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ABSTRACT

We have made several steps toward creating a fast
and accurate algorithm for gene prediction in eu-
karyotic genomes. First, we introduced an automated
method for efficient ab initio gene finding, GeneMark-
ES, with parameters trained in iterative unsuper-
vised mode. Next, in GeneMark-ET we proposed a
method of integration of unsupervised training with
information on intron positions revealed by mapping
short RNA reads. Now we describe GeneMark-EP,
a tool that utilizes another source of external infor-
mation, a protein database, readily available prior to
the start of a sequencing project. A new specialized
pipeline, ProtHint, initiates massive protein mapping
to genome and extracts hints to splice sites and
translation start and stop sites of potential genes.
GeneMark-EP uses the hints to improve estimation
of model parameters as well as to adjust coordinates
of predicted genes if they disagree with the most
reliable hints (the -EP+ mode). Tests of GeneMark-
EP and -EP+ demonstrated improvements in gene
prediction accuracy in comparison with GeneMark-
ES, while the GeneMark-EP+ showed higher accu-
racy than GeneMark-ET. We have observed that the
most pronounced improvements in gene prediction
accuracy happened in large eukaryotic genomes.

INTRODUCTION

One of the major challenges of gene prediction in eukary-
otes is finding an optimal way to combine sources of in-
formation extrinsic and intrinsic to genome of interest. Ex-
ternal information could be transferred from RNA tran-
scripts as well as from cross-species proteins derived from
annotated genomes. Integration of transcript information,
e.g. RNA-Seq reads, with ab initio gene prediction was im-
plemented in several algorithms and software tools, e.g.
AUGUSTUS (1), GeneMark-ET (2), EuGene (3,4) and

mGene.ngs (5). Also, a few other tools made use of pro-
tein sequences. Complexity of a task of leveraging cross-
species protein sequence information for gene identifica-
tion in a newly sequenced genome is growing with increase
of evolutionary distance. Therefore, mapping a protein to
genomic locus where a homologous protein is expected to
be encoded was a subject for developing specialized tools
known as tools for protein spliced alignment [e.g. currently
available GeneWise (6), GenomeThreader (7), ProSplign (8)
and Spaln (9)]. Beyond a single reference protein, a refer-
ence family of homologous proteins could be used to map
elements of gene structure conserved in evolution; for in-
stance, AUGUSTUS-PPX (10) uses protein profiles derived
from conserved protein domains. Information about intron
position, conserved in protein primary structures of mul-
tiple homologs, was used in another tool, GeMoMa (11).
Notably, an attempt to combine protein profiles with intron
position profiles for refinement of predicted genes was made
by yet another method, GSA-MPSA (12).

Weakness of methods solely relying on mapping homol-
ogous proteins lies in the patchiness of the evidence they
generate; a sizable fraction of a whole complement of genes
may code for proteins with few or no orthologs. Another
weakness is that protein spliced alignments become less ac-
curate as the distance between the two species increases.
Therefore, ab initio gene finders [e.g. GENSCAN (13), Gen-
eMark.hmm (14), AUGUSTUS (15) or GeneID (16)] have
been a necessary part of genome annotation tools and
pipelines [e.g. GNOMON (17), PASA (18) and Ensembl
(19)].

Application of ab initio algorithms for genome-wide eu-
karyotic gene prediction was for long time hampered by the
need of tedious and time-consuming training. To address
this issue, we have earlier developed an ab initio gene finder
GeneMark-ES (20,21) with model parameters estimated by
iterative unsupervised training. This algorithm did not re-
quire expert-based training or hints for building a training
set. GeneMark-ET (2) was developed to make GeneMark-
ES able to integrate into the training process available tran-
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script information, raw RNA-Seq reads spliced aligned to
genome in question.

Here, we describe GeneMark-EP, an algorithm and soft-
ware tool that integrated into training information ex-
tracted from a reference set of cross-species protein se-
quences. To generate protein hints for a given genomic lo-
cus, we first identify a set of proteins, homologous to the
protein likely encoded in the genomic locus. Then, a special-
ized pipeline, ProtHint, computes the hints, a set of mapped
splice sites (intron borders) and translation start and stop
sites along with the scores characterizing hint confidence.
The most reliably determined elements of spliced alignment
could be used to directly identify elements of exon–intron
structures; we call this mode of algorithm execution with
direct gene structure correction as GeneMark-EP+.

A key question is how to find an optimal method of
hint incorporation into the ab initio algorithm. Unsuper-
vised training implemented in GeneMark-ES carries a risk
of convergence to a biased set of model parameters. On the
other hand, giving too much weights to protein hints may
generate parameters dictated by a narrow set of conserved
genes and proteins (22). By design, the GeneMark-EP algo-
rithm combines strong features of both methods: (i) ability
of unsupervised iterative training of an ab initio gene finder
to create a set of training sequences with a size beyond reach
of conventional supervised training and (ii) ability to cor-
rect model parameters as well as (the -EP+ mode) structures
of newly discovered genes with the hints derived from ho-
mologous cross-species proteins. The new method falls into
category of gene prediction methods with semi-supervised
training.

MATERIALS AND METHODS

For assessment of GeneMark-EP as well as ProtHint accu-
racy, we selected annotated genomes from diverse clades:
fungi, worms, plants, insects and vertebrae (Table 1). The
genome length varied from <100 Mb (Neurospora crassa)
to >1.3 Gb (Danio rerio). With exception of Solanum ly-
copersicum, a species representing large genome plants im-
portant for economy, all selected species are model organ-
isms whose genomes presumably have high-quality annota-
tion. To assess accuracy of gene prediction made for model
species, we compared genes predicted and annotated on a
whole genome scale. In case of S. lycopersicum, we used a
limited set of genes, validated by available RNA-Seq data.
In all genomic datasets, contigs not assigned to any chromo-
some were excluded from the analysis as well as genomes of
organelles.

We used OrthoDB v10 protein database (23) as an all-
inclusive source of protein sequences. Still, for generat-
ing protein hints for particular species we used subsets
of OrthoDB: plant proteins for gene prediction in Ara-
bidopsis thaliana, arthropod proteins for gene prediction
in Drosophila melanogaster, etc. (Table 2).

As an additional test set, we used annotation of major
protein isoforms available in the APPRIS database (24); this
assessment was done for C. elegans, D. melanogaster and D.
rerio (Supplementary Table S1). Arguably, accuracy of pre-
diction of major isoforms is of significant interest, since in a

Figure 1. A flowchart of the GeneMark-EP and -EP+ iterative training.

gene locus the major isoform was observed to be expressed
in higher volume than other (minor) isoforms (24).

Integration of genomic sequence patterns and protein homol-
ogy into gene prediction

The GeneMark-EP and -EP+ algorithm goes step by step
through the following tasks: (i) selection of genomic regions,
seed regions, containing gene candidates (seed genes); (ii)
identification for each seed gene a set of homologous pro-
teins; (iii) constructing spliced alignments of homologous
proteins to each seed region and generating hints for exon–
intron structures; (iv) running iterative semi-supervised
training with selection of most reliable (anchored) elements
of predicted genes in each iteration; and (v) final gene pre-
diction without (-EP mode) or with additional option (-
EP+ mode) to enforce high-confidence hints in predicted
exon–intron structures (Figure 1).

Tasks (i)–(iii) are devoted to generating protein hints and
are solved by the ProtHint pipeline (Figure 2). To deter-
mine seed regions within a long genomic sequence [task (i)],
we run unsupervised training of parameters of statistical
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Table 1. Genomes used for assessment of GeneMark-EP and GeneMark-EP+ performance

Species Assembly version Genome size (Mb) Annotation version
Number of genes in

annotation Introns per gene

Neurospora crassa GCA 000182925 40 Broad Institute (2013) 10 785 1.7
Caenorhabditis elegans GCA 001483305 100 WormBase WS271

(May 2019)
20 172 5.7

Arabidopsis thaliana GCF 000001735 119 Tair Araport11
(June 2016)

27 445 4.9

Drosophila melanogaster GCA 000001215 134 FlyBase R6.18
(June 2019)

13 929 4.3

Solanum lycopersicum SL4.0 773 Consortium ITAG4.0
(September 2019)

33 562 3.5

Danio rerio GCF 000002035 1345 Ensembl GRCz11.96
(May 2019)

25 254 8.2

Introns per gene values were computed with respect to the whole number of genes, including single-exon genes.

Table 2. Characteristics of the OrthoDB v10 taxonomic space for each species we tested

Number of species in the
same taxonomic unit Genus Family Order Class Phylum Kingdom

OrthoDB root used for
tests

Number of proteins in
the root

N. crassa 0 1 7 96 364 548 Fungi 5 850 648
C. elegans 2 2 4 5 6 447 Metazoa 8 266 016
A.thaliana 1 7 9 – 99 116 Plantae 3 510 742
D. melanogastera 19 19 55 147 169 447 Metazoa 8 266 016
S. lycopersicum 1 9 10 – 99 116 Plantae 3 510 742
D. rerioa 0 4 4 49 245 447 Metazoa 8 266 016

The number of species is naturally the largest in the kingdom section of the database.
aFor tests in the genus-, family- and order-excluded modes for D. melanogaster and D. rerio, the phylum set was used as the largest set of reference proteins.

Figure 2. An overview of the ProtHint pipeline.

models by GeneMark-ES (20) and generate ab initio gene
predictions. To create a seed region, each predicted gene, a
seed gene, is expanded upstream and downstream by adding
2000 nt margins. To identify proteins homologous to a seed
protein, task (ii), we run DIAMOND similarity search (25)
with a seed protein as a query against a protein sequence
database (e.g. a section of OrthoDB). A set of proteins with
statistically significant hits defines a set of target proteins
presumed to be homologous to the query, the seed protein.
Task (iii) is done to generate spliced alignments of multi-
ple protein targets to the seed region [done by either Spaln
(9) or ProSplign (8)] and to process the results of align-
ments in order to infer elements of exon–intron structures

(introns, splice sites, translation starts and stops) character-
ized by reliability scores. Mapped gene elements with relia-
bility scores exceeding certain thresholds are designated as
high-confidence hints. Final tasks (iv) and (v) correspond to
training and prediction steps of GeneMark-EP and -EP+.
At these steps, we use the hints to exon–intron structure
coordinates as an input to an expectation-maximization-
type algorithm that finds models of compositional patterns
of protein-coding and non-coding regions simultaneously
with the most likely parse of genomic sequence into coding
and non-coding regions.

Iterative training of the GeneMark-EP statistical mod-
els [tasks (iv) and (v)] works as follows. In the first itera-
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tion, full-length introns mapped by ProtHint with scores
exceeding a stringent threshold (high-confidence elements)
are used to estimate parameters of splice site models as well
as branch point site models (particularly important for in-
tron models of fungal genomes). The splice site models to-
gether with the heuristic models of protein-coding and non-
coding regions make a complete set of models of a hid-
den Markov model (HMM) (20). The models are used in
the first run of the Viterbi algorithm [see (14)] that gener-
ates a maximum likely parse of genomic sequence into cod-
ing and non-coding regions, the parse delineating the first
set of genes predicted by GeneMark-EP. Next, we analyze
available data to make updated training sets and re-estimate
model parameters. We compare coordinates of exons pre-
dicted by GeneMark.hmm and intron hints determined by
ProtHint within the seed regions. This comparison leads to
selection of anchored elements, the exons with at least one
splice site identified by both GeneMark.hmm and ProtHint.
A set of anchored exons along with a set of predicted single-
exon genes (with length >800 nt) comprises an updated
training set for the three-periodic Markov chain model of
protein-coding region (26). Sequences of introns bounded
by two anchored splice sites as well as intergenic sequences
bordered by anchored terminal and initial exons of adja-
cent genes (Figure 3) are used for updating parameters of
the non-coding region model. The set of updated models is
used by the Viterbi algorithm to generate a new set of pre-
dicted genes. A new update of anchored elements and the
next round of parameter re-estimation follows.

Several probability distributions used in GeneMark-EP,
such as length distributions of exon, intron and intergenic
regions, are initially defined as uniform ones. More accurate
estimation of these distributions is done in subsequent steps
of iterative training (Figure 1). Also, in the later steps we es-
timate parameters of the three-phase models of splice sites
indexed by a nucleotide position after which the intron di-
vides a codon triplet. Prior to the final iteration, we update
estimates of the HMM transition probabilities that affect
frequencies of genes with given number of introns. In ex-
perimental runs for genomes with different lengths, we have
verified that seven iterations were sufficient for GeneMark-
ES and six iterations for GeneMark-EP and -EP+ to reach
convergence in coordinates of predicted genes and values of
model parameters.

Gene predictions made in the final iteration are reported
as output of GeneMark-EP. The Viterbi algorithm could be
run with enforcement of high-confidence elements mapped
by ProtHint. Particularly, it is done by modifying compo-
nents of the object function of the Viterbi algorithm asso-
ciated with chosen hidden states. The sites that must be en-
forced receive high values of objective function to ensure
their addition to a path selected by the optimization algo-
rithm seeking the maximum value of the log Viterbi objec-
tive function. This mode of gene prediction produces the
GeneMark-EP+ output.

Note that GeneMark-ES, -ET, -EP, and -EP+ algorithms
are designed to predict non-overlapping genes with no al-
ternative isoforms. This design suits the paradigm that each
gene locus encodes a major (expressed in most tissues) pro-
tein isoform (24).

ProtHint: generating footprints (hints) of multiple homolo-
gous proteins for a genomic locus

General logic. The ProtHint role (Figure 2) in GeneMark-
EP and -EP+ is 2-fold. This pipeline generates two sets of
protein hints. The smaller one, the set of high-confidence
hints, includes hints with high scores that ensure their high
specificity. The larger one includes hints that have scores ex-
ceeding a liberally set threshold; thus, these hints have lower
specificity but larger sensitivity. In the process of hint gen-
eration, ProtHint takes a seed protein and uses it as a query
in similarity search for homologs of a true protein presum-
ably encoded in the seed region. Next, ProtHint constructs
spliced alignments of the detected homologs (target pro-
teins) to the seed region. The whole set of multiple spliced
alignments is then processed together to identify protein
hints, mapped coordinates of the candidate splice sites and
translation start and stop sites. The hint scoring system is
discussed in detail in Supplementary Data.

Technically, for a given seed protein, ProtHint runs DI-
AMOND (25) against a relevant section of the OrthoDB
database and retains in the output up to 25 target proteins
(with hit E-value better than 0.001). Next, the target pro-
teins are spliced aligned by Spaln (9) back to the seed re-
gion. Notably, the hints are defined by ProtHint processing
of the Spaln raw pairwise alignments instead of using an-
notation of exons in the Spaln output. Rather frequently,
multiple target proteins aligned to the original seed region
may map out one and the same sequence fragment as an
intron. Such an outcome would define an intron hint with
a higher confidence than if an intron candidate is mapped
only once.

Score system for introns. As described earlier, an expected
evolutionary conservation between primary structures of
target proteins and a protein encoded in the seed region has
to be quantified and used for accurate identification of a
new gene. To facilitate this quantification, we define three
types of scores for exons and introns (AEE, IBA and IMC;
see below) and two types of scores for candidate gene starts
and stops (SMC and BAQ; see below).

Alignment of entire exon (AEE) score is defined as a score
of the Spaln (or ProSplign) alignment of exon translation
and a target protein (for more details, see Supplementary
Data).

Intron border alignment (IBA) score is computed from
kernel modified alignment scores of two adjacent exons with
larger weights given to parts close to the donor and accep-
tor splice sites. An IBA score (within a window of length w,
being 10 amino acids by default) is computed as follows.

For downstream (and upstream) exon defined in the
Spaln spliced alignment, we compute Sd (and Su) as

Sd =
w∑

i=1

Sa (Gi , Pi ) × W (i ) . (1)

Here, Sa(Gi , Pi ) is a substitution score defined for target
protein amino acid Pi and a codon defined amino acid Gi
(see Suppl. Materials), and W(i ) is the weight function. For
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Figure 3. Selection of sequence regions for GeneMark-EP+ training with enforcement of high-confidence (HC) hints.

instance, for a downstream exon Sd,

Wi = K (i )∑w
i=1 K (i )

, (2)

where K(i ) is the kernel value for position i counting in
codons from an acceptor site. In a linear kernel,

K (i ) = 1 − |i | − 1
w

. (3)

Then, we take a geometric mean of values of Sd and Su:

Sintron =
{√

Su × Sd, min (Su, Sd) > 0,
0, otherwise. (4)

Finally, the IBA score is obtained by normalizing the Sintron
score into 〈0, 1〉 range: IBA score = Sintron/ max(Sa), where
max(Sa) is a maximum score among elements of the amino
acid substitution matrix.

Intron mapping coverage (IMC) score is a count of how
many times a given intron was exactly mapped by spliced
alignments of target proteins. The IMC score is computed
only from the set of the introns that IBA score exceeds cer-
tain level.

Notably, instead of all introns with identical coordinates
and different IBA scores related to different target proteins,
we deal with a single intron characterized by the maximum
of individual IBA scores among all collapsed introns.

Application of the intron scores. For a particular seed re-
gion, we use the following method to define hints to exon–
intron structure from a set of spliced alignments of target
proteins.

First, we select introns whose two adjacent exons have
scores AEE ≥ Et, where Et is a chosen threshold. For Et =
25, in a modeling on known genomes, we observed relatively

high Sn value of the candidate introns (Supplementary Fig-
ure S1). Further increase of Et eliminated true introns while
not significantly improving Sp value.

Next, to reduce number of false positives in the obtained
set of introns, we selected a subset with the IBA score >
It, where It is another chosen threshold. Our modeling has
shown an increase in the Sp value of the candidate introns
for It = 0.1 that occurred without noticeable change in Sn
(Supplementary Figure S1).

Thus identified sets of introns for all the seed regions rep-
resent a set of all mapped introns; it is used as external evi-
dence to generate anchored introns for GeneMark-EP train-
ing steps as described earlier.

Finally, within the set of all mapped introns we select a
narrower set of high-confidence introns. These introns must
have canonical GT–AG splice sites, an IMC score ≥ 4 and
an IBA score ≥ 0.25 (Figure 4, Supplementary Figure S2).

We use high-confidence introns to estimate initial param-
eters of the GeneMark-EP intron model. Besides, these in-
trons are enforced in the prediction step of the GeneMark-
EP+ mode.

Score system for translation starts and stops. Similarly to
scores introduced for intron hint generation, we define a
border alignment quality (BAQ) score for translation starts
and stops. This score is computed for w amino acids down-
stream (upstream) of start (stop) codon, weighted by a
kernel-dependent function (Equation 1).

The second type of score is the site mapping coverage
(SMC) score. This score is a count of N-terminals (C-
terminals) of target proteins aligned to a particular start
(stop) codon position of a candidate gene. The SMC scores
are computed only from the sets of initial (terminal) exons
whose BAQ scores exceed certain level.
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Figure 4. ProtHint intron processing in case of N. crassa. Introns were generated by spliced alignments of target proteins from species beyond Neurospora
genus. (A) Distribution of the score vectors (IBA, IMC) of true positive (green) and false positive (purple) introns. The black lines represent cutoffs at IMC
= 4 and IBA = 0.25. Total numbers of false and true positives are shown in the upper left corner. (B) Sn and Sp of intron sets selected by thresholds on
IBA score and IMC score. IMC score is computed for introns that have IBA score ≥ 0.1 and exon AEE score ≥ 25. The red curve represents the following.
The left branch of the curve reflects (Sp, Sn) values of the sets of introns selected by using IMC threshold from 0 to 4. The one with the IMC threshold =
4 is recorded as set A––the set corresponding to the black circle in the red curve. Then, the right branch of the curve reflects (Sp, Sn) of the set of introns
generated by applying to set A an IBA score threshold changing from 0 to 0.25 and up to 1.0. Set B corresponds to the black cross in the red curve; introns
in this set have IMC ≥ 4 and IBA ≥ 0.25. Separate curves for IMC score change (dashed blue) and IBA score change (dashed purple) are shown as well.

If a set of target proteins for a given seed region gener-
ates footprints situated more upstream than others, alter-
native start candidates situated downstream are removed
from consideration (Supplementary Figure S3, details in
Supplementary Data). We have observed that using these
rules leads to increase in the hints’ accuracy (Table 3, Sup-
plementary Table S2).

Application of BAQ and SMC scores. Altogether, selection
of a set of all translation start and stop hints is done by the
following method.

A start codon candidate is an ATG codon present in a
mapped initial exon and aligned to N-terminal methionine
in a target protein; a stop codon candidate is a stop codon
in a mapped terminal exon.

A candidate initial (terminal) exon containing candidate
gene start (stop) should have AEE score ≥ 25 and BAQ
score for candidate start (stop) codon ≥ 0.

To select a subset of high-confidence hints, we choose
stop codon candidates with SMC score ≥ 4 as well as start
codon candidates with SMC score ≥ 4 and no overlap by
longer target proteins (Supplementary Figure S3). The set
of high-confidence hints to translation starts and stops is
used to estimate parameters of GeneMark-EP models of
translation initiation and termination sites. Also, the high-
confidence hints are directly enforced in the prediction step
of GeneMark-EP+.

Do introns mapped by ProtHint tend to occur in gene regions
coding for conserved domains?

To address this question, we use the following procedure.
Annotated genes are translated to proteins and used as

queries in RPS-BLAST (27) to search (E-value = 0.01)
against NCBI Conserved Domains Database (28). Results
of the RPS-BLAST searches are processed with rpsbproc
utility (28) to generate a map of conserved domains for
each RPS-BLAST query. Finally, coordinates of the con-
served domains are mapped back to a seed region of ge-
nomic DNA and compared with the ProtHint output to find
out how many introns are mapped into regions coding for
conserved domains. We conducted this analysis for genes of
D. melanogaster, C. elegans and D. rerio genomes annotated
in the APPRIS database (24) as genes coding for principal
protein isoforms (see ‘Results’ section).

Assessment of GeneMark-EP and -EP+ gene merging and
gene splitting errors

Gene merging and splitting errors are expected to be re-
duced by the use of homologous protein-derived hints to
gene translation starts and stops. This expected improve-
ment in prediction accuracy of GeneMark-EP+ could be
more accurately observed on properly prepared test sets.
Prior to evaluation of gene splitting, we had to exclude
from the test sets (i) genes fully overlapping shorter genes
present inside introns in any strand; (ii) genes with larger
isoforms combining or including shorter alternative com-
ponents (Supplementary Figure S4); and (iii) genes with in-
trons longer than 10 000 nt (the default maximum intron
length). For genes with annotated multiple alternative iso-
forms, we used the longest one as a representative. Prior
to evaluation of gene merging, overlapping genes present
in annotation (e.g. a gene within an intron) were merged
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Table 3. Case of A. thaliana: sensitivity and specificity of all gene start hints created by ProtHint as well as of high-confidence start hints

All reported starts Filtered with SMC ≥ 4 Filtered with SMC ≥ 4 and exon overlap = 0

A. thaliana Sn 69.3 62.9 61.4
Sp 70.9 89.8 94.4

High specificity was achieved through filtering by SMC scores as well as by removal of candidate starts overlapped by at least one target protein suggesting
an alternative start upstream. Sensitivity was defined with respect to a full complement of starts, including alternative ones as given in annotation. The
numbers were generated in tests with reference proteins from species outside a relevant genus. Results for all test species are shown in Supplementary Table
S2.

into a single gene in order to exclude such cases from being
counted as merged genes.

RESULTS

We have compared gene prediction accuracy of GeneMark-
EP and -EP+ with accuracy of GeneMark-ES and
GeneMark-ET. In addition, we made an accuracy assess-
ment of ProtHint. We worked with genomes of six species
N. crassa, C. elegans, A. thaliana, D. melanogaster, S. lycop-
ersicum and D. rerio (Table 1). Genomes of model organ-
isms (all the species but S. lycopersicum) were expected to
have sufficiently accurate annotation. For model organisms,
we only made comparisons between predicted and anno-
tated gene coordinates on whole genome scales. In case of
S. lycopersicum, we also built a test set of genes validated by
RNA-Seq data.

In genomes of C. elegans, A. thaliana, D.
melanogaster and D. rerio all regions of annotated
pseudogenes were excluded from comparisons. In case of
D. rerio we excluded annotated partial exons (ubiquitous
in this genome) from exon-level accuracy assessment; we
computed gene-level sensitivity only for genes having in
annotation complete alternative transcripts.

We used OrthoDB v10 (23) as a source of protein se-
quences partitioned into relevant taxonomic divisions; par-
ticularly, we used plant division for A. thaliana, arthropod
division for D. melanogaster, etc. (Table 2).

A principal feature of the new method is use of multiple
homologous proteins for hint generation. We had to model
practical situations when the closest evolutionary distance
from a seed protein to the homologs detected by similarity
search in a protein database could vary significantly de-
pending on the evolutionarily distance to most closely re-
lated species with sequenced and annotated genome. To
simulate these variations in our tests, we introduced re-
strictions on evolutionarily distance to the closest species
from which the target proteins could be recruited. These
restrictions were implemented by removing from the pro-
tein database (i) proteins encoded in the genome of a given
species; (ii) proteins from all species from the same sub-
genus; (iii) proteins from the same genus; (iv) proteins from
the same family; (v) proteins from the same order; and (vi)
proteins from the same phylum. Notably, distributions of
numbers of species within a genus, family, etc. defined by a
given species are species specific (Table 2).

Assessment of accuracy of GeneMark-EP and -EP+

For each species (Table 1), we determined how the accu-
racy of GeneMark-EP and -EP+ at gene level (Figure 5)

A B

DC

E F

Figure 5. Comparison of GeneMark-ES and GeneMark-EP+ accuracy on
gene level. Accuracy of GeneMark-EP+ is shown for cases when ProtH-
int works with different size sets of reference OrthoDB proteins: from the
largest (only proteins from the same species are excluded) to the smallest
(proteins of the whole phylum excluded). A gene prediction is considered
to be correct if it matches one of the annotated isoforms. For D. rerio, gene-
level Sn was computed only with respect to complete genes.



8 NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 2

and exon level (Supplementary Figure S5) depended on the
choice of a set of reference proteins. The pattern of accu-
racy change at gene level (Figure 5) was similar to the one
observed at exon level; therefore, we show the results of
accuracy assessment at gene level in the main text, while
the results for exon level are provided in Supplementary
Data (Supplementary Figure S5). Even more details on ac-
curacy assessment of GeneMark-EP (running without en-
forcement of high-confidence hints) and of GeneMark-EP+
are given in Supplementary Data (Supplementary Table
S3).

We present results for the three groups of genomes: fungal
genomes, compact eukaryotic genomes and large eukary-
otic genomes.

Fungal genomes. N. crassa. Accuracy of GeneMark-ES
was high, as it has been typical for fungal genomes (21).
Even with hints originated from the largest set of refer-
ence proteins, those outside genus/order, GeneMark-EP+
improved Sn value of GeneMark-ES only by ∼2% (Fig-
ure 5a). With smaller set of more remote reference pro-
teins that originated from the species outside fungal phy-
lum, the accuracy of GeneMark-EP+ matched the accuracy
of GeneMark-ES (Figure 5a). This result went in line with
previous observations that GeneMark-ES was highly effi-
cient ab initio gene finder for fungal genomes (21). We ob-
served earlier that for fungal genomes a support of training
with data from splice-aligned RNA-Seq reads makes accu-
racy of GeneMark-ET at best slightly higher than that of
GeneMark-ES.

Compact eukaryotic genomes. C. elegans, A. thaliana and
D. melanogaster. When GeneMark-EP+ used the largest set
of reference proteins (just without proteins from the same
species), we saw for A. thaliana and D. melanogaster an
improvement of ∼20% in both Sn and Sp in comparison
with GeneMark-ES (Figure 5c and d). As target proteins
were coming from larger and larger evolutionary distances,
the accuracy did steadily decrease. When target proteins
were selected outside the same phylum, there was an in-
crease of only 5% in gene-level Sn and Sp in comparison
with GeneMark-ES. For C. elegans, when the set of ref-
erence proteins excluded just proteins of the same species,
GeneMark-EP+ improved the accuracy of GeneMark-ES
by ∼6% (Figure 5b). We observed almost no difference be-
tween GeneMark-EP+ and GeneMark-ES when the refer-
ence proteins were only from species outside the C. elegans
family and a slight decrease in accuracy (∼2%) for refer-
ence proteins outside of the taxonomical phylum. Notably,
the gene-level accuracy for C. elegans was lower than that
for other species with compact genomes.

Large eukaryotic genomes. S. lycopersicum and D. rerio.
The gene-level accuracy of GeneMark-ES was low for these
genomes (between 5% and 20%). GeneMark-EP+ improved
the accuracy for S. lycopersicum by ∼15%, when it used
a protein reference set from species outside of the tomato
genus or order (Figure 5e). For D. rerio, having a reference
set of proteins without those from same genus or the same
order as D. rerio led to Sn and Sp improvement of ∼20%
and ∼5%, respectively (Figure 5f). However, the improve-

ments were twice as low when reference proteins were avail-
able only outside the S. lycopersicum or D. rerio phylum.

Relatively low gene prediction accuracy in large genomes
could be partially attributed to incorrect and/or incomplete
gene annotations. Therefore, we made additional effort to
refine test sets in D. rerio and S. lycopersicum by selecting
genes supported by RNA-Seq data.

We observed that if annotated genes of S. lycopersicum
genome were supported by RNA-Seq, they were signif-
icantly better predicted by GeneMark-EP+ (Supplemen-
tary Table S4). To generate intron hints from RNA-Seq, we
used VARUS (29). We divided annotated tomato multi-exon
genes into two groups: (a) genes with all introns predicted
by VARUS and (b) all other genes. GeneMark-EP+ sensi-
tivity (for a GeneMark-EP+ run having reference proteins
outside the S. lycopersicum genus) was 40% better in set (a)
than in set (b), on gene, exon and intron levels. It is im-
portant to emphasize that RNA-Seq information was not
used in GeneMark-EP+. Sensitivity defined for the set of
introns mapped by ProtHint was also better in set (a) by
∼40% (Supplementary Table S4).

We already mentioned that D. rerio annotation had many
partial exons that in turn would be parts of incomplete
transcripts. We evaluated exon-level Sn separately for ex-
ons within complete and incomplete transcripts (Supple-
mentary Table S5) and observed 75.1% exon Sn in the ‘com-
plete’ group versus 67.6% in the ‘incomplete’ group. Simi-
larly, gene-level sensitivity was better by 6% in predicting
genes with complete transcripts compared to all genes (Sup-
plementary Table S5).

Altogether, we observed that for majority of the consid-
ered species, the accuracy of GeneMark-EP+ was better
than accuracy of GeneMark-ES, regardless of how large a
set of reference proteins was used for spliced alignments
(Supplementary Table S3, Figure 5, Supplementary Fig-
ure S5). For the fungal genome, N. crassa, an improvement
was negligible due to ability of GeneMark-ES to deliver
high accuracy for fungal genomes; we also observed a small
decrease of accuracy in the C. elegans test with phylum-
excluded reference set of proteins (Figure 5).

Comparison with GeneMark-ET

In addition, we compared GeneMark-EP with GeneMark-
ET (2) that uses RNA-Seq short reads to provide external
information (hints to intron coordinates) to select anchored
gene elements for the GeneMark-ET algorithm parameter
estimation. GeneMark-ET does not have an ‘-ET+’ mode
in which predictions are directly guided by high-confidence
hints. We ran GeneMark-ET with hints to coordinates of
introns mapped by VARUS from RNA-Seq reads. VARUS
automatically sampled, downloaded and aligned reads from
NCBI’s Sequence Read Archive (SRA) with time stamp of
22 January 2020 (30). The time stamp is important for the
reproduction of results, since the VARUS outcome depends
on the amount of RNA-Seq data deposited to SRA. As
one could see (Supplementary Table S3), the accuracy of
GeneMark-ET with training guided by hints derived from
mapped RNA-Seq reads is very close to the accuracy of
GeneMark-EP with training guided by hints derived from
mapped proteins.
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To get an idea to what extent a whole complement of
genes is covered by hints originated from protein or tran-
script data, we determined fractions of genes with at least
one hint or at least with one high-confidence hint generated
by ProtHint (Supplementary Table S6) as well as the frac-
tions of genes with at least one hint generated by VARUS
(Supplementary Table S7).

When we used protein reference sets with largest sizes,
>80–85% of annotated genes of A. thaliana, C. elegans, D.
melanogaster, N. crassa and D. rerio harbored protein hints;
this percentage was 69% in S. lycopersicum (Supplementary
Table S6a). These numbers went down to a range of 40–
60% when the sets of reference proteins decreased to their
minimal sizes, which were reached when all proteins from
the same phylum species were excluded. It was interesting
to make comparison of just cited data with the percent-
age of annotated genes receiving high-confidence protein
hints. For the largest reference sets, we observed that per-
centage of genes with high-confidence hint was lower than
respective previous figures by just 3–5% in A. thaliana, D.
melanogaster, S. lycopersicum and D. rerio; the drop, how-
ever, was 13% in N. crassa and 24% in C. elegans (Supple-
mentary Table S6b). This large drop for C. elegans corre-
sponds to the lowest accuracy of GeneMark-EP+ among
all the species considered (Figure 5b). For the smallest ref-
erence sets, proteins from the same phylum excluded, the
drop in high-confidence hints coverage was within 10–15%
range for all species but N. crassa (22%).

The coverage by all protein hints (high confidence or not)
in comparison with coverage by RNA-Seq-derived hints
(Supplementary Table S7) was higher by 10–15% for all
species but C. elegans (lower by 10%) and D. rerio (lower
by 5.5%).

Finally, we saw that annotated genes that did not harbor
any hints, either from ProtHint or from VARUS, made a siz-
able fraction only in S. lycopersicum––24.4% (Supplemen-
tary Table S8), while in all other species these fractions were
rather small: from 5% (C. elegans) to 12.3% (N. crassa).

In our data, the percentage of annotated genes covered in
a given genome by the largest set of protein hints is compa-
rable to or higher than the percentage of genes covered by
the transcript-derived hints. Also, we saw that a vast major-
ity of genes in the six species receive one or another type
of external support. The genes that do not have external
support belong to intersections of sets of genes that code
for orphan or unique proteins and sets of genes that did
not show detectable expression in the experiments measur-
ing gene expression. Still, we have to make correction for
the fact that RNA-Seq-derived hints were not defined for
single-exon genes even if they were expressed.

Sources of improvements in gene prediction

Better performance of GeneMark-EP+ in comparison with
GeneMark-ES is expected due to two factors: (a) model
parameterization on a better validated training set as the
training process becomes semi-supervised instead of unsu-
pervised and (b) enforcement of high-confidence hints in
gene prediction steps. Notably, even when direct corrections
are not made [GeneMark-EP mode where factor (b) is ab-
sent], for all the species but fungi GeneMark-EP showed im-

provement over GeneMark-ES. Surprisingly, GeneMark-
EP showed only small fluctuations in accuracy when the size
of the reference set of protein increased by including more
evolutionarily close species (Supplementary Table S3).

The accuracy of GeneMark-EP+ was about the same as
the accuracy of GeneMark-EP when the smallest reference
set of proteins was used (proteins from species outside the
phylum of the species in question). Accuracy of GeneMark-
EP+ increases significantly when reference proteins from
more evolutionarily close species are included, while accu-
racy of GeneMark-EP stays about the same. The only ex-
ception was C. elegans in which GeneMark-EP gene-level
accuracy dropped by ∼4% for the reference set of species
outside the same phylum in comparison with GeneMark-
ES (while GeneMark-EP+ shows the accuracy close to the
level of GeneMark-ES; Supplementary Table S3).

These observations suggest that even a relatively small
number of anchored introns play a critical role in param-
eter estimation in GeneMark-EP. Further increase in the
number of anchored introns does not improve parameters
of GeneMark-EP. For the case of C. elegans, one could ar-
gue that the sufficient minimal number of anchored introns
was not found when proteins of the reference set were lim-
ited to ones from the species outside the C. elegans phylum.

To differentiate contributions into GeneMark-EP+
performance, we compared runs that used only high-
confidence intron hints with runs that used only high-
confidence hints for gene starts and stops (Supplementary
Table S9). This experiment showed that enforceable hints
of both kinds contributed equally to overall accuracy
improvement. However, these hints contribute unequally to
reduction of different types of errors. Enforcement of high-
confidence intron hints led to higher prediction accuracy of
internal exons, while enforcement of high-confidence hints
to gene starts and stops led to reduction of errors in initial
and terminal exons.

We observed that GeneMark-ES was more likely to gen-
erate gene merging than gene splitting errors (Table 4); for
instance, comparison of the A. thaliana gene predictions
and annotation showed 360 split genes and 743 merged
genes. Use of GeneMark-EP (with reference proteins out-
side the same genus) decreased frequency of errors in gene
merging (a ∼15% decrease in all species); however, it also
caused a slight increase in gene splitting (Table 4). Transi-
tion to GeneMark-EP+ (the last column in Table 4) reduces
gene merging dramatically.

Enforcement of only high-confidence intron hints in
GeneMark-EP+ reduced the number of split genes (by en-
forcing introns in place of incorrectly predicted intergenic
regions). Still, these hints have little or no effect on the gene
merging (Table 4). The most significant effect on gene split-
ting was observed for D. rerio––2010 split genes in the -EP+
mode compared to 2976 in the -EP mode.

Enforcement of high-confidence hints to gene starts and
stops significantly reduced number of merged genes and
caused a slight increase in number of split genes. For in-
stance, the number of merged genes dropped by ∼500 in
A. thaliana between GeneMark-ES and GeneMark-EP+, a
∼66% improvement; ∼50% improvement was observed for
the other species in our tests, except C. elegans. Altogether,
GeneMark-EP+ (Table 4, last column, bold font) achieved
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Table 4. Numbers of merged and split genes in predictions of GeneMark-ES, -EP and -EP+ with enforcement of (a) only high-confidence hints to introns,
(b) only high-confidence hints to gene starts and stops, or (c) both (a) and (b)

Genes ES EP EP+ introns (a) EP+ starts/stops (b) EP+ full (c)

N. crassa Merged 129 89 92 64 74
Split 83 96 89 106 91

C. elegans Merged 1120 1076 1090 1019 1029
Split 588 725 614 731 622

A. thaliana Merged 743 634 629 215 251
Split 360 385 242 478 277

D. melanogaster Merged 544 464 462 311 313
Split 285 297 204 324 221

S. lycopersicum Merged 2304 1871 1793 1165 1192
Split 1550 1644 1139 1962 1252

D. rerio Merged 1921 1415 1351 883 884
Split 2553 2976 2018 3058 2010

All the numbers were obtained for reference sets of target proteins from the species outside of relevant genus.

significant reduction in numbers of both merged and split
genes in comparison with GeneMark-ES and GeneMark-
EP.

Comparison of GeneMark-EP+ predictions with genome an-
notations defined by the APPRIS database

We compared GeneMark-EP+ gene predictions with an-
notations of major protein isoforms in C. elegans, D.
melanogaster and D. rerio genomes defined by the APPRIS
database (24). This test did show (Supplementary Figure
S6) an increase in exon-level sensitivity (by ∼4% for C. el-
egans and D. rerio, by ∼7% for D. melanogaster) and a de-
crease in exon-level specificity (by ∼1.5% for C. elegans, by
3% for D. melanogaster and by ∼8% for D. rerio) in com-
parison with our previous assessment results using genome
annotations made by respective genomic communities (Ta-
ble 1). The decrease in Sp could be expected since the AP-
PRIS annotation contains smaller number of exons. The in-
crease in Sn is a positive news indicating that GeneMark-
EP+ when making prediction of a single isoform per lo-
cus is likely to predict genes for major protein isoforms. At
gene level (Supplementary Figure S7), both Sn and Sp were
reduced slightly in C. elegans and D. rerio, and by 5% in
D. melanogaster. To correctly interpret this result, we have
to remind the definition of gene-level accuracy––a gene is
counted as correctly predicted if the prediction matches all
exons in at least one alternative transcript. Thus, a gene is
considered to be predicted correctly if just one of the iso-
forms (major or not) is correctly predicted (Figure 5, Sup-
plementary Table S3). This is a rather liberal way of com-
puting an Sn value on gene level.

Assessment of accuracy of ProtHint

The main role of ProtHint is generation of a list of coordi-
nates as well as confidence scores of potential borders be-
tween coding and non-coding regions in a novel genome.
Specific thresholds on confidence scores are defined to select
subsets of hints (e.g. high-confidence set). The GeneMark-
EP training procedure can tolerate a high number of false

positive intron hints since only a subset, the anchored in-
trons, is used in training. It is important that the set of
all mapped hints would have high Sn with respect to true
gene elements, while the Sp level could be lower. On the
other hand, the high-confidence hints––those utilized in ini-
tial GeneMark-EP+ parameter estimation as well as in the
hints’ enforcement––have to have high Sp, as these hints are
directly enforced in predictions.

How large are fractions of correct hints among hints gener-
ated by ProtHint?

When the set of reference proteins had the maximum size
(all proteins in a relevant OrthoDB division except those
from the same species), the set of intron hints generated by
ProtHint had Sn > 75% for exact introns and Sn ∼ 70% for
gene starts and stops (Table 5, Supplementary Table S10).
The value of Sn was dropping down steadily as evolution-
ary distance to reference proteins was increasing. Particu-
larly, when the proteins from species of the same order were
excluded, Sn was, on average, ∼65% for intron hints and
∼40% for gene start and stop hints.

The largest reduction in the volume of the pro-
tein reference set––exclusion of proteins from the same
phylum––decreased Sn of all reported intron hints down
to ∼40% on average (Supplementary Table S10). Here, the
largest Sn value (the fraction of correct intron hints) was
observed for N. crassa (60%), and the lowest one for C. ele-
gans (26%). At the same time, the value of Sn of gene start
and stop hints generated from the smallest reference set of
proteins varied significantly between the species, from 8%
for C. elegans to 30% for N. crassa (Supplementary Table
S10).

How reliable are ‘high-confidence’ hints generated by ProtH-
int?

The sets of high-confidence hints were observed to have high
specificity, averaging over 95% (5% of false positives) over
the six species. This level remained high even for the smallest
sets of reference proteins, proteins from the species outside
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Table 5. Accuracy of ProtHint for the D. melanogaster genome: sensitivity and specificity of hints to introns, start and stop codons

Level of exclusion of reference proteins

Species Subgenus Family Order Phylum

All reported
High

confidence All reported
High

confidence All reported
High

confidence All reported
High

confidence All reported
High

confidence

Intron Sn 79.8 74.6 72.8 62.6 66.2 54.3 49.7 34.4 35.8 20.9
Intron Sp 83.5 98.9 79.6 98.8 79.5 98.8 80.5 99.0 88.4 99.5
Start Sn 70.3 60.7 49.8 36.5 37.7 29.2 22.3 15.9 14.1 9.7
Start Sp 79.5 97.4 75.6 96.7 71.6 95.6 73.4 94.5 75.0 93.5
Stop Sn 75.3 68.4 56.7 45.2 44.7 36.9 26.7 19.8 15.8 11.2
Stop Sp 94.8 99.3 94.2 98.8 92.8 98.5 94.5 98.9 95.8 99.2

The results are shown for all reported hints or just high-confidence hints. The Sn and Sp values are computed based on genome annotation of a full
complement of introns, gene starts and stops, including alternative isoforms. Results for all tested species are shown in Supplementary Table S7.

the phylum of interest (Table 5, Supplementary Table S10).
In case of C. elegans, along with high Sp, we observed low
Sn value of high-confidence hints (for all the reference pro-
tein sets––larger or smaller), which is explained by the pres-
ence of just a few species with sequenced genomes in the C.
elegans phylum (Table 2). For all other species, a decrease in
Sn upon transition from all mapped to high-confidence hints
was small in comparison with the simultaneous increase in
Sp.

Distributions of (IMC, IBA) vectors representing intron
hints generated for N. crassa (both false and true as com-
pared with annotation) are shown in Figure 4a (for the
genus-excluded protein reference set). The Sp–Sn curves are
generated for sets of intron hints obtained by filtering with
IMC and IBA thresholds (Figure 4b).

The distribution of the score vectors (Figure 4a) as well
as the behavior of Sp–Sn curves (Figure 4b) depends on
selection of the set of reference proteins (genus or order
or phylum excluded; Supplementary Figure S2, left and
middle panels). A choice of IBA threshold selecting high-
confidence intron hints affects accuracy of GeneMark-EP+.
We assessed the extent of this effect for A. thaliana, N.
crassa and S. lycopersicum (Supplementary Figure S2, right
panels). It was shown that the best average prediction accu-
racy was achieved with IBA threshold set to 0.25. Similar
analysis produced necessary thresholds for high-confidence
hints to gene starts and stops.

More intron hints are generated in regions encoding conserved
protein domains

We found that ∼50% of the whole set of introns annotated
in the APPRIS set of principal isoforms is located within
conserved protein domains (Supplementary Table S11).

In D. melanogaster, high-confidence intron hints gener-
ated by ProtHint from the ‘species-excluded’ reference set
of proteins fell into regions coding for conserved domains
in 55.9% of cases (Table 6). This fraction increased signifi-
cantly as more proteins were excluded from the reference set
(e.g. proteins from species outside of the D. melanogaster
genus). This fraction reached 84.6% when only proteins
originated from species outside the D. melanogaster phy-
lum were considered (Table 6). Similar trends were observed
for C. elegans and D. rerio (Supplementary Table S12). In
the set of all reported intron hints, the fraction of introns
mapped to regions coding for conserved domains was lower

than that in the set of high-confidence intron hints (Sup-
plementary Table S12); however, the proportion of introns
mapped into conserved domain regions also increased upon
removing proteins from closely and moderately closely re-
lated species.

The same type of fractions computed for ‘high-
confidence’ and ‘all reported’ intron hints were almost
identical for the species between D. melanogaster and D.
rerio (Supplementary Table S12). Still, for C. elegans,
however, the fraction of true high-confidence introns was
lower (Supplementary Table S12) apparently due to having
fewer target proteins from close relatives in the protein
database (a factor significantly affecting IMC score).

DISCUSSION

The main reason to develop GeneMark-EP and -EP+ was
a clear need to leverage abundant protein sequence data
available in public databases for improving accuracy of au-
tomatic gene prediction. It was well expected that iterative
ab initio parameterization of statistical models (as done in
GeneMark-ES) would become more precise, especially for
large genomes, if we find an efficient method to add data on
protein footprints into training and prediction steps. This
project has grown into development of a whole GeneMark-
EP pipeline, with GeneMark-EP+ mode that directly inte-
grates most confident evidence into predicted exon–intron
structures. In this respect, the new pipeline features a new
method, ProtHint, developed to find multiple proteins ho-
mologous to a gene initially predicted in a genomic locus
and then to derive reliable hints to the true gene exon–intron
structure by constructing and processing multiple protein
footprints. GeneMark-EP and -EP+ should become a uni-
versal extension of GeneMark-ES, as its application to a
novel eukaryotic genome will be facilitated by use of a vast
volume of protein sequences.

Another earlier developed method, GeneMark-ET (2),
extended GeneMark-ES to use external evidence generated
from transcriptome sequence data, when it is available along
with a newly assembled genome.

Existing methods, such as GenomeThreader (7), rely on
mapping proteins from closely related species as well as
mapping gene elements from aligned genomic sequence of
the close species to produce predicted exon–intron struc-
tures. However, its prediction accuracy is dropping fast with
increase of evolutionary distance between species (6).
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Table 6. Fractions of D. melanogaster high-confidence intron hints mapped into regions coding for conserved protein domains

High-confidence intron hints matching APPRIS annotated introns

Exclusion level All high-confidence intron hints High-confidence intron hints that fell into domains

Species 33 894 18 934 (55.9%)
Subgenus 28 437 17 475 (61.5%)
Family 24 670 16 057 (65.1%)
Order 15 829 11 984 (75.7%)
Phylum 9719 8222 (84.6%)

The hints were generated from sets of reference proteins having different evolutionary distance to D. melanogaster. Out of 41 010 D. melanogaster introns
listed in the APPRIS annotation, 21 562 (52.6%) are located in regions encoding conserved protein domains.

Use of multiple homologous proteins proved to be im-
portant for keeping decent accuracy of prediction with in-
crease of evolutionary distance between species with known
genomes and the species of interest. Particularly, due to cor-
roboration of footprints originated from multiple homolo-
gous proteins, we observed enrichment of high-confidence
introns in regions coding for conserved domains (Table 6).

Use of anchored elements of gene structure was impor-
tant for integration of signals originated from different
sources (sites predicted from genomic sequence alone and
sites identified by protein footprints). The logic of selec-
tion of anchored elements enabled filtering out ‘one-sided’
noises present in one or another source. Use of partial pro-
tein footprints, when a target protein mapping could con-
tribute less than full exon–intron structure, was another im-
portant feature of the new method. Partial footprints were
useful for improving training sets; they also added confident
corrections at gene prediction steps (Supplementary Figure
S8).

Use of anchored elements was most beneficial for large
genomes (S. lycopersicum and D. rerio) where GeneMark-
ES alone generated an elevated rate of random false positive
errors within long intergenic regions.

Mapping of N- and C-terminals of target proteins al-
lowed for better discrimination between introns and inter-
genic regions than it could be done by an ab initio algorithm.
This improvement led to significant reduction of errors in
gene merging (when intergenic regions were predicted as in-
trons) though reduction in error rate of gene splitting (when
introns were predicted as intergenic regions) was smaller
(Table 4).

The most significant improvement in comparison with
GeneMark-ES, observed in all species but fungi, N. crassa,
occurred when GeneMark-EP+ used the largest possible set
of reference proteins (Figure 5, Supplementary Figure S5).
For N. crassa, use of protein evidence never led to notice-
able improvement over GeneMark-ES whose high accuracy
for fungal genomes was demonstrated earlier as well (21).
We assume that relative drop in GeneMark-EP and -EP+
performance for C. elegans in comparison with Arabidop-
sis and Drosophila was related to a lower number of ref-
erence proteins within the C. elegans phylum. In tomato
and fish genomes that have longer on average intergenic
regions than other species, we saw low exon-level speci-
ficity (∼55–60%) related to elevated false positive prediction
of protein-coding genes in long intergenic regions (Supple-
mentary Figure S5). Gene-level accuracy for D. rerio, ∼30%
Sn and ∼12% Sp, for any set of reference proteins beyond

the D. rerio genus, was difficult to improve. Notably, the
genes in fish genome have a rather large, 8.2, average num-
ber of introns per gene. Under independence of error as-
sumption, a gene with a large number of introns would be
improbable target for accurate prediction. Even though the
independence assumption does not hold in the presence of
external evidence, the gene error rate increases with the in-
crease in number of introns (data not shown).

Annotation of genes encoding principal protein isoforms
is available for D. melanogaster, C. elegans and D. rerio in the
APPRIS database (24). GeneMark-EP+ comparison with
the APPRIS annotation shows better Sn than in compari-
son with annotations containing all possible isoforms.

A question could be raised, how pseudogenes affect train-
ing of GeneMark-EP and -EP+. This question is difficult to
address in a general setting. Still, since pseudogenes could
have different ages, let us consider just groups of ‘young’
and ‘old’. Young pseudogenes with one or two mutations
that make them dysfunctional still have all the sequence pat-
terns that could be used in training. Old pseudogenes that
accumulated many mutations would harm statistical mod-
els if included in training. We argue that old pseudogenes
will not be predicted by GeneMark-ES in the course of self-
training and therefore they have little or no chance to be in-
cluded in a training set of anchored elements. On the other
hand, elements of young pseudogenes could be identified
by GeneMark-ES while the frameshifted exons from spliced
alignments will be detected and scored unfavorably by Pro-
tHint. Therefore, the young pseudogenes could contribute
to parameter training as their ‘intact’ parts will appear in
both training and prediction. Addressing full complexity of
this issue goes beyond the scope of this project; therefore,
currently, GeneMark-EP and -EP+ do not collect informa-
tion on frameshifts and potential pseudogenes.

Interestingly, the second run of full GeneMark-EP+
(when we took as seed genes the results of gene predictions
made in the first full run) had a small but positive effect
on the final gene prediction accuracy. This additional run is
recommended if an increase in run-time is not a concern.

Running GeneMark-EP and -EP+ requires a protein
database as well as tools searching for target proteins and
for protein spliced alignments. We used OrthoDB as a
database of reference proteins, DIAMOND (25) for the
database search for proteins (targets) homologous to the
seed proteins and Spaln (9) for spliced alignment of tar-
get proteins to genome. To accelerate the pipeline run, we
limited the DIAMOND output by 25 target proteins per
seed protein (Supplementary Figure S9); choice of Spaln
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was also practical from the standpoint of run-time reduc-
tion. Additionally, we verified that use of GeneMark-ES for
generating seeds was a faster and more efficient method in
comparison with the six-frame translation with Procompart
and ProSplign tools (8).

This discussion section would be incomplete if we do
not mention limitations of the new method. GeneMark-
EP does not support multiple models needed for genomes
with heterogeneous nucleotide composition, like genomes
of mammals and some plants (grasses, e.g. rice). While the
current version of GeneMark-EP and -EP+ would outper-
form GeneMark-ES when running on such genomes, the
overall accuracy could be significantly improved with more
accurate modeling of genome heterogeneity.

We realize that use of taxonomic divisions for selecting
or out-selecting of reference proteins is just the first step in
accurate modeling of real-life distributions of evolutionary
distances to database orthologs for genes and proteins exist-
ing in a novel species. Arguably, there is room for improve-
ment of both intron and gene start/stop hints when model-
ing of sets of reference proteins is done based on evolution-
ary distance measures. Similarly, one would expect that such
modeling would lead to improvement in selecting thresh-
olds for introns and site mapping.

Another limitation of the current method is the search
for a single optimal genomic sequence parse that leads to
prediction of a single gene and a single protein isoform
in each locus. Importance of genes with alternative splic-
ing has been debated recently, as the evidence was accu-
mulated that alternative splicing mainly operates with UTR
regions rather than with translated regions of pre-mRNA.
Moreover, the claims were made that when a translated re-
gion could be alternatively spliced, then only one among the
protein isoforms, the major one, is expressed in the largest
number of tissues (24). If gene prediction by GeneMark-
EP and -EP+ is viewed as prediction of the major isoform,
then the result should be naturally assessed in compari-
son with annotation of the major isoforms. Such compar-
ison, done for C. elegans, D. melanogaster and D. rerio,
used annotation provided by the APPRIS database, and
showed improved sensitivity in predicting genes of major
protein isoforms. Nonetheless, general tools able to predict
all alternative isoforms are of significant interest for com-
munity. When external information representing alterna-
tive isoforms is provided at RNA level, an earlier devel-
oped pipeline, BRAKER1 (31), uses GeneMark-ET and
AUGUSTUS to make predictions of alternative isoforms. A
new pipeline, BRAKER2 (paper in preparation), combines
GeneMark-EP and -EP+ with AUGUSTUS to identify a
set of alternative protein isoforms when alternative vari-
ants of cross-species proteins are given among references.
A new tool, GeneMark-ETP, will combine into gene pre-
diction protein and transcript data (paper in preparation).

DATA AVAILABILITY

Full GeneMark-EP and -EP+ package, including Pro-
tHint, is available at http://topaz.gatech.edu/GeneMark/
license download.cgi. Software is compiled for Linux and
Mac OS operating systems. All scripts and data used to
generate figures and tables in this manuscript are available

at https://github.com/gatech-genemark/GeneMark-EP-
ProtHint-exp. To give an example, the overall run-time
of ProtHint and GeneMark-EP in -EP+ mode on the D.
melanogaster genome (having ∼14 000 genes in 134 Mb
sequence) with target proteins selected from species outside
Drosophilidae family was ∼5 h on 8 CPU/8 GB RAM
machine. In our experiments, the run-time grew linearly
with respect to both genome length and number of genes.
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