, respectively. In other words, dispersal acts as a form of spatial

intraspecific mutualism in the dynamics of metapopulations.

Our results have important implications for landscape management. Corridors

are commonly promoted as a conservation strategy to mitigate the effects of habitat

fragmentation. Corridors have been demonstrated to promote dispersal and movement

between habitat patches (Gilbert-Norton et al., 2010). But evidence is still lacking about

the effects of corridors on population persistence (Haddad et al., 2011; but see Gonzalez

et al., 1998), which is the ultimate reason for creating corridors. Our results suggest that

corridors do not necessarily increase the stability and persistence of metapopulations

(see also Earn, Levin & Rohani, 2000). In the specific case where local populations have

nearly identical dynamical parameters, the synchronizing effect of dispersal cancels out

their local stabilizing effect such that corridors have no net effect on the stability at

metapopulation level. In reality, spatial heterogeneity can result in a stronger or weaker

local stabilizing effect of dispersal compared to its synchronizing effect, and hence
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corridors may enhance or impair the stability of metapopulations. Our model suggests

that in a heterogeneous landscape, the most efficient design of corridors is often one that

generates asymmetric dispersal (Fig. 5). For instance, if local patches have different growth

rates, the metapopulation is most stable when the faster-growing patch has a moderately

higher dispersal rate than the slower-growing patch. Such asymmetric dispersal might

be achieved by two mechanisms. First, when connected by corridors, the faster-growing

population may have a higher level of dispersal activity spontaneously, e.g., by active

dispersal (Pulliam, 1988). Second, it might be possible to design corridors that produce

directional dispersal in some cases, for instance by taking advantage of water and/or wind

flow (Säumel & Kowarik, 2010; Anderson, Hilker & Nisbet, 2012).

CONCLUDING REMARKS
In this paper, we have explored how spatial processes govern the variability of

metapopulations at multiple scales in a stochastic environment. We show that within

a metapopulation, dispersal functions as a form of spatial intraspecific mutualism.

While stabilizing local populations, dispersal has very limited stabilizing effects on

metapopulations if local population dynamics are homogeneous. In highly heterogeneous

metapopulations, however, dispersal can stabilize or destabilize metapopulations through

various mechanisms. Therefore, corridor designs, in order to increase metapopulation

stability and persistence, should be context dependent with explicit consideration of spatial

heterogeneities in population dynamics.

Our results are based on a simple metapopulation model and thus its limitations should

be kept in mind. First, in our models local populations always have stable equilibrium if

there is no environmental stochasticity. However, if local populations undergo complex

dynamics (e.g., limit cycles or chaotic attractors), dispersal can provide stabilizing effects

through interacting with nonlinearity and spatial heterogeneity (Briggs & Hoopes, 2004;

Abrams & Ruokolainen, 2011; Dey, Goswami & Joshi, 2014; see also Fig. SA1). Our model

also ignores the effects of environmental autocorrelation (Ruokolainen et al., 2009). We

have shown that our first main result, i.e., the stability of homogeneous metapopulations

is not affected by dispersal, still holds for coloured noise (see Appendix S4). Still, it

would be worthwhile to investigate the interactive effects of coloured noise and spatial

heterogeneities on the dispersal-stability relationship in future research. Besides, our

model ignores the effects of interspecific interactions, the inclusion of which may alter

some of our conclusions (Koelle & Vandermeer, 2005). For instance, corridors can promote

species co-occurrence and thus enhance competition or predation pressure, which thereby

may impair the persistence of the focal species (Loreau, Mouquet & Gonzalez, 2003; Vogwill,

Fenton & Brockhurst, 2009). Finally, our model considers space implicitly, which could

be extended to a spatially explicit one to study the interactive effects between dispersal,

spatial heterogeneity, and landscape configuration (Holland & Hastings, 2008). Future

studies should incorporate these complexities to better understand the effects of dispersal

on patchy populations in stochastic environments.
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