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Abstract: This paper presents a microstrip antenna based on metamaterials (MTM). The proposed
antenna showed several resonances around the BAN and ISM frequency bands. The antenna showed
a suitable gain for short and medium wireless communication systems of about 1 dBi, 1.24 dBi,
1.48 dBi, 2.05 dBi, and 4.11 dBi at 403 MHz, 433 MH, 611 Mz, 912 MHz, and 2.45 GHz, respectively.
The antenna was printed using silver nanoparticle ink on a polymer substrate. The antenna size
was reduced to 20 × 10 mm2 to suit the different miniaturized wireless biomedical devices. The
fabricated prototype was tested experimentally on the human body. The main novelty with this
design is its ability to suppress the surface wave from the patch edges, significantly reducing the
back radiation toward the human body when used close to it. The antenna was located on the human
head to specify the specific absorption rate (SAR). It was found in all cases that the proposed antenna
showed low SAR effects on the human body.

Keywords: SAR; flexible antenna; wearable; MTM

1. Introduction

In the last decade, electronic systems miniaturization has led to an increased demand
for wearable devices that can monitor the human body’s functions [1]; thus, wearable health
management systems became a most attractive field for researchers. This is due to the fact
that such wearable devices can function well enough to replace several medical instruments
when embedded in smart clothes [2]. In order apply such technology, researchers developed
a variety of miniaturized antennas with adequate performance [3]. However, to employ
wearable systems in biomedical applications, several practical specifications in antenna
design must be considered, such as small size, low weight, power consumption, and
flexible structure [4]. For this, a number of microstrip antennas were introduced as one of
the most desired categories for wearable applications when mounted close to the human
body [5].

Subsequently, significant demands for wearable antennas to be compact and to not
have unnecessary setup requirements were increased for self-adaptive wireless systems [6].
It is worth mentioning that one of the main research interests of wearable antennas is
wireless body area network applications [7]. Consequently, printed circuit antennas became
attractive due to their unique properties, such as their being very compatible with the
requirements of wearable systems [8]. The main important advantages of using printed
antennas for wearable systems are their cost-effectiveness, design simplicity, and their
relative biocompatibility [9]. Moreover, one of the important advantages of using printed
circuit antennas with wearable systems is that they can be mounted on flexible and/or semi-
flexible substrates, maintaining their performance against physical bending and twisting
effects [10]. Thus, attention must be paid during the design process to consider employing
suitable materials for the wearable antenna fabrication [11]. Such considerations have a
direct effect on a fabricated antenna’s efficiency and bandwidth, where they are usually
highly affected by substrate thickness and the dielectric constant [12].
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Currently, significant interest has been raised with regard to flexible and semi-flexible
substrates for telemedicine and biomedical applications [13]. Much attention was paid to
the use of flexible and semi-flexible materials for wearable nodes production [13]. With the
great advancements in wearable antenna technologies, a significant development has been
observed in their utilization for implantable devices [14]. However, operating antennas
at low frequency ranges with miniaturized size for wearable devices without affecting
radiation efficiency and gain is one of the more relevant challenges in the current state
of the art [15]. To resolve such a problem, various efforts have been made to reduce
the size of wearable antennas using reactive loads [16], utilizing materials with high
permittivity [17], and using vias [18], shorting posts [19], and fractal geometries to increase
the current path [20]. When the mentioned techniques have been applied, the antenna
size has been significantly reduced. However, different difficulties appeared, such as
bandwidth reduction, design complexity, and gain degradations [8]. In addition, even
though wearable antennas were applied in different technologies based on smart clothes,
they still suffered from different issues, such as their influences on the hosting body,
the effect of their location on different body parts on their operation, and the possible
occurrence of significant efficiency and reliability losses due to antenna deformation [18].
Therefore, a critical issue in wearable antenna design that must be considered is minimizing
electromagnetic leakages toward the human body.

In another aspect, biocompatible materials such as polyamide substrates have recently
attracted researchers to include them in their designs for wearable antennas [15]. This is
due to their excellent mechanical properties, including but not limited to their light weight,
flexibility, tensile strength, durability, high-heat resistance (up to 400 ◦C), excellent electrical
properties, high moisture release characteristics, and low moisture uptake [17]. On the
other hand, due to the properties of human tissue that have high permittivity, when the
human body is exposed to the electromagnetic waves that radiate from a wearable antenna,
the body absorbs a large amount of this energy [19]. As is well known, the parameters of a
wearable antenna are decreased noticeably during its functioning near the human body,
which causes significant problems in the wireless communication field [5]. Furthermore,
electromagnetic waves absorbed by the human body have undesirable environmental
and biological impact [6]. Several types of wearable antennas have been developed in
the past. The authors of [7] designed a compact triangular patch antenna; however, the
antenna has a very narrow operating bandwidth. A low-sized cpw-fed slot antenna with
floating ground plane for ISM band was designed in [7]; however, the designed antenna
had a very low fractional bandwidth (6% at the center frequency of 5.825 GHz). Several
other wearable antennas such as electromagnetic bandgap (EBG)-based antennas [2] and
substrate-integrated waveguide (SIW)-based antennas [10] have been designed; however,
all of these antennas have had a narrow bandwidth.

In this paper, a low profile and flexible printed wearable antenna was designed for
ISM bands including 403 MHz, 433 MH, 611 Mz, 912 MHz, and 2.45 GHz for remote
health-monitoring applications. The antenna was based on a polyimide substrate, which is
known for its flexibility and robustness. The performance of the proposed antenna was
acceptable in terms of gain, operating bandwidth, and efficiency in the bending scenarios.
In addition, the antenna has appropriate gain, acceptable bandwidth, and high efficiency
in on-body worn scenarios. Moreover, the antenna has a reasonably low SAR value when
mounted on the human body.

2. Antenna Geometry

The antenna is constructed from an MTM patch of a complementary Minkowski fractal
geometry to realize multiple frequency resonance within a miniaturized size. The patch is
fed with 50 Ω coplanar waveguide (CPW) to achieve excellent matching at several bands [6].
Two matching circuits are introduced (see Figure 1a) between the patch structure and the
CPW ground plane to reduce the reflection effects [10]. Nevertheless, the advantage of
adding those matching circuits is to suppress the surface waves along the patch edges [12].
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Figure 1. The antenna geometrical: (a) front view, (b) side view, and (c) back view.

In the same context, reducing the effects of the surface waves reflections from the
substrate edges is achieved by etching MTM defects from the proposed CPW ground
plane [18], which minimizes the back radiation. In turn, the electromagnetic leakage
toward the human body would be reduced significantly [10]. As seen in Figure 1b, the
antenna dimensions are 20 mm × 20 mm when printed on a polymer substrate of 0.3 mm
thickness with relative permittivity of 3.5 and loss tangent of 0.0001. The antenna back
panel is covered with a partial ground plane to reduce the effects of the capacitive coupling
with the patch structure [13].

Finally, the antenna structure is printed using conductive ink based on silver nanopar-
ticles of conductivity of around 1.3 × 106 s/m. The novelty of the proposed design is that
by considering the complementary Minkowski geometry, such a structure can therefore
dominate the magnetic field instead of the electrical field [10]. Consequently, SAR effects
would be insignificant on human tissue where the human body permeability is unity [13].

3. MTM Characterizations

The proposed MTM is defined as sub-wavelength composites of right–left hand struc-
tures with negative εr and µr at the frequency bands of interest. The resonance frequency of
the proposed MTM unit cell is affected by substrate height and permittivity [12]. Therefore,
CSTMWS based on the finite integral technique (FIT) [21] was invoked to investigate the
proposed MTM behavior in terms of S-parameters and dispersion diagram. As seen in
Figure 2, the proposed unit cell is etched from a transmission line ground plane to obtain
quasi-TEM-like modes [9]. In that simulation, the upper and lower ±y axes faces are
considered perfect electrical conductors (PEC). The other two faces along the ±x axes are
subjected as perfect magnetic conductors (PMC). The waveguide ports are assigned ±z
axes. It is important to mention that the proposed unit cell is normal to the excitation ports.
This was taken into consideration because the proposed unit cell is etched from the patch
surface in which the electric field would be normal to the patch surface [7].

Here, the proposed unit cell structure is characterized in terms of S-parameters, S11
and S12, and dispersion diagram. As seen in Figure 3a, the proposed unit cell shows
more than single frequency resonance within the bandwidth of interest. The authors
treated this unit cell as explained in [9]. Therefore, based on the resulting variation in the
wave velocity for such unit cell at the first Brillion zone, see the dispersion diagram in
Figure 3a, the wave propagation band gap can be evaluated. From the observed results at
the first transverse electrical and magnetic modes, the proposed unit cell shows a band gap
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between the frequency range of 1 GHz and 2.43 GHz; which make it a good candidate for
such applications [12].
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Based on the simulation results, the proposed unit cell equivalent circuit model is
derived as seen in Figure 4. The equivalent capacitances of coupling between the unit cell
and adjacent cells are indicated as Left Hand (LH) capacitor of (CLH), and the fractal slot is
considered as an inductor (LLH) where the magnetic current motion in the air traces can
be magnified [12]. This inductor is equivalent to the magnetic field that is stored inside
the rings’ fractal slots [6]. The other presented elements are considered for the traditional
medium of propagation due to the Right Hand (RH) transmission part, which is given by
LRH, RRH, GRH, and CRH as inductance, resistance, conductance, and capacitance elements.
These parameters are driven by coupling effects between the T-resonator the fractal shape
in the unit cell [12].

The lumped elements of the proposed circuit in Figure 3 were evaluated based on
a parametric study inside Advanced Design System (ADS) environments, and they are
listed in Table 1. Therefore, the frequency resonance can be tuned by varying the gap
width between the T-resonator in the unit cell and the fractal geometry. Consequently,
a parametric study was applied by changing the gap between the T-resonator, and the
fractal geometry (G) was conducted to determine the operating resonance frequency, which
led to the desired unit cell properties at the frequency band of interest. Figure 5 displays
the conducted parametric study on the parameter G from 0.1 mm to 0.7 mm, with a step
of 0.1 mm. The achieved results in terms of S11 and S12 spectra were monitored. It was
observed that |S21| spectra were significantly affected by g1 value variation. Therefore,
the resonant frequency shifted from 0.38 GHz at g1 = 0.3 mm to 0.68 GHz at g1 = 0.7 mm.
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It was observed from the obtained results at g1 = 0.5 mm that the matching impedance was
significantly enhanced at 0.4 GHz.
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Table 1. Lumped element values of the equivalent circuit model in Figure 4.

Element Value

RLH 12.2 Ω
RRH 50 Ω
GLH 0.1 S
GRH 4 S
CLH 1.1 pF
CRH 3.1 pF
LLH 3 nH
LRH 2.2 nH
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4. Design Methodology

In this section, a parametric study based on numerical simulations was conducted
inside CSTMWS environments based on the finite integral technique algorithm [21]. For
this study, the antenna geometrical parameters were changed parametrically to realize the
optimal antenna performance in terms of bandwidth and gain. Therefore, the antenna
S11 spectra, gain spectra, and radiation patterns were monitored by varying the antenna
dimensions. The proposed antenna dimensions were swept to maintain the frequency
bands around 403 MHz, 433 MH, 611 Mz, 912 MHz, and 2.45 GHz. For this, the parametric
study was conducted by changing the antenna design parameters as follows:

4.1. Patch Design

A parametric study was applied to the proposed patch by changing the geometry
from solid patch to defected MTM patch based on Minkowski fractal. As seen in Figure 6a,
the S11 spectra of the proposed patch showed more frequency modes than the identical
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ones based on the solid patch. This is due to the fact of the effects of the fractal geometry on
the generated modes because of the multi path current motion [3]. Moreover, the proposed
antenna gain was enhanced significantly in comparison with the sold patch, as seen in
Figure 6b. For example, the antenna gain at 403 MHz was found at about 1 dBi, and at
2.45 GHz it was enhanced to 4.1 dBi. Such enhancements are attributed to surface wave
suppression [9].
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4.2. Matching Circuit

The authors investigated the effect of changing the matching circuit length on the
antenna performance in terms of the S11 spectrum only. Therefore, three lengths were
examined, starting from 4 mm to 12 mm in a step of 4 mm. Figure 7 shows the impact of
changing the matching load length (L) on the evaluated S11 spectra. The obtained results
show that changing the mating length directly affected the antenna bandwidth due to
the fact of tuning the real part of antenna impedance with respect to the characteristic
impedance of the source [7]. Nevertheless, with increasing L, a significant reduction in
the field fringing from substrate edge [9] consequently enhanced the antenna bandwidth.
Therefore, the authors decided to fix the matching circuit length to 12 mm.
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4.3. MTM Effects

In this section, the authors decided to conduct a parametric study on the effects of the
MTM row number, see Figure 1a, on the proposed antenna performance in terms of S11
and gain spectra. The results of this study are shown in Figure 8; the results again reveal
excellent enhancements in the antenna bandwidth by increasing the MTM array from 1 row
to 3 rows with a step of 1 row. This is attributed to the fact that suppressing the surface
wave was increased by increasing the number of MTM rows [9].
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5. Bending Effects and Radiation Leakages

In this section, the variation in the antenna S11 spectra was monitored after bending
the antenna close to the human head. Additionally, SAR effects are discussed with respect



Sensors 2021, 21, 7960 9 of 18

to human tissue. This study was conducted by invoking the voxel model of Sam phantom
structure inside CSTMWS environments as follows:

5.1. Bending Effect

The antenna was subjected to the bending effects on a cylindrical geometry with
different angles from 0◦ to 45◦ with a step of 15◦. It was observed that when the antenna
was subjected to the bending effects it showed insignificant changes in terms of S11 spectra,
as seen in Figure 9; this was due to the current motion on the fractal patch structure not
being significantly affected because of the MTM structure at the feed point [8].
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5.2. Radiation Leakage

Since the proposed study was subjected to the applications of wearable applications,
a SAR study based on radiation leakage from the antenna toward the human tissue was
studied. The effects of the absorbed radiation in the human head are studied numerically
in this section. In the simulation, the input power level was considered to be 1 mW. We
focused on the proposed antenna design to realize minimum leakage toward human tissue
by adding two fractal unit cells near the feeding port. In Figure 10a, the values of the
radiation leakage in terms of electric field (E-Field) strength are presented. In this study,
the antenna was mounted close to the human head with varying distances from 0 mm to
50 mm, with a step of 5 mm. It is important to mention that the bending effect was applied,
here at 45◦, without considering the flat case in the comparison. The quantity of absorption
was given by evaluating the SAR results on the SAM model of the human body inside
CSTMWS environments, as in Figure 10b. It is important to mention that the SAM model
was simulated inside CSTMWS environments with a resolution of 1 mm3 [13]. As seen in
Figure 10b, the SAR quantity was found to be 0.25 W/kg and 0.33 W/kg at 403 MHz and
2.45 GHz, respectively, with a distance of 5 mm. Finally, the field strength leakages from
the antenna toward the human head were about 101 mV/m and 133 mV/m at 403 MHz
and 2.45 GHz, respectively.
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6. Experimental Results and Discussions

After arriving at the optimal antenna design, the authors decided to fabricate the
antenna design as presented in Figure 11. The proposed antenna was fabricated using a
conductive ink of silver nanoparticle printed with a Fujifilm Dimatix materials printer. The
fabricated antenna was tested experimentally including: S11 spectrum, radiation patterns,
and field radiation leakages.

During the measurement process, the authors invoked the use of an RF chock with
50 coaxial cables connected to a professional network analyzer of the Agilent family of
PNA 8720. The antenna measurements were performed inside an RF anechoic chamber as
follows:
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6.1. Antenna Characterizations

The proposed antenna was fabricated and tested. In this matter, S11 spectra and
radiation patterns of the proposed antenna at different frequency bands with different
bending scenarios in the free space were measured. Later, the same measurements were
performed again when the antenna was mounted close to the human head. The proposed
antenna was measured within the frequency band from 0.1 GHz up to 3 GHz. As seen in
Figure 12, the antenna S11 spectra were measured for bended profile, at 15◦ and flat case, in
which it was mounted off and on the human head. In Figure 12, the antenna S11 spectrum
is presented in the free space based on the flat case; it was found that the proposed antenna
showed a frequency resonance at 403 MHz, 433 MH, 611 Mz, 912 MHz, and 2.45 GHz, with
an S11 value below −10 dB. Subsequently, when the antenna was subjected to bending at
15◦, the antenna S11 and the frequency resonance values were not significantly affected, as
seen in Figure 12b, which agrees with the results in the previous section. After that, the
antenna based on the flat profile was mounted close to the human head to assess whether
there were human tissue effects from the antenna S11 spectra, as depicted in Figure 12c.
We found that frequency resonance was shifted slightly at high frequency bands, around
2.45 GHz; however, lower frequency bands showed insignificant changes. This was likely
due to the fact that wave scattering from the antenna edges at low frequencies were
insignificant [10]. Next, when the antenna was subjected to bending effects and placed on
the human head, the antenna S11 spectrum, generally, was not changed significantly, as
presented in Figure 12d.

Sensors 2021, 21, x FOR PEER REVIEW 14 of 21 
 

 

During the measurement process, the authors invoked the use of an RF chock with 

50 coaxial cables connected to a professional network analyzer of the Agilent family of 

PNA 8720. The antenna measurements were performed inside an RF anechoic chamber as 

follows: 

6.1. Antenna Characterizations 

The proposed antenna was fabricated and tested. In this matter, S11 spectra and radi-

ation patterns of the proposed antenna at different frequency bands with different bend-

ing scenarios in the free space were measured. Later, the same measurements were per-

formed again when the antenna was mounted close to the human head. The proposed 

antenna was measured within the frequency band from 0.1 GHz up to 3 GHz. As seen in 

Figure 12, the antenna S11 spectra were measured for bended profile, at 15° and flat case, 

in which it was mounted off and on the human head. In Figure 12, the antenna S11 spec-

trum is presented in the free space based on the flat case; it was found that the proposed 

antenna showed a frequency resonance at 403 MHz, 433 MH, 611 Mz, 912 MHz, and 2.45 

GHz, with an S11 value below −10 dB. Subsequently, when the antenna was subjected to 

bending at 15°, the antenna S11 and the frequency resonance values were not significantly 

affected, as seen in Figure 12b, which agrees with the results in the previous section. After 

that, the antenna based on the flat profile was mounted close to the human head to assess 

whether there were human tissue effects from the antenna S11 spectra, as depicted in Fig-

ure 12c. We found that frequency resonance was shifted slightly at high frequency bands, 

around 2.45 GHz; however, lower frequency bands showed insignificant changes. This 

was likely due to the fact that wave scattering from the antenna edges at low frequencies 

were insignificant [10]. Next, when the antenna was subjected to bending effects and 

placed on the human head, the antenna S11 spectrum, generally, was not changed signifi-

cantly, as presented in Figure 12d. 

 

Figure 12. Antenna S11 spectra for two proposed profiles: (a) flat in free space, (b) flat on the human 

head, (c) bended in free space, and (d) bended on the human head. 

Next, the antenna gain spectra were measured for the proposed antenna within the 

frequency band of interest as well as in the same scenarios. It was found that the proposed 

antenna realized insignificant variation in the antenna gain in comparison with the effects 

of bending or being mounted on the human body, as seen in Figure 13. 

Figure 12. Antenna S11 spectra for two proposed profiles: (a) flat in free space, (b) flat on the human
head, (c) bended in free space, and (d) bended on the human head.

Next, the antenna gain spectra were measured for the proposed antenna within the
frequency band of interest as well as in the same scenarios. It was found that the proposed
antenna realized insignificant variation in the antenna gain in comparison with the effects
of bending or being mounted on the human body, as seen in Figure 13.

Subsequently, the antenna radiation patterns at 403 MHz, 433 MH, 611 Mz, 912 MHz,
and 2.45 GHz were measured for the flat and bended profiles in the free space as seen
in Figure 14. It was found that the proposed antenna showed an absolute gain of 1 dBi,
1.24 dBi, 1.48 dBi, 2.05 dBi, and 4.11 dBi at 403 MHz, 433 MH, 611 Mz, 912 MHz, and
2.45 GHz, respectively. Such gain values were found to be very stable for short and medium
wireless communication systems. Additionally, the antenna performances were not found
to be significantly affected with bending, making it an excellent candidate for wearable
application. It is important to mention that during the measurement the input power was
considered to be 1 mW. In this section, a comparison between different antennas that were
introduced in the literature for modern applications from different aspects are compared to
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the proposed antenna designs. It is clear from Table 2, that the proposed antenna, to the
best of the authors’ knowledge, provides excellent gain with mutable frequency bands with
a limited area in comparison with data on those antennas that were published previously.
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Figure 13. Antenna gain spectra for two proposed profiles: (a) flat in free space, (b) flat on the human
head, (c) bended in free space, and (d) bended on the human head.

Table 2. A comparison of the proposed antenna performance with respect to the published designs.

Refs. Gain Size Center Frequency Substrate Type

[1] −20 dBi λ/5 5 GHz Fabric

[2] 3 dBi λ/5 1.5 GHz Solar panel polymer

[3] 4 0.12λ 2.45 GHz Roger TMM10i

[4] 4.4 0.29λ 5.8 GHz Unknown

[5] 2.33 3.27 mm 10.1, 24.6 GHz Rogers RO3010

[6] 3.7 0.06 λ 2.45 GHz Meta-cell

[7] 5.1 0.13 λ 2 GHz Rogers RO4003C

[8] 7.1 16 mm 2.4, 5.8 GHz Rogers 3210

The proposed work 1 dBi, 1.24 dBi, 1.48 dBi,
2.05 dBi, and 4.11 dBi 20 × 10 mm2

403 MHz, 433 MH,
611 Mz, 912 MHz, and

2.45 GHz
Polymer

As a next step, the authors applied the same study when the antenna was mounted
close to the human head. It was found that most of the radiation patterns were directed
away from the human head due to the effects of the MTM at the feed position, as discussed
later. The antenna radiation patterns for both flat and bended profiles close to the human
head were insignificantly affected. It is important to mention that the proposed antenna
was located at a 5 mm distance from human tissue. In general, the simulated and measured
results were in good agreement for all cases, as depicted in Figure 15. The antenna showed
good immunity against bending without significant effects of the human head on antenna
performance.
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Figure 15. Antenna radiation patterns when close to the human body: (a) 403 MHz, (b) 433 MH, (c)
611 Mz, (d) 912 MHz, and (e) 2.45 GHz.

In Figure 16, the proposed antenna performance was measured in terms of S11 and gain
spectra in the free space and when mounted on the human head. During the measurements,
the antenna was bended from 0◦ to 45◦, with a step of 15◦. It was found that the proposed
antenna performance was not changed significantly at low frequency bands, showing
excellent stability against bending effects. Such stability was achieved due to the surface
wave suppression at the patch and substrate edges [20]. Nevertheless, bending effects
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usually result in a significant change on the frequency resonance of wearable antennas; this
is usually attributed to the effects of the equivalent antenna capacitive variation that would
increase with the increase in antenna bending effects [2]. However, in our case, the antenna
patch was constructed from a fractal antenna structure that was shaped from a meander
line within a limited area; such a configuration generates a magnetic field component
normal to patch edges that reduces the capacitive effects [17] and maintains the surface
current distribution on the patch when it is subjected to bending [18].
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6.2. Radiation Leakage

The radiation leakage from the proposed antenna toward the human tissue was
measured in terms electrical field strength using a field probe meter. As seen in Figure 17,
the proposed antenna showed a field strength leakage toward the human head of about
101 mV/m at 403 MHz and 133 mV/m at 2.45 GHz for the flat profile. The radiation
leakage was measured at different distances between the proposed antenna on bended
profile and the human head of about 5 mm up to 25 mm, with a step of 5 mm, as seen in
Figure 17. It was found that the radiation leakage was reduced significantly after 25 mm
from the proposed antenna for both flat and bended profiles. These measurements were
conducted using a TM-195 RF 3-axie field strength meter.

In Table 3 is presented a comparison between the proposed antenna performance and
other published results in the literature in terms of SAR amount at different frequency
bands. It was found that the proposed antenna showed less SAR amount than other
considered references.

Table 3. A comparison of SAR values.

References Human Part SAR (W/kg) Centre Frequency (MHz) Centre Frequency (MHz)

[5] Head tissue 0.52~0.76 900–1800 900–1800

[6] Head tissue 0.92 2400~2500
2500~2690 2400~2500

[7] Head tissue —
[8] Head tissue 0.45 900 —
[9] Head tissue 0.45 850~2200 900
[10] Wrist tissue 0.32~0.48 1960~1980 850~2200
[11] — 0.28~0.43 930~1900 1960~1980

Proposed antenna Head tissue 0.32~0.54 403~2450 930~1900
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7. Conclusions

The proposed antenna was designed based on MTM structure of a composite right–left
array. The antenna was fabricated on a polymer flexible substrate with 0.3 mm thickness
to suit wearable applications. Therefore, the antenna size was miniaturized to 20 mm ×
10 mm to suit different miniaturized wireless portable devices. The proposed antenna was
fabricated by printing technology using conductive silver nanoparticle ink. The antenna
prototype was tested experimentally to show several resonances at 403 MHz, 433 MH,
611 Mz, 912 MHz, and 2.45 GHz, which are suitable for BAN and ISM bands. The measured
antenna gain was found to vary from 1 dBi to 4.11 dBi. The measured antenna performance
was applied in two scenarios based on flat and bended profiles when mounted on the
human head and away from it. To assess the proposed antenna’s effects on human tissue,
the proposed antenna was located close to the human head by measuring the SAR rates
and electric field strength leakages. It was found that the proposed antenna showed low
SAR effects of about 0.25 W/kg and 0.33 W/kg at 403 MHz and 2.45 GHz, respectively.
Finally, the proposed antenna measurements were compared with the simulated results,
showing good agreement.
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