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Abstract: Telomeres, the protective structures of chromosome ends are gradually shortened by each
cell division, eventually leading to senescence or apoptosis. Cancer cells maintain the telomere
length for unlimited growth by telomerase reactivation or a recombination-based mechanism. Recent
genome-wide analyses have unveiled genetic and epigenetic alterations of the telomere maintenance
machinery in cancer. While telomerase inhibition reveals that longer telomeres are more advantageous
for cell survival, cancer cells often have paradoxically shorter telomeres compared with those found
in the normal tissues. In this review, we summarize the latest knowledge about telomere length
alterations in cancer and revisit its rationality. Finally, we discuss the potential utility of telomere
length as a prognostic biomarker.
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1. Introduction

Telomeres are protective structures of chromosome ends containing repetitive DNA sequences
(TTAGGG in vertebrates) and associated proteins. In human somatic cells, telomeres are gradually
shortened by each cell division by semi-conservative DNA replication, and cells with extremely
shortened telomeres reach senescence or apoptosis. However, self-renewing cells, such as embryonic
stem cells and most cancer cells, can maintain telomeres to overcome the cell senescence or
apoptosis caused by telomere shortening and acquire immortality. Two mechanisms for telomere
maintenance have been discovered in previous studies: Transcriptional activation of a telomere reverse
transcriptase called telomerase and the activation of alternative lengthening of telomeres (ALT),
which is a telomerase-independent telomere maintenance mechanism utilizing the DNA homologous
recombination repair pathway. Of all cancer cells, 85–95% expresses telomerase, whereas ~5–15%
exhibit ALT pathway activation [1,2].

Telomerase consists of two essential components, telomerase RNA (TERC/TR) and telomere
reverse transcriptase (TERT), and some accessory proteins, such as DKC1, NHP2, NOP10,
pontin/reptin and TCAB1 [3]. Telomerase is recruited to single stranded telomeric DNA through
interaction with the telomere-localizing protein TPP1 [4,5]. TERT synthesizes telomeric sequences
using TERC as a template. In human normal somatic cells, TERC is constitutively expressed, whereas
TERT expression is epigenetically silenced [6,7]. In addition, most cancer cells acquire telomerase
activity by re-expressing the limiting factor TERT [7,8].

The mechanism for the regulation of TERT transcription has been studied for many years.
In 1999, three independent groups isolated the 5’ promoter region of the TERT gene [9–11]. In the
core promoter region, which exists in the proximal 260 base pair upstream from the transcription
start sites and is essential for TERT transcription, transcription factors C-MYC and SP1 bind to the
E-box (5′-CACGTG-3′) at −165 and +44 bp and five GC boxes (5’-GGGCGG-3′), respectively, to
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induce TERT mRNA expression [12]. The binding sites for the other transcription factors, such
as E2F and AP-1, and an estrogen response element (ERE) for estrogen receptor α binding, have
been identified in the promoter region and are involved in TERT transcriptional activation [12].
Another factor related to TERT regulation, CCCTC binding factor (CTCF), which functions as
an insulator with cohesion by creating the higher-order chromatin loops across the genome and
regulates gene expression both positively and negatively by promoting or blocking enhancer-promoter
association in a position-dependent manner, respectively [13,14], has also been identified [15,16].
The phosphatidylinositol-3 kinase (PI3K)/AKT kinase pathway enhances TERT activity at the
posttranslational level via TERT phosphorylation by AKT [17–19]. Thus, TERT expression or activity is
regulated at multiple steps by various factors.

Telomeres have two major functions: Genomic sacrifice zones for the end-replication problem
(i.e., prevention of loss of genomic information at chromosome ends) and chromosome end protection
from DNA damage response. These functions are mainly regulated by the telomere binding protein
complex, called shelterin, which is composed of six proteins: TRF1, TRF2, RAP1, TIN2, TPP1 and
POT1 [20]. Telomere double-stranded DNA (dsDNA) binding protein TRF2 and single-stranded
DNA binding protein POT1 are essential proteins for end protection from ATM- and ATR-dependent
DNA damage responses and the following DNA repair pathways: Non-homologous end joining and
homologous recombination, respectively [21–25]. TRF2 also protects the telomere ends by regulating
the formation of a higher order telomere loop structure called t-loop [26–29]. The t-loop is formed by
the invasion of a single-stranded G-overhang (G-tail, 3’-overhang) at telomere ends into double strand
telomeric DNA, which prevents DNA ends from being recognized by the DNA damage response
machinery and telomerase. TRF1 has DNA bending activity, which contributes to t-loop formation [30].
Other functions of TRF1 are to promote telomere replication at the S phase of the cell cycle [31] and
negatively regulate telomerase through recruitment of TIN2, which tethers TPP1-POT1 heterodimer
to single-stranded G-overhang [32–35]. TPP1-POT1 regulates telomerase activity both positively and
negatively. POT1 limits telomerase access to G-overhangs by binding to single-stranded DNA [36],
whereas TPP1 interacts with telomerase to promote telomerase processivity [4,5,37]. In addition, cell
cycle-dependent phosphorylation of TPP1 is required for the TPP1-TERT interaction [38,39].

In this review, we summarize the latest knowledge obtained via whole genome analysis regarding
telomere length regulation, mainly focusing on TERT point mutations and the regulatory mechanism
of TERT expression. Furthermore, we summarize the rationality for the maintenance of shortened
telomeres in cancer and discuss the potential utility of telomere length as a prognostic biomarker.

2. TERT Promoter Mutations in Cancer

Employing advanced genome sequencing technology, two different groups unraveled non-coding
mutations in TERT promoter in melanoma. Horn’s group and Huang’s group discovered point
mutation in the promoter at −124 (C > T) and −146 base pairs (C > T) from the transcription start
site (TSS) (also termed C228T and C250T as these positions are at chromosome 5, 1,295,228 C > T and
1,295,250 C > T, respectively) in sporadic melanoma [40,41]. Furthermore, Horn et al. discovered a T >
G point mutation in the promoter at−57 base pairs from TSS of TERT in familial melanoma [40]. These
mutations generate novel consensus binding motifs for E-twenty-six (ETS) transcription factor (GGAA,
reverse complement) in the TERT promoter, leading to upregulation of TERT mRNA expression. In ETS
family proteins, ETS1 and GA-binding protein transcription factor α (GABPA) and β1 (GABPB1) dimers
are specifically recruited to the de novo ETS binding motifs in the TERT promoter, which increases
telomerase enzymatic activity and telomere elongation and is correlated with poor prognosis in
urothelial cancer [42,43]. These TERT promoter mutations are currently the most common non-coding
somatic mutations in cancer and are present in many types of cancers, including melanoma (67%),
glioma (51.1%, specially 83.3% in primary glioblastoma, which is the most common and aggressive
type of brain tumor), myxoid liposarcoma (79%), osteosarcoma (4.3%), hepatocellular carcinoma (44%),
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urothelial carcinoma (50.8%), squamous cell carcinoma (14.4%), medulloblastomas (21%), ovarian clear
cell carcinoma (15.9%), thyroid cancer (10%), and bladder cancer (59%) [40,41,44–46].

The percentage of TERT promoter mutation is low in sarcomas except for myxoid
liposarcoma [44,47] because 20 to 65% of sarcoma activates ALT but not telomerase to elongate
telomeres [48]. In accordance with this observation, TERT promoter mutations are mutually exclusive
with the mutations in α-thalassemia/mental retardation syndrome X-linked (ATRX), death domain
associated protein (DAXX) or switch/sucrose non-fermentable (SWI/SNF) related, matrix associated,
actin dependent regulator of chromatin, subfamily a, member 1 (SMARCA1), which are chromatin
remodeling proteins associated with ALT pathway activation [49–52]. In addition, ARID1A and
PIK3CA mutations also tend to be mutually exclusive with TERT promoter mutations in ovarian
clear cell carcinoma or glioma [53,54]. These proteins regulate telomerase activity epigenetically or
post-translationally. SWI/SNF chromatin remodeling protein ARID1A suppresses TERT expression
by binding to TSS via the transcriptional repressor SIN3A and accumulates histone H3 lysine 9
trimethylation (H3K9me3) [55]. Therefore, ARID1A mutation causes TERT transcription activation. The
PIK3CA/AKT/NF-kB pathway activates TERT activity at the protein level via TERT phosphorylation
by AKT in breast and ovarian cancers [17–19].

In contrast to genes with mutual exclusivity, whole genome sequencing analysis has also revealed
a simultaneous gene mutation with TERT promoter mutations. BRAF V600E mutations often co-occur
in melanoma and thyroid cancer with TERT point mutations [40,41,56]. The BRAF-ERK kinase pathway
activates ETS family proteins in melanoma, thyroid cancer and glioma [57,58]. In melanoma and
papillary thyroid carcinoma, ERK activated by mutated BRAF induces direct phosphorylation of
ETS1 [59] or phosphorylation of another transcription factor FOS followed by GABPB transcriptional
activation [60]. Papillary thyroid carcinoma patients with these double mutations indicate poorer
prognosis and reduced survival rates compared with those with single mutations [56]. Thus, the
telomere elongation pathway functions dependently or independently of TERT promoter mutations.
In some cases, further enhancement of telomerase activity by other gene mutations occurs in the
process of tumorigenesis [59].

3. Epigenetic Regulation of TERT Expression

TERT expression is regulated not only by transcription factors but also by epigenetic status. DNA
methylation in the TERT promoter region has been studied for two decades [61,62]. In contrast to the
canonical function of DNA methylation as in gene silencing, it has been reported that methylation levels
at the TERT promoter region are correlated with TERT expression levels [61,63]. DNA methylation
levels in the TERT promoter region are altered between specific positions in the region. For example,
the position between approximately−600 and−200 bp from TSS is hypermethylated, whereas the area
from −200 to +150 bp is relatively methylated at lower levels [15,64,65]. Among the low methylation
regions, methylation levels at −200 to −100 are reduced compared with the region from +1 to +100
position because the region from −200 to −100 includes E-box and GC box called the core promoter
region to which C-MYC and SP1 bind to activate TERT transcription. A CCCTC binding factor (CTCF)
binding motif exists in TSS (+1 to +100 region) and also in an enhancer region at approximately 4.5 kb
upstream from TSS sites [15,16]. Whereas the loop structure which connects between enhancer and
promoter by recruitment of CTCF in the enhancer region positively regulate TERT mRNA expression,
the formation of loop structure at TSS suppresses downstream TERT transcription [13,14,16]. Given
that recruitment of CTCF is disrupted by DNA methylation, DNA methylation at TSS contributes
to promoting TERT mRNA expression [15]. Whole genome sequencing has also demonstrated that
TERT expression is positively correlated with methylation levels at the TERT promoter region and is
negatively correlated with gene body methylation level [66].

On the other hand, Stern et al. demonstrated that the methylation level at the −600 position is
inversely correlated with TERT transcription. In fact, DNA methylation levels on the TERT promoter
are different from each allele because monoallelic TERT promoter mutations occur in some cancer
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cells [67,68]. In cancer cells with monoallelic mutations, DNA methylation was present at higher levels
in the wild-type allele compared with the mutated allele. Then, the histone methyltransferase for
histone H3 lysine 27 trimethylation (H3K27me3), EZH2, is recruited to methylated DNA via polycomb
repressive complex 2 (PRC2) to deposit the silencing histone mark exclusively on the wild-type allele.
On the other hand, the active histone mark H3K4me2/3 accumulates on the mutated allele of the same
promoter region, resulting in TERT expression exclusively from the mutated allele [65].

GABPA1 recruitment to the TERT promoter via point mutations also contributes to changes in
epigenetic histone marks on the promoter region. Akincilar et al. reported that the introduction of TERT
promoter mutations at −146C (−146C > T) in colorectal cancer HCT116 cells with the wild-type TERT
promoter by CRISPR/Cas9 alters the chromatin status of the TERT promoter to an active conformation.
In contrast, restoration of the promoter mutation to the wild-type sequence or depletion of GABPA in
melanoma and glioblastoma cell lines enables silencing of the histone mark, suggesting that GABPA
binding to TERT promoter is a key step to change the chromatin status [69]. Interestingly, GABPA
recruitment to the TERT promoter induces long-range chromosome interaction with a region 300-kb
upstream from TERT promoter called T-INT. Long-loop formation occurs in telomeres as well. Telomere
position effect-over long distances (TPE-OLD) is another example of transcriptional regulation via
the interaction of telomeres with chromosomal regions far from telomeres (see below) [70]. TERT is
also regulated by this TPE-OLD. In this case, TERT expression is suppressed by loop formation with
telomere through the accumulation of silencing chromatin marks [71]. The detailed mechanism is still
unknown, but the histone mark on the interacted region might influence the chromatin condition on
the other side (telomere is normally silent [72]).

4. Telomere Shortening in Cancer

Although cancers with telomerase activation acquire the ability for telomere elongation, it has been
reported that the telomere length of prostate cancers is shorter compared with normal tissues [73,74].
Recently, Barthel et al. examined telomere length of 18,430 samples across 31 types of cancer cohorts
using whole genome sequencing or whole exome sequencing data from The Cancer Genome Atlas
(TCGA) [66]. They demonstrated that 70% of cohorts exhibit shorter telomeres compared with normal
samples and the remaining 30% are regulated by ALT or suspected to be [66]. This finding is also
demonstrated by fluorescence in situ hybridization staining of both nevus and melanoma sections [75].

In the well-established tumorigenesis model, telomeres in human somatic cells gradually become
shortened with each cell division. After 50 to 60 cell cycles, cells with shortened telomeres provoke
replicative senescence by chromosomal instability and p53 activation, which is induced by the DNA
damage response according to telomere shortening [76–78]. However, some cells that can overcome
senescence by the acquisition of genetic mutations in p53 or other checkpoint proteins continue to
proliferate; thus, telomeres become critically short, and apoptosis is subsequently induced (crisis) [79,80].
At this point, a minor population of the cells that activate telomerase (or ALT pathway) acquires
immortality and proceeds to carcinogenesis [79].

Chiba et al. examined the ability of TERT point mutants to maintain telomeres through cell
division using human embryonic stem (ES) cells [75]. They introduced TERT promoter mutation in ES
cells, differentiated these cells into fibroblasts and inactivated checkpoint proteins, such as P53 and
CDKN2A. As a result, ES cells with both TERT point mutation and checkpoint inactivation acquired
an immortalization phenotype. Of note, despite TERT expression, telomere length was shortened in
approximately 70 cell cycles, which is near the crisis phase. Thereafter, TERT expression and telomerase
activity emerged for an unknown reason, which stabilized telomere length. Indeed, TERT promoter
mutations increase gene expression by only two- to four-fold [41,81]. In addition, quantification of
TERT mRNA copy number revealed that there are less than 5 copies/cell in most telomerase-positive
cancers [82].

Xi et al. also reported that TERT is co-localized only at 5–7% of telomeres by TERT
immunofluorescence, in which an amino terminal Flag-SNAP-tag sequence is integrated by
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CRISPR/Cas9 genome editing [83]. This observation is consistent with previous reports that telomerase
prefers to elongate the shortest telomeres [84–86]. These observations suggest that the extent of TERT
expression and telomerase activation immediately after the acquisition of TERT promoter mutations are
quite low to elongate all telomeres, and telomerase needs to choose the shortest telomere to elongate,
resulting in gradual shortening of bulk telomere length. Then, after telomeres are shortened, TERT
activity increases to sufficient levels to stabilize telomere length.

In Saccharomyces cerevisiae, telomerase is activated by extremely shortened telomeres depending
on the activation of TEL1, which is a human ataxia telangiectasia mutated (ATM) orthologue [87].
Although it is not known whether this process occurs in human cells, ATM, ataxia telangiectasia and
Rad3-related (ATR), and DNA-PK phosphorylate AKT upon induction of the DNA damage response
to prompt DNA repair, apoptosis, and cell cycle arrest [88]. Given that TERT is a target of AKT, DNA
damage response to telomere shortening might activate Akt, which subsequently phosphorylates
TERT and increases telomerase activity.

TERT expression and telomerase activity are regulated by an indirect way as well. TERT gene
consists of 16 exons in 42 kb of gene body at chromosome 5p15.33 and 22 splicing variants containing
well-examined variants, α- and β-splicing variants, have been identified up to date [89]. None of these
variants except for the full length have the enzymatic activity [90] and α-, β- and γ-splicing variants
can act as dominant negative variants [91–93]. α-, β- and γ-splicing variants lack 36 base pairs in exon
6 (α-splicing variant), exons 7 and 8 (β-splicing variant) and exons 11–12 (γ-splicing variant), which
exist in the reverse transcriptase domain, respectively. In many types of cancer cells, β-splicing variant
is expressed as a major splicing variant [82,94]. In breast cancer patients with co-expression of the
full length and β-splicing variants, the patients with higher β-splicing variant expression showed
decreased telomerase activity [95]. Interestingly, during the development of kidney, telomerase activity
disappears before the expression of the full-length mRNA is downregulated to undetectable levels
and only the splicing variant is left. At this point, splicing variants become dominant against the full
length, resulting in suppression of telomerase activity [96,97]. These observations suggest that the
expression of alternatively spliced TERT mRNA regulates the expression level of the full length TERT
and regulate telomerase activity.

We also should mention the expression levels of shelterin proteins in cancer. Previous clinical
studies have reported that expression levels of shelterin genes, such as TRF1, TRF2, TIN2, and, in some
cases, POT1, are elevated in many types of cancer as compared to the noncancerous tissues [98,99]. Also,
it has been reported that TRF1, TRF2 and TIN2 expression levels are correlated with the progression
level of cancers [100–102]. In addition, telomeres in cancer are shorter than those in normal tissues,
which is consistent with the next generation sequencing (NGS) data, and cancers with short telomeres
show poor prognosis [101–103]. Interestingly, high expression of these shelterin genes and TERT
or even telomerase activity is inversely correlated with telomere length [101,104]. Considering the
shelterin function as a negative regulator of telomerase, it is possible that the increased expression of
shelterin proteins restricts telomerase activity, leading to the maintenance of short telomeres, which
subsequently contribute to cancer progression.

In the process of tumor development, various mutations are introduced in the cancer cell
population, causing intratumor heterogeneity. Recent single cell analyses by NGS have shown
that the genetic variance is generated among the cells in a tumor [105–107]. Huang et al. have
reported the increased telomerase activity in the heterogeneous population of T-cells at a single cell
level [108]. They showed that upon mitogen stimulation, not all but only a small subpopulation of
T-cells reactivate telomerase and preferentially elongate short telomeres. It is possible that there are
various cell subpopulations with long to short telomeres during the course of cancer development.
Because telomeres become shortened by cell proliferation, only the cells with shortest telomeres may
increase telomerase activity to avoid crisis and maintain short telomeres.
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5. Potential Advantage of Shortened Telomeres in Cancer

Given that telomerase-mediated telomere elongation is important for the infinite proliferation
of TERT-positive cancer cells, genetic or pharmacological inhibition of telomerase activity in cancer
cells induces gradual shortening of telomeres and eventual cell senescence or apoptosis [109–111].
Theoretically, the anticancer effect of telomerase inhibition would emerge earlier in cancer cells with
shorter telomeres. In fact, short telomere length could be a predictive biomarker of telomerase
inhibitors [112,113]. Furthermore, a clinical study has indicated that the telomerase inhibitor imetelstat
increases median progression-free survival and overall survival in patients with non-small cell lung
cancer with short telomeres [114]. These observations suggest that longer telomeres would be
more advantageous for cancer cells if telomerase-mediated telomere elongation is abrogated. As
described above, however, cancer cells often maintain their telomeres at shorter lengths compared
with normal tissues.

As a well-established mechanism for limited telomere elongation, telomere-bound shelterin
complexes exert a negative feedback effect on telomerase access to telomeres (so-called
“protein-counting” mechanism) [115,116]. TERT transcripts may also inhibit telomerase function
because the splicing variants work as dominant negative proteins, as described above. The second
interpretation is that the length does not matter if the capping function by t-loop formation is intact.
Third, moderate genomic instability elicited by shortened telomeres might be advantageous to cancer
evolution [117]. In fact, induction of chromosomal instability via the telomeric DNA damage response
followed by end-to-end fusions promotes oncogenic transformation [74].

We previously addressed whether it is advantageous for cancer cells to maintain short
telomeres [118]. First, we identified cancer cell lines that maintained very short telomeres (prostate
PC-3, stomach MKN74 and breast HBC-4 cancer cells) and elongated their telomeres by TERT
overexpression. Subcutaneous injection of the resulting cells into nude mice led to the formation
of xenograft tumors at comparable sizes irrespective of telomere length. Intriguingly, however,
the xenografts derived from cancer cells with longer telomeres exhibited more differentiated tissue
phenotypes, such as the formation of duct-like structures and the reduced expression of N-cadherin
and vimentin, both of which are mesenchymal cell markers and associated with poor prognosis in
cancer [119]. Furthermore, although xenograft tumors derived from cancer cells with short telomeres
upregulate the expression of type I interferon (IFN) signaling-related genes (Interferon Stimulated
Genes, ISGs), tumors from cells with longer telomeres do not upregulate those genes [118].

ISGs expression is regulated by signal transducer and activator of transcription 1 (STAT1), which
is a transcription factor activated by IFN. This IFN/STAT1 pathway exerts an antiviral and antitumor
activity by inducing cell cycle arrest or apoptosis [120–122], whereas it is also involved in tumor
progression. The reason for these two opposite functions of IFN/STAT1 pathway remains elusive but it
might be due to the difference of tumor types and genetic background, such as mutations of apoptosis-
and cell cycle-related genes. Heterogeneity in the tumor might also affect the cellular response to
IFN/STAT1. STAT1 is overexpressed in many types of cancers, including leukemia, breast cancer,
squamous cell carcinoma of the head and neck (SCCHN), glioma, renal cell carcinoma, prostate cancer
and soft tissue sarcoma [123–126]. STAT1 overexpression shows resistant to radiation and anticancer
drugs and metastasis [125,127–132]. Breast cancer cells with high expression of CD44, one of cancer
stem cell markers, express higher levels of STAT1 compared with cells with low CD44 expression [133].
One of STAT1-target gene, ISG15, a ubiquitin-like protein, is also involved in the regulation of the
expression of stemness-related genes, cell growth, cell migration, and tumorigenicity in pancreatic
ductal adenocarcinoma, hepatocellular carcinoma and breast cancers [134–136]. In accordance with
these observations, high expression of STAT1 and its target genes (e.g., ISG15, ITI44, MX1 and OAS1)
is associated with lower survival rates in high-grade glioma [132,137]. In glioblastoma, more than
70% of the cases has the TERT promoter mutation. One of the glioblastoma subtypes, proneural
subtype, has features of high expression of platelet derived growth factor receptor alpha (PDGFRA) or
isocitrate dehydrogenase 1 (IDH1) gene mutation [138]. WGS analysis showed that IDH1 mutation is
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mutually exclusive with TERT promoter mutation and partly associated with activation of the ALT
pathway [138–141]. Moreover, the patients of glioblastoma with IDH1 mutation and ALT activation,
which is associated with longer telomeres, showed better clinical outcome than those with ALT-negative
tumor [140,142]. Thus, a majority of glioblastoma containing proneural subtype maintains shorter
telomeres by TERT promoter mutation although there are some glioblastoma with longer telomeres by
ALT activation. Given that alteration of telomere length affects the tissue morphology of the tumors
and expression of cancer-associated genes, shortened telomeres might contribute to tumor malignancy
through reprograming gene expression signatures.

6. Regulation of Gene Expression by Telomeres

Canonical telomere function involves the protection of chromosome ends and acts as sacrifice
sequences for the end replication problem as mentioned above. In addition, telomere length affects the
expression of genes adjacent to the telomeric region, which is called the telomere position effect (TPE).
TPE was first identified in Saccharomyces cerevisiae by Gottschling et al., who found that expression
of RNA polymerase II gene inserted immediately adjacent to telomere locus was suppressed [143].
This phenomenon is caused by silent chromatin conformation of telomeres. Representatives of the
genes that are affected by TPE include ISG15 located at human chromosome 1p36.33, which is 1 Mb
from telomere and exhibits higher expression in older-aged cells [144]. Robin et al. reported that
TPE affects not only genes near telomeres but also those far from telomeres up to 10 Mb by means
of long-range loop formation [70]. This atypical TPE is called telomere position effect over long
distances (TPE-OLD). Hi-C (chromosome capture followed by high-throughput sequencing) analysis
has revealed that some genes, such as DSP (desmoplakin), which is located 7.5 Mb away from telomeres,
interact with the subtelomeric region by chromosome loop formation in a telomere length-dependent
manner [70]. As another example of TPE-OLD, the shelterin component TRF2 tethers the telomere
and interstitial telomere repeats to generate a long-range chromatin loop. These interstitial telomere
repeats exist 100-kb downstream of the TERT gene and form a TRF2-dependent chromosome loop
with the telomere to suppress TERT gene expression [71]. Given that 2920 interstitial telomere repeat
sequences were identified in the human genome by whole genome sequencing [71], TPE-OLD might
affect genome-wide gene expression more broadly than expected. Furthermore, Mukherjee et al. have
recently reported telomere length-dependent, genome wide transcriptional regulation by TRF2 [145].
TRF2 is enriched at promoter regions of several genes far from telomeres in the cells with shorter
telomeres and dissociates from there by telomere elongation. RE-1 silencing transcription factor (REST)
and lysine-specific demethylase 1 (LDS1) are recruited to the TRF2-bound promoter regions, resulting
in suppression of gene expression by adding the silencing histone marks [145].

Telomere length-dependent regulation of gene expression may also involve telomeric non-coding
RNA called TERRA, which is associated with telomere end protection, maintenance of chromatin
structure and telomere length regulation [146–150]. Telomere elongation by TERT overexpression leads
to enhanced TERRA signals, due to the increased number of telomeric tracts in a single TERRA
molecule. Thus, enhanced TERRA signals are associated with decreased expression of ISGs in
telomere-elongated cancer cells [151]. TERRA-mimicking oligonucleotides repress ISG expression in
cancer cells with short telomeres. These observations suggest that cancer cells with longer telomeres
upregulate TERRA signals, which subsequently downregulate ISG expression. On the other hand,
recent reports have shown that extracellular TERRA included in the exosome vesicles is amplified by
telomere stress, and induces inflammatory signaling in recipient cells [152,153]. Differential behavior of
TERRA might be due to where TERRA exists. Secreted TERRA in exosomes may activate inflammation
by the activation of Toll-like receptors in the recipient cells whereas intracellular TERRA suppresses an
innate immune response, which is activated in the process of tumor formation. Although the functional
mediator that binds TERRA and represses ISG expression remains unknown, this phenomenon
depends on G-quadruplex formation in TERRA and in TERRA-mimicking oligonucleotides [151]. It is
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possible that cancer cells may prefer shortened telomeres, wherein TERRA downregulation allows ISG
expression for cancer progression.

7. Conclusions and Future Perspectives

Identification of TERT promoter mutations has triggered a remarkable improvement of our
understanding of the mechanism for TERT transcriptional activation and the relationship between
TERT promoter mutations and other gene mutation to regulate TERT expression and telomere length
in a cooperative or mutually exclusive manner. These observations have established the importance
of telomere maintenance for carcinogenesis and its malignant progression. Nevertheless, most
cancers exhibit shorter telomeres compared with normal tissues despite the risk of crisis, apoptosis
or senescence, due to excessive telomere shortening. One rational answer might be that maintaining
shortened telomeres causes activation of specific genes, such as ISGs, which are required for cancer
progression (Figure 1).
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shorten their telomeres at each cell cycle. Activation of oncogenes and inactivation of tumor suppressor
genes lead to dysregulated cell proliferation, which further enhances telomere shortening. A critically
shortened telomere causes senescence or crisis of a cell, whereas telomere reverse transcriptase (TERT)
expression mainly via promoter mutation (C228T or C250T) results in telomerase activation and tumor
formation; (B) in the initial step of carcinogenesis, the level of telomerase activity (TA) is insufficient
to prevent telomere shortening (TS) and indicates as “TA < TS”. Under these conditions, telomerase
preferentially elongates the shortest telomeres, but the level of the enzyme activity is insufficient to
maintain the bulk telomere length. After several cell cycles, additional factors upregulate telomerase
activity, and the bulk telomere length is maintained short in an equilibration between TA and TS (“TA =
TS”). In a tumor mass, cancer cells with short telomeres upregulate interferon-stimulated genes (ISGs),
which presumably contribute to the tumor malignancy. Furthermore, shortened telomeres facilitate
cancer evolution by causing moderate chromosomal instability; (C) in experimental settings, ectopic
overexpression of TERT induces telomere elongation in cancer cells, which is followed by TERRA
upregulation and repression of ISG expression. Because TERRA-like oligonucleotides repress ISG
induction, shortened telomeres, which provide reduced TERRA levels, may be more advantageous
for cancer.
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Accumulating evidence has demonstrated that short telomeres correlate with increased cancer
malignancy, and telomere length in cancer would be useful as a prognostic biomarker or a risk
predictor. Some reports have shown the association of telomere length with a poor prognosis of cancer
by monitoring telomere length in blood cell DNA as a surrogate biomarker [154–156]. Furthermore,
exosome-derived DNA or circulating cell-free DNA (cfDNA) might be more useful to examine the
utility of telomere length as a biomarker because cancer-derived DNA exists in those samples. For
example, Wan et al. reported the association of telomere length measured by using circulating serum
DNA with the risk of hepatocellular carcinoma in hepatitis B virus patients [157]. Meanwhile, it
has been also reported that length of the telomeric G-tail (3′-overhang) instead of telomere length,
is a better biomarker for predictions of disease risk [158,159]. TERRA also might become a useful
biomarker because it is included in exosomes as above mentioned. Further investigations will reveal
the relationship between telomere length and gene expression regulated by telomeres and tumor
progression in more detail, and a deeper understanding of telomere length as a biomarker will ensure
its utility in cancer precision medicine and prevention.
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