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Pathological impulsivity is encountered in a broad range of psychiatric conditions 
and is thought to be a risk factor for aggression directed against oneself or others. 
Recently, a strong association was found between impulsivity and obesity which may 
explain the high prevalence of metabolic disorders in individuals with mental illness even 
in the absence of exposure to psychotropic drugs. As the overlapping neurobiology 
of impulsivity and obesity is being unraveled, the question asked louder and louder is 
whether they should be treated concomitantly. The treatment of obesity and metabolic 
dysregulations in chronic psychiatric patients is currently underutilized and often initiated 
late, making correction more difficult to achieve. Addressing obesity and metabolic dys-
function in a preventive manner may not only lower morbidity and mortality but also the 
excessive impulsivity, decreasing the risk for aggression. In this review, we take a look 
beyond psychopharmacological interventions and discuss dietary and physical therapy 
approaches.
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iNTRODUCTiON

Although the prevalence of obesity and metabolic syndrome has been increasing worldwide over the 
past decades, it is significantly higher in mentally ill patients regardless of exposure to psychotropic 
drugs (PTDs) (1–9). In this regard, it was hypothesized by others that the parallel growth of psychi-
atric and metabolic disorders may indicate a shared pathoetiology (10–13).

Pathological impulsivity encompasses a heterogenous group of psychiatric disorders characterized 
by inability to resist impulses for engaging in behaviors harmful to self or others. It is encountered 
in numerous psychiatric conditions, ranging from intermittent explosive disorder, pathologi-
cal gambling, kleptomania, trichotillomania, and pyromania on the one hand, to schizophrenia, 
mania, attention-deficit hyperactivity disorder (ADHD), antisocial personality disorder, and drug 
addictions on the other. The psychopharmacological treatment of these disorders is dependent on 
the primary pathology and may include almost all classes of PTDs: serotonin reuptake inhibitors, 
stimulants, antipsychotics, mood stabilizers, and in some instances opioid antagonists.

This observation is in line with the epidemiological studies, linking pathological impulsivity 
with weight gain and dysmetabolism (14–19). There is a growing body of evidence that includes 
studies in young individuals, indicating that obese/overweight adolescents are more likely to 
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engage in risky behaviors (20). Along the same lines, nutritional 
studies reveal that perinatal exposure to high fat diets is more 
likely to bring about impulsive offspring (21, 22). Other research 
in nutrition connected a high trans-fat diet with aggression, 
while sociological studies pointed to a correlation between 
antisocial behavior and obesity (23, 24). Neuroimaging studies 
shed additional light on the impulsivity–obesity connection as 
functional magnetic resonance imaging and diffusion tensor 
imaging studies documented lower perfusion in the orbitofron-
tal, medial/ventrolateral prefrontal cortex, and middle/superior 
frontal gyri in impulsive and obese individuals (25–28). In addi-
tion, this body of evidence includes novel endocrinology studies 
demonstrating dysregulation of metabolic hormones ghrelin, 
leptin, and adiponectin in conditions associated with patho-
logical impulsivity, including ADHD, aggression, and antisocial 
personality disorder (29–34). On the other hand, clozapine, 
an established anti-impulsivity drug, was found to directly 
alter the expression of leptin and adiponectin genes (35–37). 
Lithium, another anti-impulsivity drug, was found beneficial 
in correcting the glycemic parameters in diabetes mellitus type 
2 (T2DM) by inhibiting glycogen synthase kinase-3 (GSK-3) a 
leptin-lowering enzyme (38–40). As mentioned earlier, lower 
leptin levels were associated with excessive impulsivity and 
dyslipidemias (41).

Multiple psychiatric studies over the past decades established 
that acetylcholine (ACh) and monoamines (MAs) including nor-
epinephrine, dopamine, histamine, and serotonin are involved in 
a wide range of psychiatric disorders, including those marked by 
pathological impulsivity (14, 42–44). As these neurotransmitters 
were demonstrated to also modulate the hypothalamic feeding 
centers, it should not come as a surprise that impulsivity and 
obesity are intertwined (45, 46). Indeed, most antiobesity drugs 
present with agonistic action at the receptors in which many 
PTDs antagonize, suggesting the possibility of a psychometabolic 
continuum (46).

The development of PTDs with fewer metabolic adverse effects 
currently represents a major unmet need in psychiatry. As obesity 
and metabolic dysfunction in psychiatric patients trigger higher 
morbidity and mortality rates than in the general population, 
there is a heightened urgency for their prevention and early 
correction. Therefore, until this need is met, optimal utilization 
of available pharmacological and non-pharmacological tools is 
crucial for the overall well-being of these patients.

At present, the treatment of metabolic disorders in psychiatric 
patients is not only underutilized but also frequently delayed, 
rendering correction more difficult to achieve (6, 7). Indeed, after 
the diagnosis of obesity or metabolic syndrome is established, 
there are few effective interventions for reversing these condi-
tions. In general, these interventions revolve around replacing an 
orexigenic with a less orexigenic drug, at the risk of clinical desta-
bilization, or lifestyle and behavioral changes that have proved 
difficult to implement in this population (47, 48). Therefore, 
clinicians should adopt preemptive approaches, striving to avoid 
or delay the onset of obesity, and the metabolic syndrome instead 
of correcting them post hoc (7).

More studies are needed to assess the efficacy of preventive 
metabolic interventions, including the utilization of available 

antiobesity drugs in psychiatric disorders and PTD-induced 
obesity. There are even fewer studies on alternative modalities, 
including nutrition, physical therapy, and parasympathetic 
stimulation via cholinesterase inhibitors or transcutaneous 
auricular vagal nerve stimulation (taVNS).

In this article, we will review some of these modalities after 
a brief discussion on antiobesity drugs and their action in the 
hypothalamic feeding centers.

ARCUATe (ARC) NUCLeUS: wHeRe 
PSYCHOPHARMACOLOGY AND 
ANTiOBeSiTY PHARMACOPeiAS 
COLLiDe

Hunger, satiety, and energy homeostasis are controlled by the 
neuronal networks in the mediobasal hypothalamus and some 
brainstem areas. The ARC nucleus of the hypothalamus contains 
the first order neurons that balance hunger and satiety in order to 
maintain a stable body weight (49). This balancing act requires a 
constant cross-talk between the ARC nucleus and the peripheral 
organs, which takes place via metabolic hormones, neural input, 
and neurotransmitters, including MA and ACh (50).

The anorexigenic system that lowers appetite is composed of 
proopiomelanocortin (POMC) and cocaine- and amphetamine-
regulated transcript (CART) neurons. They produce the alpha-
melanocyte stimulating hormone (alpha-MSH) that binds to the 
melanocortin 3 and 4 receptors (MC3Rs and MC4Rs) expressed 
by the second order neurons located in the periventricular 
nucleus and the lateral hypothalamic area (LHA) (51) (Figure 1).

The orexigenic system, which increases the appetite, consists 
of neuropeptide Y (NPY) and agouti-related protein (AgRP). 
They produce NPY, GABA, and the AgRP. AgRP is an antagonist 
of alpha-MSH at MC3Rs and MC4Rs prevents their activation, 
whereas GABA inhibits the POMC/CART neurons. Both of these 
actions result in appetite augmentation.

In addition to these neuronal groups, ARC also contains dopa-
mine neurons which project to the anterior pituitary gland where 
they inhibit prolactin secretion (Figure 1). Blocking dopamine-2 
(D-2) receptors by PTDs often results in hyperprolactinemia, a 
common adverse effect of high potency antipsychotic drugs (52).

Over the past few years, new drugs indicated for the long-term 
treatment of obesity obtained FDA approval. Interestingly, two 
of them are combinations of PTDs utilized in the treatment of 
psychiatric disorders. For example, phentermine–topiramate 
extended release (Qsymia) and naltrexone–bupropion extended 
release (Contrave) have been prescribed individually in affective 
disorders and drug addictions. These drugs may have a place in the 
preventive treatment of PTD-induced obesity as they may be pre-
scribed “off label” in select patients needing more adequate mood 
stabilization. In this regard, four large randomized, double-blind, 
placebo controlled trials support the preventive use of topiramate 
alone for PTD-induced weight gain (53). Concomitant utilization 
of topiramate with orexigenic PTDs may constitute a preemptive 
intervention to avoid or delay the onset of obesity and metabolic 
dysregulation (Table 1). About 10% of patients may experience 
mild to moderate cognitive adverse effects early on topiramate 
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TABLe 1 | Antiobesity and anti-diabetes mellitus type 2 (T2DM) drugs for 
potential use in psychiatry.

Combination drugs FDA approved for

Phentermine/topiramate extended 
release (QSYMIA)

Obesity long term

Bupropion/naltrexone extended release 
(CONTRAVE)

Obesity long term

Glucagon-like peptide-1 agonists

Liraglutide (Victoza) T2DM + obesity long term

Exenatide (Byetta) T2DM (possible antiobesity action)

Albiglutide (Tanzeum) T2DM (possible antiobesity action)

Monoamine agonists

Phentermine, diethylpropion, 
benzphetamine

Obesity (short term)

Bromocriptine (Cycloset) T2DM (possible antiobesity action)

Amantadine (Symmetrel) Influenza A, Parkinson’s disease 
(possible antiobesity action)

Locaserin Antiobesity long term

Cholinergic agonists and enhancers

Sofinicline (Developmental stage-antiobesity)

Donepezil, rivastigmine, galantamine Alzheimer’s diseases (possible 
antiobesity and anti T2DM action)

Histamine agonists

Betahistine Meniere’s disease (possible antiobesity 
and anti T2DM action)

Melanin-concentrating hormone 
antagonists

(Developmental stage-antiobesity)

In parenthesis: non-FDA approved.
FiGURe 1 | The anorexigenic system: alpha-melanocyte stimulating 
hormone (alpha-MSH) activates MC3/4 receptors expressed on 
second order neurons, inhibiting appetite. The orexigenic system: 
agouti-related protein (AgRP) is a competitor of alpha-MSH at MC3/4 
receptors, augmenting appetite. Adiponectin, leptin, ghrelin, and serotonin 
activate the anorexigenic system. The action of these hormones on the 
orexigenic system results in the release of the inhibitory neurotransmitter 
GABA, which applies the brake on the anorexigenic system, increasing 
appetite. Abbreviations: AdipoR, adiponectin receptors; nAChRs, nicotinic 
cholinergic receptors; LepRs, leptin receptors; GHS-R1a, ghrelin receptors; 
serotonin 5-HT2C and 5-HT1A receptors.
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treatment with verbal fluency being more affected compared to 
other antiepileptic drugs.

MeTFORMiN

Metformin is a drug widely prescribed in psychiatric patients 
diagnosed with T2DM, but rarely in a preventive manner, even 
though several studies found this drug to be efficient in prevent-
ing both obesity and T2DM (54–56). Since metformin is known 
for its relatively benign adverse effects, it could be prescribed 
from the treatment onset along with the orexigenic PTDs.

Metformin was demonstrated to result in 2.93–5  kg weight 
loss after 6 months of treatment even when prescribed after the 
onset of metabolic dysregulation (55). More studies are needed 
to assess the benefits of preventive metformin use alone or in 
combination with other antiobesity agents.

GLUCAGON-LiKe PePTiDe-1 (GLP-1)

Recently, there has been a strong interest in the GLP-1 agonists, 
including liraglutide (Victoza), exenatide (Byetta), and albiglutide 

(Tanzeum). These agents have been shown effective in halting 
weight gain in diabetic patients and their antiobesity action is 
most likely mediated via GLP-1 receptors expressed on POMC/
CART neurons (57) (Figure 1).

In addition, novel studies demonstrate that GLP-1 inhibition 
may mediate clozapine-induced weight gain and metabolic 
dysregulation, suggesting that GLP-1 agonists could reverse 
both (58). To the best of our knowledge, currently, there is one 
ongoing study aiming at exploring liraglutide’s effects on glucose 
tolerance in patients on clozapine or olanzapine treatment (59). 
The once-a-week drug exenatide did not promote weight loss in 
this population (60). As liraglutide was demonstrated to be more 
effective than the GLP-1 mimetics, a clinical trial should be initi-
ated to assess the efficacy of this drug for PTD-induced obesity 
either alone or in combination with another compound, such as 
locaserin (61). The once-a-week albiglutide was also not tested for 
weight loss in PTD-induced obesity. A large study found this drug 
effective, especially as an adjunct to metformin, suggesting that it 
could be helpful for psychiatric patients with inadequate glycemic 
control on metformin alone (62). In addition, since liraglutide 
has both T2DM and weight loss indication, it could be prescribed 
more often in overweight/obese psychiatric patients, especially 
when other agents cannot achieve adequate glycemic stabiliza-
tion. Interestingly, novel studies demonstrate that GLP-1 agonists 
may have PTD-synergistic actions on impulsivity, suggesting that 
liraglutide-treated psychiatric patients may be managed with 
lower PTDs doses (63–67). Furthermore, since GLP-1 signaling 
was suggested as a common pathophysiological mechanism in 
both Alzheimer’s disease and T2DM, GLP-1 agonists may prevent 
cognitive decline (68).
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LOCASeRiN

The novel antiobesity drug, locaserin, is an agonist at serotonin 
5-HT2C receptors that are antagonized by some PTDs, inducing 
the adverse effect of weight gain. Interestingly, preclinical studies 
demonstrated the efficacy 5-HT2C agonists for the treatment of 
excessive impulsivity (46, 69–71).

Different studies point to a connection between serotonin 
signaling and the metabolic hormones—ghrelin, leptin, and 
adiponectin—which were also linked to impulsivity (29–34, 41). 
For example, studies in rodents show that leptin modulates the 
biosynthesis and release of serotonin by the raphe nuclei (72–74). 
Other studies report that leptin receptors (LepRs) act synergisti-
cally with 5-HT2C expressed on POMC/CART neurons and 
with 5-HT1B receptors on NPY/AgRP neurons (75) (Figure 1). 
Clozapine, a drug with known anti-impulsivity actions and 
orexigenic adverse effects, is an antagonist at both 5-HT2C and 
5-HT1B receptors. In addition, as mentioned earlier, clozapine 
alters the expression of leptin and adiponectin genes, suggesting 
direct effects on both impulsivity and weight gain.

To the best of our knowledge, locaserin has not been tested 
in PTD-induced weight gain, but its receptor profile suggests it 
may be beneficial as an adjunct in clozapine-, olanzapine-, or 
mirtazapine-treated patients.

A body of literature links the reduced serotonergic 5-HT1B 
receptor activity with impulsivity and drug addictions (76–79). 
In the hypothalamus, the 5-HT1B receptors are expressed by 
the NPY/AgRP neurons and their activation inhibits the release 
of GABA, thus disinhibiting the anorexigenic system, inducing 
appetite suppression (Figure  1). The 5-HT1B receptors were 
demonstrated to act synergistically in appetite suppression with 
the 5HT2C at POMC/CART receptors (75). At present, there are 
no concomitant agonists at 5-HT2C and 5-HT1B receptors, but 
such drugs may be expected to present with superior antiobes-
ity and anti-impulsivity actions. As discussed above, lithium, a 
major anti-impulsivity drug, inhibits GSK-3, a 5-HT1B-blocking 
enzyme. Over-expressed GSK-3 was associated with excessive 
impulsivity in multiple psychiatric syndromes, including mania, 
suicide, and schizophrenia (80–84). In addition, GSK-3 upregula-
tion was demonstrated in obesity and insulin resistance (38, 39, 
85, 86). Since lithium was documented to possess anti-diabetic 
properties, GSK-3 inhibitors are currently T2DM targets (40). 
Indeed, three decades ago, it was noted that lithium acted syner-
gistically with some antidiabetic drugs; however, the mechanism 
was unknown at that time (87–89) (Table 1).

DOPAMiNeRGiC DRUGS iN  
OBeSiTY–iMPULSiviTY AXiS

Some of the FDA approved antiobesity agents are agonists at 
dopamine D-2 receptors that are antagonized by all clinically 
utilized antipsychotic drugs (90). The antiobesity D-2 agonists 
include phentermine, diethylpropion, benzphetamine, and 
bupropion (as part of the combination drug Contrave). In 
addition, the D-2 stimulants bromocriptine and amantadine 
have been associated with weight loss (91, 92). For example, 
amantadine has demonstrated efficacy in overweight/obese 

patients treated with olanzapine (91). Bromocriptine under the 
market name Cycloset recently obtained FDA indication for the 
treatment of T2DM. This drug has been underutilized in PTD-
associated glycemic dysfunction, although it may be beneficial 
for diabetic patients requiring treatment with risperidone, pali-
peridone, or some antidepressants that are often associated with 
hyperprolactinemia.

Recent studies revealed that elevated prolactin induces pan-
creatic beta cells to secrete insulin. Chronic hyperprolactinemia 
induces hyperinsulinemia, eventually resulting in beta cells 
exhaustion and T2DM (Figure  2). Aside from the anterior 
pituitary, prolactin is also released by the adipose tissue as a pro-
inflammatory cytokine demonstrated to augment the metabolic 
inflammation associated with obesity (93, 94). This is one of the 
primary reasons clinicians should address hyperprolactinemia 
promptly in PTD-treated patients, after prolactinomas have been 
ruled out (94). Novel studies do not support the older concept that 
bromocriptine or other D-2 stimulants invariably precipitate psy-
chosis. Persistently elevated prolactin was demonstrated by large 
studies to increase the all-cause mortality, emphasizing the need 
for treating this condition promptly (95, 96). In addition, other 
studies demonstrated the benefit of D-2 stimulation in patients 
with negative symptoms of schizophrenia (97, 98). Furthermore, 
some researchers hypothesized that hyperprolactinemia may 
exacerbate both schizophrenia and T2DM (99).

Appetite contains a large hedonic component mediated by 
the central reward system. A striatal hypodopaminergic state is 
believed to trigger overnutrition, which in turn augments dopa-
mine transmission. According to this model, D-2 stimulants cor-
rect the hypodopaminergia, lowering the overnutrition reward 
(100–102). Indeed, reduced D-2 receptor density was demon-
strated in obese individuals, implying impaired dopaminergic 
signaling in this metabolic disorder (103). Psychiatric patients 
treated with antipsychotic drugs (D-2 blockers) may present with 
an enduring iatrogenic hypodopaminergic state, which in turn 
triggers overnutrition to augment dopamine levels.

Amantadine, bromocriptine, or phentermine–topiramate 
extended release should be encouraged in psychiatric patients, 
especially when presenting with extrapyramidal symptoms or 
elevated prolactin.

Lisdexamfetamine, a dopaminergic pro-drug metabolized to 
dexamphetamine, was approved by the FDA for ADHD; however, 
its appetite suppressant activity and low abuse potential may 
render it useful in PTD-induced obesity. Recently, the effective-
ness of this compound was demonstrated in binge eating (104). 
In addition, its stimulant action was associated with significant 
improvements in negative symptoms of schizophrenia without 
worsening the positive symptoms (105).

ACeTYLCHOLiNe

A novel line of research demonstrates that ACh signaling and 
metabolic pathways intersect, both in the pancreas and the hypo-
thalamus (106, 107). Centrally, nicotine activates the nicotinic 
cholinergic receptors (nAChRs) expressed on POMC/CART neu-
rons, turning the anorexigenic system “on” and lowering appetite 
(Figure 1). This was demonstrated to take place in smokers, while 
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FiGURe 2 | Prolactin receptors (PRLR), muscarinic-3 cholinergic, and glucagon-like peptide-1 (GLP-1) receptors are expressed on pancreatic 
beta-cells, facilitating insulin release along with serotonin and dopamine.
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following smoking cessation, the lack of anorexigenic activation 
heightens the appetite, lading to weight gain. In addition, as 
nAChRs are also expressed on the second order neurons in the 
LHA and the perifornical organ. Smoking discontinuation affects 
these areas also, inducing weight gain (108).

Peripherally, ACh enables insulin release (in response to 
glucose) from the pancreatic beta cells via muscarinic-3 (M-3) 
receptors. Pancreatic alpha cells secrete ACh, facilitating the 
release of insulin from the beta cells (109, 110) (Figure 2).

As several PTDs are known to block the M-3 receptors, they 
may induce glycemic dysregulation (111). Interestingly, insulin 
is synthesized and released from the beta cells along with sero-
tonin and dopamine molecules, demonstrating once more the 
interconnectedness between energy metabolism and ACh/MAs. 
This finding is in line with the epidemiological studies associat-
ing smoking cessation with increased risk for T2DM for up to 
12 years (112).

In light of these data, it should not come as a surprise that 
obesity and T2DM have been associated with the over-expression 
of Ach-degrading enzymes—butyrylcholinesterase (BChE) and 
acetylcholinesterase (AChE)—which tone down cholinergic 
signaling. Indeed, cholinesterase inhibitors—donepezil, rivastig-
mine, and galantamine—were found beneficial in metabolic syn-
drome by some researchers (113–115). In addition, these drugs 
are currently utilized in patients with Alzheimer’s disease for 
the treatment of aggression, suggesting a psychometabolic role 
(116). Preventive use of these agents in psychiatric patients could 
preempt the development of metabolic dysfunction and obesity. 
Rivastigmine that inhibits both AChE and BChE was found to 
be a more effective anti-impulsivity agent in dementias (117). 
Interestingly, BChE was demonstrated to hydrolyze both ACh and 
ghrelin, thus comprising an antiobesity/impulsivity target (114, 
118, 119). Moreover, LepRs were demonstrated to act synergisti-
cally with both serotonin and ACh receptors on POMC/CART 

neurons, indicating a close coordination between the metabolic 
hormones and these neurotransmitters (75). Furthermore, the 
existence of a leptin–dopamine axis was implied by preclinical 
studies which found that mesolimbic leptin signaling modulates 
the CNS reward system (120).

Melatonin and serotonin 5-HT2C receptors were demon-
strated to be coexpressed in various areas of the CNS, possibly 
including POMC/CART neurons, explaining the frequently dis-
cussed antiobesity effect of melatonin (121).

The impaired expression of CHRNA gene, coding for the 
nicotinic acetylcholine receptors, has been associated with 
disorders marked by excessive impulsivity, including ADHD, 
drug addictions, and antisocial personality disorder (43, 122, 
123). Sofinicline, a novel nicotinic agonist believed to augment 
CHRNA expression, is currently being tested for ADHD but 
appears promising in metabolic syndrome, T2DM, and eat-
ing disorders (124–126). The metabolic action of sofinicline is 
probably due to ghrelin modulation of POMC/CART neurons 
via nicotinic receptors coexpressed with 5-HT2C (33, 127). This 
recently revealed receptor–receptor interaction may lead to the 
development of novel compounds for metabolic syndrome and 
impulsivity (33, 128–130).

Clinicians should be encouraged to prescribe cholinesterase 
inhibitors in a preventive manner in psychiatric patients sus-
ceptible to PTD-induced obesity and dysmetabolism, especially 
in the presence of schizophrenia or dementia-related cognitive 
impairments. In this respect, rivastigmine patch represents a low 
risk intervention with several advantages over oral medications. 
Moreover, since impaired cholinergic signaling was involved 
in both metabolic and impulsivity disorders, clinicians should 
avoid the use of anticholinergic drugs even in younger patients 
and consider replacing them with amantadine for the extrapy-
ramidal adverse effects of antipsychotic drugs and with melatonin 
or ramelteon for insomnia. Furthermore, cholinergic signaling 
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may be enhanced via taVNS, which represents another low risk 
intervention for improving insulin sensitivity (131). Interestingly, 
taVNS has documented efficacy in depression, which may repre-
sent an additional benefit for psychiatric patients (132).

HiSTAMiNe

The relationship between histamine and metabolism was first 
described in the 1950s, yet the development of histaminergic 
treatments for metabolic disorders and obesity is still in its 
infancy (133). The blockade of histamine-1 (H-1) receptors by 
PTDs was associated with both obesity and T2DM, suggesting the 
involvement of histaminergic pathways in energy homeostasis 
(131, 134–136). Briefly, H-1 and H-2 receptors’ blockade induces 
sedation, while antagonism at H-3 receptors results in wakeful-
ness, as H-3 receptors are primarily autoreceptors.

Some clinical and preclinical studies demonstrated that beta-
histine, a centrally acting H-1 agonist and partial H-3 antagonist, 
was effective as an antiobesity drug, especially in younger women 
(137). Studies with olanzapine-induced obesity in rodents also 
demonstrated weight loss after exposure to betahistine (138). 
However, as other studies failed to establish a direct link between 
histamine and body weight, an indirect action is now suspected 
via other neurotransmitter systems or metabolic hormones, 
including thyrotropin-releasing hormone, growth hormone, and 
leptin (139–141). Indeed, novel human studies report that H-1 
receptor antagonists inhibit alpha 7nAChRs which turn “off ” the 
POMC/CART anorexigenic system (139). As alpha 7nAChRs 
are involved in cognition, histamine-blocking agents (including 
some PTDs) may represent both metabolic and cognitive risk 
factors.

Aside from these indirect actions on feeding, histamine was 
recently demonstrated to directly control the orexigenic melanin-
concentrating hormone (MCH) (142). Indeed, the MCH receptor 
antagonists are currently thought of as promising antiobesity 
agents (143). As MCH neurons express H-3, but not H-1 or H-2 
receptors, it is likely that histamine inhibits MCH secretion via 
H-3 receptors. Several studies indicate that histamine also exerts 
H-3-mediated anti-diabetic properties (144–146) (Table 1).

Furthermore, human microglial cells were documented to 
express H-3 receptors that are responsible for their activation 
(147). As numerous neuropsychiatric conditions were linked to 
microglial activation, H-3 receptors’ antagonists are currently 
evaluated for their efficacy in schizophrenia and Alzheimer’s 
disease (147, 148). Moreover, novel studies suggest that H-3 
blockade may be associated with decreased impulsivity, especially 
in dementia, Parkinson’s disease, ADHD, and drug addiction 
(149–152). As histamine is known to be modulated by leptin 
and reduced leptin was associated with impulsivity, these finding 
are in line with the research connecting histamine with obesity–
impulsivity axis (30–32).

THe BRAiN–GUT AXiS: MAY THe 
MiCROBeS Be wiTH YOU

Dietary interventions have been extremely underutilized in psy-
chiatric patients despite accumulating evidence for their benefits.

The Alternate Healthy Eating Index 2010 (AHEI-2010) is a 
measure of diet quality. A high AHEI score was documented to 
lower the risk of chronic disease, including T2DM and cardiovas-
cular disease and to reverse the metabolic syndrome (153–155). 
High AHEI score diets have demonstrated benefits in the affective 
and cognitive disorders, but they were not studied in schizophre-
nia or PTD-induced obesity (156, 157). These diets are thought 
to exert their beneficial effects by stabilizing the gut microbiome.

The human microbiome consists of over 100 trillion bacteria, 
fungi, and protozoa which inhabit the gastrointestinal (GI) tract, 
living in symbiosis with the host cells. Several lines of evidence 
point to the potential role of gut microbiota in modulating not 
only the host energy metabolism but also information processing 
and behavior (158, 159). Human and animal studies demonstrated 
that obesity was associated with GI “overpopulation” with phylum 
Firmicutes and concomitant decreases in phylum Bacteriodetes 
(160, 161). Interestingly, administration of an antibiotic along with 
olanzapine minimized the amount of the weight gain in rodents, 
a finding that may be in line with the antibiotic minocycline 
reducing psychotic symptoms in patients with schizophrenia. 
Minocycline is a tetracycline that was demonstrated to not only 
modulate the dopaminergic and glutamatergic CNS signaling but 
also to restore the physiologic Firmicutes/Bacteroidetes ratio in 
the gut with positive effect on hypertension (162).

These studies suggest that that gut microbiota may be involved 
not only in the etiology of obesity but also in schizophrenia, 
perhaps explaining the predisposition to metabolic disorders 
encountered in psychiatric patients (163, 164). In addition, 
preclinical studies show that transplantation of GI tract microor-
ganisms from the obese into the lean mice was followed by weight 
gain in the later. Interestingly, fecal analysis of olanzapine treated 
rodents, demonstrated increases in Firmicutes and decreases in 
Bacteriodetes phyla, a pattern identical to the one found in obese 
humans (165, 166).

Other novel studies linked low dietary fiber with the dysregu-
lation of Firmicutes/Bacteriodetes ratio. The colonic microbiota 
is known to induce fermentation of dietary fiber, resulting in the 
production of beneficial short-chain fatty acids (SCFAs), includ-
ing butyrate and propionate. The SCFAs deficiency is believed to 
represent a risk factor in the pathogenesis of obesity (167). In this 
respect, butyrate was found protective against insulin resistance 
and inflammation, while propionate was demonstrated to lower 
cholesterol synthesis (168). Moreover, SCFAs were shown to 
augment the production of leptin which, as discussed above, was 
found to be decreased in disorders marked by impulsivity, thus 
linking SCFAs with psychiatric conditions (169).

Short-chain fatty acids were demonstrated not only to reach 
the bloodstream but also to cross the blood–brain barrier 
(BBB) and alter the hypothalamic leptin and adiponectin gene 
expression (170, 171). Activation of adiponectin receptors, 
expressed on both POMC/CART and NPY/AgRP are known 
to potentiate the function of leptin, lowering impulsivity (172, 
173). Interestingly, many patients with schizophrenia treated 
with second-generation antipsychotic drugs were found to have 
lower plasma adiponectin and leptin levels (174, 175). Studies in 
metabolism indicate that hypoadiponectinemia lowers the skel-
etal muscle uptake of postprandial glucose (insulin resistance), 
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TABLe 3 | Specific therapeutic modalities described in metabolic 
syndrome.

Therapeutic modalities Reference

Transcutaneous vagus nerve stimulation (132, 192)
Isometric exercises (193)
Swiss ball exercises (194)
Whole body vibration exercises (195)

TABLe 2 | Dietary interventions in metabolic syndrome.

Dietary intervention Reference

Adherence to Alternate Healthy Eating Index-2010 (153, 154)
Anti-inflammatory diets (154, 157)
Adiponectin-increasing diets (178, 182)
High dietary fiber modifications (183, 184)
Dietary polyphenols (185, 186)
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eventually leading to T2DM (176, 177). Moreover, supplementa-
tion with dietary fiber was demonstrated to increase adiponectin 
levels by up to 115%, suggesting that SCFAs play a key role in 
adiponectin biosynthesis (178).

Western diets in general are known for lacking adequate 
amounts of dietary fiber. For example, typical Western adults 
were shown to consume 5–10 g of fiber daily, as opposed to the 35 
or 50 g which is considered optimal (179). Patients with schizo-
phrenia were demonstrated to consume an even lower amount 
of dietary fiber compared to the overall Western population, 
perhaps explaining the low adiponectin levels documented in this 
group (180). Mediterranean diets and variants aside from their 
demonstrated anti-inflammatory actions were found to facilitate 
SCFAs biosynthesis (181) (Table 2).

Dietary polyphenols were documented to help maintain the 
adequate gut microbial balance (187). In addition, polyphenols 
were shown to be protective against T2DM and possibly psychi-
atric disorders manifested by impulsivity (182–186). To the best 
of our knowledge, at present, there are no studies on polyphenol/
high fiber diets in psychiatric or PTD-treated patients. We sug-
gest a trial with a modified Mediterranean diet, incorporating 
high dietary fiber, polyphenols, and SCFA. The efficacy of this 
approach can be monitored not only via BMI and the glycemic 
parameters but also by plasma adiponectin and leptin levels.

SKeLeTAL MUSCLe AND THe “eXeRCiSe 
FACTORS”

In addition to enabling the human body mobility, the over 600 
skeletal muscles comprise a complex endocrine organ, known for 
the secretion of a growing number of “myokines” which exert 
both local and distal effects. “Exercise factors” are a subgroup 
of myokines released into the circulation during the exercise 
(188, 189). Among them, the peroxisome proliferator-activated 
receptor-γ coactivator 1alpha (PGC-1alpha) is the most studied 
as it was shown to increase both the skeletal muscle glucose 
uptake and the oxidation of fatty acids (190). A sedentary lifestyle 
with lowered expression of PGC-1alpha is associated with weight 
gain, inflammation, and decreased insulin secretion, pathological 
changes that eventually culminate in T2DM and obesity (191) 
(Table 3).

Novel studies demonstrate the positive impact of physical 
exercise in disorders marked by excessive impulsivity, including 
ADHD, affective disorders, schizophrenia, drug addictions, and 
Alzheimer’s disease (196–199).

The sequence of events that may lead to T2DM is believed 
to be initiated by decreased uptake of glucose into the skeletal 

muscle or insulin resistance, followed by hyperinsulinemia which 
in time exhausts the beta cells, leading to insulin deficiency and 
T2DM. The skeletal muscle (assisted by insulin) uptakes about 
80% circulating glucose immediately after meals, rapidly clearing 
the postprandial hyperglycemia (200). Impaired glucose uptake, 
elevated blood glucose levels, and hyperinsulinemia comprise act 
one of the T2DM drama. From this point on, it may take decades 
before the pancreatic beta cells become insufficient and unable to 
secrete insulin that triggers act two: insulin deficiency and frank 
T2DM. As insulin is cosecreted with serotonin and dopamine, 
these MAs also become deficient, contributing to circulatory and 
cardiovascular pathology which frequently accompany T2DM 
(Figure 2).

Tryptophan is an essential amino acid and the sole precursor 
of the human body serotonin. The CNS manufactures its own 
serotonin; however, exogenous tryptophan must be supplied 
to the brain, a process facilitated by insulin. Deficiency of this 
hormone manifested by lower brain tryptophan was documented 
in patients with T2DM, possibly explaining the higher prevalence 
of depression in this metabolic disorder (201). In addition, tryp-
tophan depletion studies in humans and animals demonstrated 
that low plasma tryptophan levels were associated with aggres-
sion (202–204).

Aside from serotonin, tryptophan is catabolized into several 
other neuroactive compounds, including the neurotoxic kynure-
nine (KYN) and the neuroprotective kynurenic acid (KYNA) 
(Figure 3).

Kynurenine was demonstrated to cross the BBB and was 
implicated in the pathophysiology of disorders marked by impul-
sivity, including schizophrenia, ADHD, cognitive disorders, drug 
addictions, and mania (205). KYN is an antagonist at both the 
N-methyl-d-aspartate (NMDA) and alpha-7 nACh receptors, 
suggesting a possible pathoetiological mechanism of excessive 
impulsivity (206). This mechanism may be similar in nature to the 
antagonism at alpha-7 nACh receptors in POMC/CART neurons 
associated with weight gain and the T2DM risk (as referenced 
above in the discussion concerning smoking cessation).

It was recently demonstrated that the enzyme kynurenine 
aminotransferase (KAT) catalyzes the transformation of KYN 
into KYNA, in a reaction facilitated by the exercise factor 
PGC-1alpha (207) (Figure  3). As KYNA is neuroprotective, 
this molecular mechanism may provide an explanation for the 
known benefits of physical exercise in psychiatric disorders (208, 
209) (Figure 3).

While the beneficial effect of exercise and physical activity are 
well established, specific recommendations for the metabolic dys-
regulation and regimen details are beginning to emerge (Table 2).
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FiGURe 3 | Dietary tryptophan is the precursor of proteins, serotonin, and the kynurenines. The exercise factor peroxisome proliferator-activated receptor-γ 
coactivator 1alpha (PGC-1alpha) released by the active skeletal muscle induces kynurenine aminotransferases (KAT), the enzyme responsible for the biosynthesis of 
the neuroprotective KYNA. In the absence of exercise, the neurotoxic KYN crosses the blood–brain barrier inducing psychopathology.
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CONCLUSiON: wHeN THe SeveN LeAN 
COwS ATe UP THe SeveN FAT COwS

The energy–behavior link was intuited by the previous generations 
and currently we are merely rediscovering an old truth: the brain 
and energy are tightly interconnected. Indeed, the energy–hun-
gry brain utilizes over 20% of the total body energy budget for the 
functioning of excitatory and inhibitory synapses believed to be 
dysregulated in impulsivity-connected psychopathology (210).

The metabolic hormones—leptin, adiponectin, and ghrelin—
communicate the peripheral energy status to the hypothalamic 
feeding centers via receptors coexpressed with the major 
behavioral modulators, the MAs and ACh. As these receptors are 
blocked by the PTDs, they may become insensitive (for example, 
leptin resistance), inducing hypermetric hormonal responses 
with resultant obesity and metabolic dysregulation.

While PTDs may correct synaptic transmission, they alter 
the psychometabolic continuum, inducing weight gain in indi-
viduals already predisposed to it. Here, we suggest halting the 
development of metabolic dysregulation and obesity by initiating 

preventive treatment concurrently with the PTDs. Indeed, the 
management of impulsive aggression in psychiatric disorders may 
be incomplete without addressing the metabolic component and 
restoring the homeostasis of the psychometabolic continuum.

Addressing psychopathology and metabolic dysfunction 
simultaneously may result in superior outcomes compared to 
an intervention that addresses these conditions in a singular 
way. In addition, correcting energy homeostasis may lower the 
overall morbidity, mortality, and institutional cost in psychiatric 
population. A model can be inferred from clinical practice where 
it was found that correcting hypertension led to better outcomes 
in coronary artery disease, stroke, and renal failure compared 
to their post hoc treatment. After all, as prevention is preferable 
to treatment, what would be a valid reason for not addressing 
metabolic dysregulation in psychiatric patients in a preemptive 
manner?
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