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Abstract

Accurately identifying the binding sites of transcription factors (TFs) is crucial to understand-

ing the mechanisms of transcriptional regulation and human disease. We present incorpo-

rating Find Occurrence of Regulatory Motifs (iFORM), an easy-to-use and efficient tool for

scanning DNA sequences with TF motifs described as position weight matrices (PWMs).

Both performance assessment with a receiver operating characteristic (ROC) curve and a

correlation-based approach demonstrated that iFORM achieves higher accuracy and sensi-

tivity by integrating five classical motif discovery programs using Fisher’s combined proba-

bility test. We have used iFORM to provide accurate results on a variety of data in the

ENCODE Project and the NIH Roadmap Epigenomics Project, and the tool has demon-

strated its utility in further elucidating individual roles of functional elements. Both the source

and binary codes for iFORM can be freely accessed at https://github.com/wenjiegroup/

iFORM. The identified TF binding sites across human cell and tissue types using iFORM

have been deposited in the Gene Expression Omnibus under the accession ID GSE53962.

Introduction

Gene regulation is co-ordinately regulated by interactions of many transcription factors (TFs),

many of which bind promoter and enhancer DNA preferentially at characteristic sequence

‘motifs’. Motifs are short patterns described as position weight matrices (PWMs) that tend to

be conserved by purifying selection. Identifying and understanding these TF motifs can pro-

vide critical insight into the mechanisms of transcriptional regulation and human disease.

However, accurate identification of these binding site motifs is still challenging because a sin-

gle TF will often recognize a variety of similar sequences.

Over the past several decades, many classical algorithms have been developed to discover

DNA regulatory motifs. FIMO [1], Consensus [2, 3], and STORM [4] function solely as motif

scanners, whereas RSAT [5] and HOMER [6] provide multiple functions for analysing regula-

tory sequences in general. S1 Table summarizes the features of iFORM and these five algo-

rithms as motif scanners. Each of these methods has its own merits for identifying potential

TF binding; however, it is still a major challenge to integrate superiorities and to preclude
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inferiorities of these complementary methods. Several studies have demonstrated that higher

accuracy and sensitivity can be achieved by incorporating multiple motif discovery programs

[7–9]; however, this approach will result in considerable computational overhead for scoring

the large number of discovered motif instances obtained with different programs.

We describe incorporating Find Occurrence of Regulatory Motifs (iFORM), a software tool

for scanning DNA sequences with TF motifs by integrating five classical motif discovery meth-

ods. We used Fisher’s combined probability test to convert the resulting p-values obtained

from the five methods to a χ2 statistic, which follows a chi-squared distribution. We then

applied false discovery rate analysis to estimate a q-value for each motif instance. By systemati-

cally assessing the accuracy of prediction performance, iFORM achieves higher accuracy and

sensitivity relative to the five classical algorithms. Although iFORM integrates five methods, it

is efficient, allowing for scanning sequences at a rate of 3.5 Mb/s on a single CPU. Additionally,

we have illustrated the use of iFORM by producing high-quality genome-wide maps of tran-

scription factor binding sites (TFBSs) for 542 TFs within DNaseI hypersensitive sites (DHSs)

of 133 human cell and tissue types that were generated by the ENCODE Project [10] and the

NIH Roadmap Epigenomics Mapping Consortium [11] in our recent studies. We also demon-

strated the utility of iFORM to further reveal individual roles of functional elements in gene

regulation and diseases based on these maps.

Materials and Methods

Data sets

DNaseI Hypersensitivity by Digital DNaseI data were obtained from both the ENCODE Proj-

ect [10] and the NIH Roadmap Epigenomics Mapping Consortium [11]. TFs identified by

ChIP-seq data were obtained from the ENCODE Project [10]. The uniform processing pipe-

line of the ENCODE Integrative Analysis Consortium was used to generate uniform peaks

from both the DNase-seq and ChIP-seq data. The use of these data adheres strictly to the

ENCODE and Roadmap Epigenomics Consortium Data Release Policy. PhastCons were

extracted from the hg19 conservation track of the UCSC Genome Browser [12].

iFORM

iFORM integrates the TF binding sites identified by five classic methods: FIMO [1], Consensus

[2, 3], STORM [4], RSAT [5] and HOMER [6]. For each discovered TFBS, a combined p-value

obtained from these five methods was calculated using Fisher’s combined probability test.

First, a test statistic was calculated using the following formula:

w2 ¼ � 2
X5

i¼1

loge ðpiÞ � w2ð10Þ

where pi is the p-value calculated from the five methods for each TFBS and χ2 follows a chi-

squared distribution χ2(10) when pi is independent. Thus, a combined p-value can be assigned

to this test statistic. Then, we used a bootstrap method [13] to estimate false-discovery rates

(FDRs) and report for each p-value a corresponding q-value. Before applying Fisher’s com-

bined probability test to our iFORM, we collected different sets of pi values derived from the

five methods by scanning diverse TF motifs in diverse cells/tissues in the human genome to

test the independence of pi values derived from the five methods. A Hilbert-Schmidt indepen-

dence criterion (HSIC) method was used to test the independence jointly [14]. The threshold

and HSIC score were calculated using d-variable HSIC (dHSIC) R-packages [15], with alpha

level 0.05. The independent hypothesis was rejected if and only if threshold was equal or less
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than HSIC score. Our result demonstrated that the thresholds were strictly greater than HSIC

scores in all the collected pi value sets, suggesting the joint independence of the pi values

derived from the five methods (S2 Table). Thus, Fisher’s combined probability test can be

applied to our iFORM. iFORM can be freely accessed at https://github.com/wenjiegroup/

iFORM.

Generation of “gold-standard” data

To validate the predicted TFBSs using the ROC (receiver operating characteristic) approach,

we applied a method similar to that presented in a previous study [16] to generate “gold-stan-

dard” data for a few TFs. Briefly, we scanned the genomic sequences under the uniform DHSs

in the hg19 genome using the five methods incorporated by iFORM with default parameters

for each TF motif in the “gold-standard” set separately. Then, for each TF, all motif instances

(p-value< 10−9) located within the corresponding TF ChIP-seq peaks were considered the set

of TFBS positives. The set of TFBS negatives was defined as all motif instances (p-value< 10−9)

that did not overlap with a ChIP-seq peak and had a greater fraction of total mapped reads

from the “Control” compared to the ChIP-seq treatment. In total, there were 103 sets of “gold-

standard” data for 12 TFs from 51 cells/tissues (S3 Table).

Assessing the performance of iFORM

The prediction performance of iFORM was assessed using three methods, including ROC

curve analysis, precision-recall curve analysis and a correlation-based approach. First, we used

ROC curves and the area under the curve (AUC) to assess the accuracy of the prediction per-

formance of iFORM. The ROC approach assumes that there are “gold-standard” data, includ-

ing TFBS positives and TFBS negatives, that can be used for comparison to confidently

evaluate our predictions of TF binding for a subset of the candidate motif sites. Furthermore,

we also adopted precision-recall curves to assess the imbalance of the “gold-standard” data

sets.

In addition to the ROC curve analysis, which classifies the motif instances as either TFBS

positive or TFBS negative, we adopted a correlation approach that takes into account all loca-

tions except those in or near repetitive regions. The correlation approach assumes that the

larger the correlation between the predicted value and the ChIP-seq signal and the smaller the

correlation with the “control” background noise, the better the prediction accuracy. We

extracted the ChIP-seq reads and the “control” reads around each motif site, and we used the

Pearson correlation to measure the association between the total number of reads and the

scores reported by iFORM and the five classical methods.

Results and Discussion

Implementation of iFORM

iFORM integrated the motif instances identified by the five classical algorithms, FIMO [1],

Consensus [2, 3], STORM [4], RSAT [5] and HOMER [6], based on Fisher’s method. We

chose these five methods due to their great popularity in applications and the great generality

of their scoring methods as motif scanners. iFORM was built using C, and an overview of the

workflow is illustrated in Fig 1. To improve efficiency, we extracted the core source code of the

motif discovery functions of these five algorithms and integrated them into the framework of

iFORM instead of simply combining the resulting p-values obtained from these algorithms.

iFORM accepts DNA sequences in FASTA format or genomic coordinates in BED or GFF

formats, and it takes as an input one or more TF motifs (represented as PWMs) that can be
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collected from an existing motif database, generated the MEME algorithm, or even be defined

by the user. For each motif instance, iFORM computes a χ2 statistic that was obtained by com-

bining p-values resulting from the five algorithms using Fisher’s method, and it converts these

statistics to p-values using the chi-squared distribution. Finally, iFORM uses a bootstrap

Fig 1. The workflow of iFORM. Overview of the iFORM workflow. (1) Assemble input data. The results may be improved by restricting

the input to high-confidence sequences. Some programs achieve improved performance using phylogenetic conservation information from

orthologous sequences or information about protein DNA-binding domains. (2) Choose several motif discovery programs for the analysis.

(3) Test the statistical significance of the resulting motifs. Use control calculations to estimate the empirical distribution of scores produced

by each program on random data. (4) For each identified TFBS, a combined p-value obtained from these five methods was calculated

using Fisher’s combined probability test. (5) FDR correction of the combined p-values obtained from Fisher’s method.

doi:10.1371/journal.pone.0168607.g001
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method [13] to estimate FDRs and reports for each p-value a corresponding q-value, which is

defined as the minimal FDR threshold at which the p-value is deemed significant [17].

iFORM outputs a ranked list of motif instances, each with an associated χ2 score, p-value

and q-value. The list is illustrated as an HTML report, as an XML file in CisML format [18], as

a plain text file and as tab-delimited files in gff formats suitable for input in the UCSC Genome

Browser [12].

Performance assessment of iFORM using “gold-standard” data

Because iFORM integrates five classical algorithms based on Fisher’s method, it is expected

that iFORM can achieve higher accuracy and sensitivity compared with the five methods. To

test this expectation, we first examined the CTCF motif instances identified by these six meth-

ods separately. We found that many of the CTCF binding sites, which are well annotated by

DNase-seq, DNaseI digital genomic footprint (DGF), and corresponding TF ChIP-Seq data in

H1 cells, can only be discovered by iFORM, not the other five classical methods (Figure A in

S1 File). To systematically assess the accuracy of prediction performance for each motif

instance, we used ROC curves and the corresponding AUC and precision-recall curves on the

“gold-standard” data of six TF ChIP-seq data in GM12878 cells provided in a previous study

[16] (Fig 2A and Figure C and D in S1 File). Our results suggest that our iFORM method

showed higher AUC values than those of the other five classical methods.

To further validate the predicted TF binding sites, we used the method presented by Roger

Pique-Regi et al. [16] to generate “gold-standard” data for many TF ChIP-seq sequences that

were produced from different laboratories and from different cells/tissues (S3 Table). Using

our newly generated “gold-standard” data of CTCF in GM12878 cells, we obtained ROC

curves and precision-recall curves similar to those presented previously (Fig 2B and Figure C

in S1 File). In addition, similar ROC curves and precision-recall curves were also obtained for

the newly generated “gold-standard” data of CTCF in GM12878 produced from different labs

(Fig 2C) and for the newly generated “gold-standard” data of CTCF in other cells (Figure C

and D in S1 File). Furthermore, we assessed the prediction performance using new “gold-stan-

dard” data from 103 sets of TF ChIP-seq data produced in the ENCODE project (S3 Table).

Across these “gold-standard” datasets, our iFORM achieves significantly higher AUCs than

the other five algorithms (Fig 2D and S3 Table, p-value< 10−10, Kolmogorov–Smirnov test).

These results suggest that iFORM manifested superior performance consistency in different

laboratories and different cells/tissues across multiple TFs, and it demonstrated higher accu-

racy and sensitivity compared with the five classical methods.

Furthermore, we examined whether the performance of iFORM was superior to that of

integrating only two, three, or four methods based on “gold-standard” data in GM12878 cells

provided in a previous study [13] (Fig 3A) and the “gold-standard” data generated in this

study (Fig 3B). Again, our iFORM achieved significantly higher AUCs compared with inte-

grating only two, three, or four methods across these “gold-standard” datasets (Fig 3C and S3

Table, p-value< 10−9, two-sample Kolmogorov–Smirnov test). Taken together, our results

convincingly demonstrate that iFORM presents superior performance compared with the five

classical methods as well as integrating only two, three, or four methods.

Performance assessment of iFORM using a correlation approach

Thus far, we have validated iFORM with ROC analysis, which requires a binary classification

of TFBSs as positive/negative using ChIP-seq as a “gold standard”. However, it is becoming

increasingly evident that TF binding is not perfectly dichotomous (bound or unbound); in

many cases, quantitative partial binding occurs, which corresponds to the fraction of cells that
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have TF binding at a particular site at any given time [19, 20]. Indeed, our iFORM method is

formulated as a combined χ2 statistic, which could quantitatively reflect the level of TF occu-

pancy to some extent. Thus, we presumed that correlations of the statistical scores with the

ChIP-seq signal and with the “control” background noise could be used to validate iFORM.

The larger the former value and the smaller the latter value, the better the prediction accuracy

of iFORM. Applying this procedure to the other five classical methods, we found that iFORM

presented substantially superior performance relative to the other methods (Fig 4A and 4B).

Across the multiple TFs that we tested, iFORM showed consistently superior accuracy com-

pared with the other methods (Fig 4C and 4D and S5 Fig, p-value< 0.005, two-sample Kolmo-

gorov–Smirnov test). Taken together, these findings suggest that iFORM provides state-of-

the-art performance relative to the five existing methods.

Fig 2. Performance assessment of iFORM using ROC curves. (A–C) ROC curves of multiple algorithms using

“gold-standard” data from (A) CTCF in GM12878 cells provided in a previous study; (B) CTCF in GM12878 cells that

was generated in our study. (C) REST in H1 cells. (D) Boxplot distributions of AUC for diverse TFs in multiple cells/

tissues.

doi:10.1371/journal.pone.0168607.g002
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Application of iFORM for identifying TFBSs across multiple cells/tissues

We collected PWMs of the 542 TFs corresponding to 796 motif models from the TRANS-

FAC [21], JASPAR [22], and UniPROBE [23] databases as described in our previous study

[24–26]. We applied iFORM to produce high-quality genome-wide maps of the TFBSs for

the 542 TFs within DHSs of 133 human cell and tissue types that were generated by the

ENCODE Project [10] and the NIH Roadmap Epigenomics Mapping Consortium [11]

(p-value < 10−18). On average, scanning DHSs of each cell/tissue took 30 min and 10 s of

wall clock time on an Intel Xeon 2.2 GHz CPU, which is equivalent to scanning at a speed of

3.5 Mp/s.

Based on these data, we found that TFBSs were clustered together in the human genome,

and we report the first comprehensive map of TFBS cluster regions across human cell and tis-

sue types. An integrative analysis of these regions revealed a novel transcriptional regulation

model of the accessible chromatin landscape [24]. Additionally, we investigated the HOT

(high-occupancy target) regions, which were defined as TFBS cluster regions with extremely

high TFBS complexity. We found that HOT regions play key roles in human cell development

and differentiation [25]. Furthermore, we explored the prevalence of single nucleotide poly-

morphisms (SNPs) identified by genome-wide association studies (GWAS) in HOT regions,

which demonstrated key roles of HOT regions in human disease and cancer [26]. These find-

ings represent a critical step towards further understanding disease biology, diagnosis, and

therapy.

Conclusions

The iFORM tool presented in this study was designed to incorporate five classical regulatory

motif discovery methods using Fisher’s method. iFORM is an easy-to-use and efficient motif

discovery tool that achieves higher accuracy and sensitivity by integrating the results from

multiple motif discovery programs. iFORM has provided accurate results using a variety of

data from the ENCODE Project and the NIH Roadmap Epigenomics Project in our recent

Fig 3. Performance comparisons between iFORM and integrating methods. (A-B) Performance comparisons between iFORM and integrating

methods. ROC curves of iFORM and that of integrating only two, three, or four methods based on “gold-standard” data CTCF in GM12878 cells provided

in a previous study (A) and the “gold-standard” data CTCF in GM12878 cells generated in this study (B). (C) Boxplot distributions of AUC of iFORM and of

integrating only two, three, or four methods for diverse TFs in multiple cells/tissues.

doi:10.1371/journal.pone.0168607.g003
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studies, and it has demonstrated its utility to further elucidate individual roles of functional

elements in the mechanisms of transcriptional regulation and human disease.

Supporting Information

S1 File. This file contains all Supplementary figures (A-E).

(PDF)

S1 Table. Summaries of the five motif scanners.

(DOCX)

S2 Table. Independence test of pi derived from the five methods.

(XLSX)

Fig 4. Performance assessment of iFORM using correlation methodology. (A-B) Scatter plot of the correlation

between the log of odds from iFORM and the square-root transformed count of ChIP-seq (A) and “control” (B) reads in

the 400 bp region surrounding each CTCF motif instance. (C–D) Performance comparison between iFORM and

currently available methods. Boxplot distribution of Pearson correlations between the log of odds from iFORM and the

square-root transformed count of ChIP-seq (A) and “control” (B) reads for diverse TFs in multiple cells/tissues.

doi:10.1371/journal.pone.0168607.g004

iFORM: Incorporating Find Occurrence of Regulatory Motifs

PLOS ONE | DOI:10.1371/journal.pone.0168607 December 19, 2016 8 / 10

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0168607.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0168607.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0168607.s003


S3 Table. Performance assessment of iFORM.

(XLSX)
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