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Sepsis is a systemic inflammatory response (SIR) to infection. In this work, a system dynamics mathematical model (SDMM) is
examined to describe the basic components of SIR and sepsis progression. Both innate and adaptive immunities are included, and
simulated results in silico have shown that adaptive immunity has significant impacts on the outcomes of sepsis progression. Further
investigation has found that the intervention timing, intensity of anti-inflammatory cytokines, and initial pathogen load are highly
predictive of outcomes of a sepsis episode. Sensitivity and stability analysis were carried out using bifurcation analysis to explore
system stability with various initial and boundary conditions. The stability analysis suggested that the system could diverge at an
unstable equilibrium after perturbations if 𝑟

𝑡2max (maximum release rate of Tumor Necrosis Factor- (TNF-) 𝛼 by neutrophil) falls
below a certain level. This finding conforms to clinical findings and existing literature regarding the lack of efficacy of anti-TNF
antibody therapy.

1. Introduction

Sepsis, currently defined as a systemic inflammatory response
(SIR) to an infectious agent or trauma, is increasingly
considered an exaggerated, poorly regulated innate immune
response to microbial products [1, 2]. Under health condi-
tions, intruding pathogens are eliminated by immune cells
in the immune system. If overwhelming immune response
occurs, unbalanced responses between immune cells lead to
unexpected harmful patient outcomes such as high fevers,
flushed skin, and elevated heart rate, resulting in sepsis.
Possible progression to severe sepsis is marked by generalized
hypotension, tissue hypoxia, and Organ Dysfunction [1].
Severe sepsis can further develop into septic shock under
long-lasting severe hypotension [3], ultimately leading to
death.

Severe sepsis and septic shock during an infection are
the primary causes of death in intensive care settings [4]. On
average, sepsis causes 250,000 deaths per year in the United

States [5]. Among patients in intensive care units (ICUs),
sepsis is the second highest cause of mortality [6] and the
10th leading cause of death overall in theUnited States [7]. An
average of 750,000 sepsis cases occur annually, and this num-
ber continues to increase each year [6]. Care of patients with
sepsis can cost as much as $60,000 per patient, resulting in a
significant healthcare burden of nearly $17 billion annually in
the United States [8, 9]. Sepsis development in a hospitalized
patient can lead to extended hospital stays and consequently
increase financial burdens. Cross and Opal [10] pointed out
the lack of rapid, reliable assays that could be used to identify
the stage or severity of sepsis and to monitor the use of
immunomodulatory therapy. However, no such assays are
available because complexity of the inflammatory response
and the unpredictable nature of septic shock in individual
patients render the effect of targeting isolated components
of inflammation with supportive therapy difficult to predict
[10, 11].
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Development of a nonbiased, predictive model and
model-derived policies that prevent patients from experi-
encing severe consequences of sepsis (e.g., Organ Dysfunc-
tion) is critical for improving ICU patient care. As studies
of mechanisms leading to sepsis development significantly
progress due to discoveries of new inflammatory proteins
and increased knowledge of the interaction of host cells and
pathogens, mathematical models have been developed as
dynamic knowledge representation of complicated biological
processes. Specifically, the models have been used to simulate
dynamic patterns of selected essential indicators in disease
progression by integrating cellular and molecular pathways
in an immune system. These mathematical models offer
potential for understanding complex dynamic systems and,
therefore, are used by researchers from various fields to
simulate immune response to specific disease [12–15]. Devel-
opment of modeling techniques could allow novel strategies
for disease treatment, oriented at compromising harmful
effects of inflammatory responses, to be proposed or tested
in model simulations.

In order to construct a mathematical model of sep-
sis, we searched literatures and found two representative
system dynamics mathematical models (SDMMs) of Acute
Inflammatory Response (AIR) in previous studies. In 2004,
Kumar et al. [12] presented a simplified 3-equation SDMM
to describe mathematical relationships between pathogen,
early proinflammatory mediators, and late proinflammatory
mediators in sepsis progression. In 2006, Reynolds et al.
[13] proposed a mathematical model for AIR that included
a time-dependent, anti-inflammatory response in order to
provide insights into a variety of clinically relevant scenarios
associated with inflammatory response to infection.

2. System Dynamics Mathematical
Model Development

Existing mathematical models focused on inflammation
in the literature proved that mathematical modeling is a
valid approach for simulating disease progression [12–16].
However, the number of variables used, the limited control
of system parameters, and the inclusion of many variables
involved in real immune response were not modeled in
detail. Therefore, oversimplification in AIR models [13, 15]
limited AIR behaviors and biological relevance of simulated
results. For example, simulated results from AIR models
[13, 15] failed to capture a dampened oscillated infection in
AIR progression. In addition, existing mathematical models
are incomplete representations of sepsis because simulated
AIR in both mathematical models [13, 15] is considered
to be an initial stage of sepsis progression. Therefore, to
improve on current models, we developed an 18-equation
SDMM to incorporate the most influential variables for
septic response development during innate immune response
and adaptive immune response. We included equations to
represent pathogen load, phagocyte (including neutrophil
and monocyte) activation, early and late proinflammatory
cytokine release, tissue damage, anti-inflammatory cytokine
release, CD4+ T cell activation, CD8+ T cell activation,
B cell activation, and antibody release. Indicator selection

was based on knowledge of cellular and molecular pathways
of sepsis from experts in the field and extensive literature
review [4, 17–28]. We chose Salmonella as a “targeted”
pathogen strain in our mathematical model and simulated
immune responses to Salmonella in the liver ofmice. Immune
responses to Salmonella infections have been investigated
extensively in [20, 29–33]; therefore, an abundance of data
exists for accurate incorporation of relationships among
variables to support our SDMM. We used a series of known
and hypothesized kinetics of biological system components,
including conventional logistics function, law of mass action,
and Michaelis-Menten kinetics to build SDMM from sub-
systems and mimic interactions between indicators. We
combined these formulated but generalized dynamic mod-
eling techniques into a comprehensive SDMM framework
to describe sepsis progression, by measuring the steady
state of various components in inflammatory responses.
In the following seven subsections, we present a detailed
description of mathematical construction for each subsystem
in a mouse hepatic inflammatory response during SDMM
development.

2.1. Process Description. AIR typically occurs when immune
cells, such as tissue macrophage, detect intruding pathogens
or existing tissue damage and emit a signal to resting
phagocytes, such as neutrophil and monocyte (two types of
immune cells), in the blood vessels near the infected tissue.
Resting phagocytes are activated andmigrate towards the site
of pathogens or damaged tissue that has recognizable proteins
on surface similar to proteins of immune cells. Once activated
phagocytes reach the infection site, they engulf and consume
the pathogens. Meanwhile, these activated phagocyte cells
release proinflammatory cytokines such as Tumor Necrosis
Factor-𝛼 (TNF-𝛼), Interleukin-1 (IL-1), Interleukin-6 (IL-
6), Interleukin-8 (IL-8), and High-Mobility Group Protein
B1 (HMGB-1) that activate and recruit additional resting
phagocytes from circulation to the infection site. All activated
phagocytes eliminate pathogens and secrete substances that
accelerate the killing of healthy cells and induce inflam-
mation in the initial process of inflammatory response.
In the later stage of AIR progression, several types of
anti-inflammatory mediators, such as Interleukin-10 (IL-10),
are released by activated phagocytes (primarily monocyte-
derived-macrophage). These anti-inflammatory cytokines
inhibit the production of proinflammatory cytokines, conse-
quently inhibiting further recruitment of resting phagocytes.
We translated biological processes of AIR to a logical chart, as
shown in Figure 1. An explicit description for each biological
process is presented in the following six subsections.

2.2. Step 1: Kupffer Cell Local Response Model. Macrophages,
one of the innate host’s first lines of defense against bac-
terial pathogens, are antimicrobicidal cells that often deter-
mine outcomes of an infection [21]. Furthermore, hep-
atic macrophages (also known as Kupffer Cells or resident
liver macrophages) constitute 80%–90% of tissue resident
macrophages in the body and significantly influence propa-
gation of liver inflammation [34, 35]. Kupffer Cells within the
liver trap and eliminate a majority of bacteria that enter the
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Figure 1: Types of indicators (cells and cytokines) and their interactions in AIR progression. Italic letters represent variables in our SDMM.

blood stream [22]. During the initial stage of AIR, Kupffer
Cells eliminate pathogens, specifically Salmonella, during
local immune responses.

We developed a Kupffer Cell local response model,
defined as interactions between the pathogen and Kupffer
Cell [34], consisting of the following:
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In (1), 𝑃 denotes pathogen load, 𝑘pg represents a constant
growth rate for pathogens, and 𝑃

∞
represents maximum

carrying capacity of the pathogen. Parameter 𝑟
𝑝𝑚𝑘

represents
phagocytosis (killing) rate of Kupffer Cells when Kupffer
Cells begin to kill pathogens. Although phagocytosis rate
is dependent on time in a slow-S-shape curve [23], the
phagocytosis rate does not change if the phagocytosis rate
versus time is assumed to be linear. Therefore, we relaxed
the condition that phagocytosis rate is constant in our model
and assumed 𝑟

𝑝𝑚𝑘
was constant [23]. Equation (2) represents

changes of Kupffer Cells over a unit of time, and𝑀
𝑘𝑓
denotes

the amount of Kupffer Cells in the liver that is available
for pathogen binding. Parameter term 𝑘

𝑚𝑘
represents a

constant proliferation (replenishment) rate for Kupffer Cell
population, and 𝐾

∞
represents maximum carrying capacity

of Kupffer Cells in the liver of mice. Parameter term 𝑘
𝑚𝑘𝑢𝑏

represents the unbinding rate of binding Kupffer Cells and
𝑢
𝑚𝑘

represents the killing rate of free Kupffer Cells induced
by binding to intruding pathogens.

A standard logistic function was used to model pathogen
population growth with limited maximum carrying capacity,
identified as the first term (𝑘pg𝑃(1 − 𝑃/𝑃

∞
)) in (1) [36].

The second term of (1) models local Kupffer Cell responses
or decrease in pathogen population phagocytized by initial
tissue resident macrophages (Kupffer Cells). The process of
phagocytosis includes two steps: pathogen-ligand binding to
receptors of Kupffer Cells and phagocytosis by Kupffer Cells.
We used a Hill-type function and receptor-ligand kinetics to
model the two basic steps [21, 30, 34, 37–39]. First, we defined
the rate of pathogen binding to Kupffer Cells as a Hill-type
function ([𝑃𝑛]/[𝑃𝑛 + 𝑘

𝑛

𝑐1]) in which 𝑛 represents a strong
affinity of pathogen binding toKupfferCells and 𝑘

𝑐1
is Kupffer

Cell concentration that phagocytoses half the pathogens.
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receptor-ligand kinetics (([𝑃𝑛]/[𝑃𝑛 + 𝑘𝑛

𝑐1
])𝑀
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represents pathogen concentration.We determined pathogen
concentration using the number of pathogens divided by
maximum carrying capacity of the pathogen (108 cells in the
liver of mouse [32]).The final variable to determine pathogen
decrease was the phagocytosis rate of pathogens by Kupffer
Cells (represented by 𝑟
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) times the portion of pathogens
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We assumed that Kupffer Cells population growth fol-
lowed a standard logistic growth pattern with a constant
proliferation (replenishment) rate, denoted as 𝑘

𝑚𝑘
, and a

maximum carrying limit, K
∞
, represented by the first term

(𝑘
𝑚𝑘
𝑀
𝑘𝑓
(1−𝑀

𝑘𝑓
/𝐾
∞
)) in (2). Because pathogen binding did

not preclude phagocytosis of additional pathogens after com-
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model the release of Kupffer Cells from the binding-complex,
represented by the second term (𝑘
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of binding Kupffer Cells. The definition of parameters and
corresponding experimental data for each system parameter
in Kupffer Cell local response model are summarized in
Table 1 (refer to Appendix).

2.3. Step 2: Neutrophil Immune Response Model. Simulated
results (data not shown) from our Kupffer Cell local response
model indicated that Kupffer Cells may not sufficiently
eliminate infection, especially when the local infection is
overwhelming. Furthermore, pieces of evidence in biological
studies have shown that recruitment of neutrophils (one
type of immune cells) from circulation to the infection site
significantly contributes to AIR progression because neu-
trophil is able to kill pathogens. Neutrophils accumulation is
induced by a proinflammatory cytokine called “TNF-𝛼” that
is released by Kupffer Cells or activated neutrophils in the
tissue. Release of cytokines follows traffickingmachinery, and
cytokines are released via protein-protein interactions initi-
ated by ligand binding to receptors [61, 62]. The mechanism
of cytokine release is depicted in Figure 2.

We modeled a protein-protein interaction as Michaelis-
Menten kinetics [63] and derived our neutrophil immune
response model as follows:
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Figure 2: Mechanism of cytokine release.

Table 1: Definition of parameters and experimental values in Kupffer Cell local response model.

Parameters Description Value References
𝑘pg Salmonella growth rate 1.2–3.6/h [20]
𝑃
∞ Salmonella carrying capacity 10

8 cells/g liver [32]
𝑟
𝑝𝑚𝑘 Rate at which pathogens are killed by Kupffer Cells 0.03/per Kupffer Cell/h [31]
𝑛 The extent of ligands binding to receptors (not specified) 2 Estimated

𝑘
𝑐1

Concentration of Kupffer Cells which phagocytose half of
Salmonella 0.03 [31]

𝑘
𝑚𝑘 Proliferation rate of Kupffer Cells under inflammation 0.015–2/h Estimated

𝐾
∞ Kupffer Cell carrying capacity in liver

(16–20) × 106 cells
g liver

[40]

𝑘
𝑚𝑘𝑢𝑏 Unbinding rate of binding Kupffer Cells 0.1–0.77/h [33]

𝑢
𝑚𝑘

Killing rate of free Kupffer Cells induced by binding to
pathogens 0.23–0.9/h [33]

Equation (4) was further derived from (1) in the Kupf-
fer local immune response by incorporating phagocytic
effects of neutrophils, represented by term 𝑟

𝑝𝑛
([𝑃
𝑛
]/[𝑃
𝑛
+

𝑘
𝑛

𝑐2
])(𝑁
𝑓
+𝑁
𝑏
)𝑃
∗. Equations (5) and (6) are cited from (2) and

(3).
Equation (7) represents changes of proinflammatory

cytokines (denoted by T), such as TNF-𝛼, released by
binding tissue resident Kupffer Cells (𝑀

𝑘𝑏
) and binding

activated neutrophils (𝑁
𝑏
). Because TNF-𝛼was released after

pathogens bound to receptors of tissue resident Kupffer Cells
or activated neutrophils, we modeled the process of TNF-
𝛼 release as a combination of Michaelis-Menten kinetics
and receptor-ligand kinetics [64]. In (7), the release of
TNF-𝛼 from Kupffer Cells was initiated by receptor-ligand
kinetics, followed by enzymatic kinetics (Michaelis-Menten),
represented by the term (𝑟

𝑡1max𝑀𝑘𝑏/(𝑚𝑡1 + 𝑀
𝑘𝑏
)), where

𝑟
𝑡1max represents the maximum production rate of TNF-𝛼 by
binding Kupffer Cells. The release of TNF-𝛼 is a combined
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effect of receptor-ligand kinetics and enzymatic kinetics;
therefore, we incorporated both terms (𝑟

𝑡1max𝑀𝑘𝑏/(𝑚𝑡1 +
𝑀
𝑘𝑏
))𝑀
𝑘𝑏

in the model to represent combined effects of
TNF-𝛼 releasing processes. Similarly, we used receptor-ligand
kinetics and Michaelis-Menten kinetics to model the release
of TNF-𝛼 from binding activated neutrophils in the second
term of (7). The third term in (7), 𝑢

𝑡
𝑇, measures degradation

of TNF-𝛼, with 𝑢
𝑡
representing the degradation rate of TNF-𝛼

per hour.
In (8), the first term 𝑘

𝑟𝑑
𝑁
𝑅
(1 − 𝑁

𝑅
/𝑁
𝑆
) is a standard

logistic function to measure increase in the number of
resting neutrophils per time unit (hour), represented by
the influx of neutrophils into blood vessels per hour. The
second term 𝑟1𝑁𝑅(𝑇 + 𝑃)

∗ indicates that the decrease in
number of resting neutrophils per time unit is due to the
neutrophils activation process promoted by pathogen and
proinflammatory cytokineTNF-𝛼, where𝑇∗ denotes concen-
tration of TNF-𝛼 and 𝑃∗ denotes concentration of pathogens
[24, 65, 66]. The third term in (8), 𝜇

𝑛𝑟
𝑁
𝑅
, represents the

natural decay of resting neutrophils; 𝑢
𝑛𝑟

is defined as the
apoptotic rate of resting neutrophils per time unit in hours.
In (9), the first term exactly equals the second term in (8)
because the increased population of activated neutrophils
directly resulted from activation of the population of rest-
ing neutrophils. The second term of (9) used mass action
kinetics (𝑘

𝑛𝑢𝑏
𝑁
𝑏
) tomodel the release of activated neutrophils

from the binding-complex and make activated neutrophils
available for additional interaction with pathogens, where𝑁

𝑏

represents the binding-complex and 𝑘
𝑛𝑢𝑏

represents the rate
of activated neutrophils released from the binding-complex.
Similar to the third term in (8), the third term of (9) models
natural apoptosis of activated neutrophils. Equation (10) is
similar to the derivation of (3) in the Kupffer local response
model. We used a hyperbolic tangent function in (11) to rep-
resent a slow-saturation influx rate of neutrophils into hepatic
parenchyma, thereby representing the rate of activated resting
neutrophils. The definition and corresponding experimental
data for newly added system parameters in the neutrophil
immune response model are summarized in Table 2 (refer to
Appendix).

2.4. Step 3: Damaged Tissue Model. Complexity in AIR pro-
gression is due to multiple effects induced by inflammatory
cells. Recruitment of neutrophils helps clear local pathogen
levels; however, those inflammatory cells are harmful because
they release toxic molecules such as reactive oxygen species
(ROS), which can damage host tissue [24, 66]. Recent exper-
imental results have shown that neutrophils’ 𝛽

2
integrins

adhere to ICAM-1 receptors of hepatocytes and accelerate the
killing process of distressed hepatocytes [67].

We assumed the binding process of neutrophils to hep-
atocytes (healthy liver cells) also followed receptor-ligand
kinetics; therefore, we derived the following damaged tissue
model:

𝑑𝐷
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= 𝑟hn
[𝐷
𝑛
]
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𝑛
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𝑐3]
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𝑓
𝐷
∗
(1− 𝐷

𝐴
∞

)− 𝑟ah𝐷. (12)

In (12), D denotes the number of apoptotic hepatocytes
or dead hepatocytes, 𝑟hn represents the rate of apoptotic

hepatocytes killed by activated neutrophils, and 𝑟ah represents
the recovery rate of apoptotic hepatocytes. Receptor-ligand
kinetics ([𝐷𝑛]/[𝐷𝑛 + 𝑘

𝑛

𝑐3
])𝑁
𝑓
𝐷
∗ represents the amount of

apoptotic hepatocytes that bind to activated neutrophils, with
binding rate modeled as a Hill-type function [𝐷

𝑛
]/[𝐷
𝑛
+

𝑘
𝑛

𝑐3
]. Activated neutrophils have recently been found to

kill apoptotic hepatocytes [67]. After neutrophils adhere to
apoptotic hepatocytes, neutrophils release harmful chemical
substances such as reactive oxygen species and proteases that
accelerate death of apoptotic hepatocytes [67, 68]. When
multiplying ([𝐷𝑛]/[𝐷𝑛 + 𝑘

𝑛

𝑐3
])𝑁
𝑓
𝐷
∗ by 𝑟hn, the entire first

term in (12) represents the number of apoptotic hepatocytes
killed by activated neutrophils per hour, which is the total
number of dead hepatocytes per hour.Themaximumnumber
of apoptotic or dead hepatocytes does not exceed the total
number of hepatocytes in the liver (represented by 𝐴

∞
).

In addition, 𝑟ah represents the recovery rate of apoptotic
hepatocytes, and the second term in (12) is defined as the
amount of recovering apoptotic hepatocytes. The definition
of parameters and corresponding experimental data for
newly added system parameters in damaged tissue model are
summarized in Table 3 (refer to Appendix).

2.5. Step 4: Monocyte Immune Response Model. Recent bio-
logical experiments from the literature [69, 70] have shown
that monocyte, recruited by the presence of HMGB-1, signif-
icantly impacts liver inflammation and liver fibrosis. Upon
liver injury, inflammatory Ly6cC (Gr1C) monocyte subset, as
precursors of tissue macrophages in blood vessels near the
infected site, is attracted and recruited to the injured liver
via CCR2-dependent bone marrow egress. The chemokine
receptor CCR2 and its ligand MCP-1/CCL2 promote mono-
cyte subset infiltration upon liver injury and further promote
the progression of liver fibrosis [26, 67]. Because evidence
has shown that Tumor Necrosis Factor-𝛼 (TNF-𝛼) induces
a marked increase in CCL2/MCP-1 production in dose- and
time-dependent manners [71], we assumed the influx of
monocytes from blood vessels to liver is induced by effects
of HMGB-1 and TNF-𝛼. Therefore, we modeled the influx
of monocytes similarly to kinetics of neutrophils influx.
According to existing literature, HMGB-1 is released by
necrotic cells and activated monocytes [22, 71, 72].Therefore,
we modeled the release of HMGB-1 using receptor-ligand
kinetics and enzymatic kinetics, similar to the release of TNF-
𝛼, by incorporating effects of necrotic cells and activated
monocytes:

𝑑𝑃

𝑑𝑡

= 𝑘pg𝑃(1−
𝑃

𝑃
∞

)− 𝑟
𝑝𝑚𝑘

[𝑃
𝑛
]

[𝑃
𝑛
+ 𝑘
𝑛

𝑐1]
𝑀
𝑘𝑓
𝑃
∗

− 𝑟
𝑝𝑛

[𝑃
𝑛
]

[𝑃
𝑛
+ 𝑘
𝑛

𝑐2]
(𝑁
𝑓
+𝑁
𝑏
) 𝑃
∗

− 𝑟
𝑝𝑚

[𝑃
𝑛
]

[𝑃
𝑛
+ 𝑘
𝑛

𝑐4]
(𝑀
𝑓
+𝑀
𝑏
) 𝑃
∗
,

(13)

𝑑𝑁
𝑏

𝑑𝑡

=

[𝑃
𝑛
]

[𝑃
𝑛
+ 𝑘
𝑛

𝑐2]
𝑁
𝑓
𝑃
∗
−𝑢
𝑚𝑛
𝑁
𝑏
𝑀
∗

𝑓
− 𝑘
𝑛𝑢𝑏

𝑁
𝑏
, (14)
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Table 2: Definition of parameters and experimental values in neutrophil immune response model.

Parameters Description Value References

𝑟
𝑝𝑛 Rate at which pathogens are killed by neutrophils 20–100/per

neutrophil/h [41]

𝑟
𝑡1max

Themaximum number of TNF-𝛼 being released
by Kupffer Cells per enzyme molecule per hour 10/h Estimated

𝑟
𝑡2max

Themaximum number of TNF-𝛼 being released
by activated neutrophils per enzyme molecule per
hour

1000/h Estimated

𝑚
𝑡1

Number of Kupffer Cells at which the reaction
rate is half of maximum production rate 10000 cells Estimated

𝑚
𝑡2

Number of activated neutrophils at which the
reaction rate is half of maximum production rate 10000 cells Estimated

𝑘
𝑐2

Concentration of neutrophils which phagocytose
half of Salmonella 1.5 × 10

−4 [42]

𝑢
𝑡 Degradation rate of TNF-𝛼

0.025–0.5/h
(measured in

kidney)
[43]

𝑘
𝑟𝑑 Influx rate of neutrophils into blood vessel 0.1–0.72/h [44]

𝑁
𝑠

Resting neutrophil carrying capacity in blood
vessel 3.5 × 10

5 cells [22]

𝜇
𝑛𝑟 Apoptotic rate of resting neutrophils per hour 0.069–0.12/h [45]
𝜇
𝑛 Apoptotic rate of activated neutrophils per hour 0.05/h [45]
𝑘
𝑛𝑢𝑏 Unbinding rate of activated neutrophils per hour 0.01–0.5/h Estimated

𝑘
𝑟1

Auxiliary parameter associated with the activation
rate of resting neutrophils 3/h Estimated

𝑢
𝑟1

Degradation rate of parameter 𝑟
1
to maintain a

slow-saturation curve 0.003/h Estimated

Table 3: Definition of parameters and experimental values in damaged tissue model.

Parameters Description Value References
𝐴
∞ Number of hepatocytes in liver 3.2 × 10

8 cells Mouse phenome database

𝑟hn
Rate at which activated neutrophils kill
apoptotic hepatocytes 9000/per neutrophil/h Estimated

𝑘
𝑐3

Concentration of activated neutrophils
which phagocytose half of apoptotic
hepatocytes

0.04 Estimated

𝑟ah Recovery rate of apoptotic hepatocytes 0.5–2/h [46]

𝑑𝑀
𝑅

𝑑𝑡

= 𝑘
𝑚𝑟
𝑀
𝑅
(1−

𝑀
𝑅

𝑀
𝑠

)− 𝑟2𝑀𝑅 (𝐻+𝑇)
∗

−𝜇
𝑚𝑟
𝑀
𝑅
,

(15)

𝑑𝑀
𝑓

𝑑𝑡

= 𝑟2𝑀𝑅 (𝐻+𝑇)
∗
+ 𝑘
𝑢𝑚𝑏

𝑀
𝑏

−

[𝑃
𝑛
]

[𝑃
𝑛
+ 𝑘
𝑛

𝑐4]
𝑀
𝑓
𝑃
∗
−𝜇
𝑚
𝑀
𝑓
,

(16)

𝑑𝑀
𝑏

𝑑𝑡

=

[𝑃
𝑛
]

[𝑃
𝑛
+ 𝑘
𝑛

𝑐4]
𝑀
𝑓
𝑃
∗
− 𝑘
𝑢𝑚𝑏

𝑀
𝑏
, (17)

𝑑𝐻

𝑑𝑡

= (

𝑟
ℎ1max (𝑀𝑏 + 𝐷)

𝑚ℎ1 +𝑀𝑏 + 𝐷
) (𝑀
𝑏
+𝐷)− 𝑢

ℎ
𝐻. (18)

In (13), we incorporate the effect of phagocytosis
by monocytes into (4) because monocytes phagocytose
pathogen by a CD14-dependent mechanism [73].We recalled
the Hill-type function equation ([𝑃𝑛]/[𝑃𝑛 + 𝑘

𝑛

𝑐4]) to rep-
resent receptor-ligand binding kinetics between pathogens
and activated monocytes. Because binding activated neu-
trophils are engulfed by infiltrating monocytes [27], we used
𝑢
𝑚𝑛
𝑁
𝑏
𝑀
∗

𝑓
to calibrate the killing process of binding activated

neutrophils by activated monocytes, thereby modifying (10)
to (14). Equations (15), (16), and (17) describe activation and
migration of restingmonocytes fromblood vessels to infected
tissue. In (15), (16), and (17), 𝑀

𝑅
, 𝑀
𝑓
, and 𝑀

𝑏
represent

resting monocytes, free activated monocytes, and binding
activated monocytes, respectively. Principles used to build
those three equations are similar to the principle used to build
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Table 4: Definition of parameters and experimental values inmonocyte immune response model.

Parameters Description Value References

𝑘
𝑚𝑟 Influx rate of monocytes into blood vessel 0.5/h [44]

𝑟
𝑝𝑚

Rate at which pathogens are killed by inflammatory
monocytes

7/per monocyte/h [47]

𝑟
2 Influx rate of monocytes in liver 80/h [48]

𝑀
𝑠 Resting monocyte carrying capacity in blood vessel 50000 cells [49]

𝜇
𝑚𝑟 Apoptotic rate of resting monocytes per hour 0.2/h Estimated

𝜇
𝑚

Apoptotic rate of activated monocytes
(monocytes-derived-macrophage) per hour

0.08/h [50]

𝑟
ℎ1max

Themaximum number of HMGB-1 being released by
monocytes per enzyme molecule per hour

0.001/h Estimated

𝑚
ℎ1

Number of monocytes at which the reaction rate is half of
maximum production rate

10000 cells Estimated

𝑘
𝑐4

Concentration of monocytes which phagocytose half of
Salmonella

0.002 [47]

𝑘
𝑢𝑚𝑏 Unbinding rate of binding activated monocytes 0.4/h [51]

𝑢
ℎ Degradation rate of HMGB-1 0.5–3/h Estimated

𝑢
𝑚𝑛

Rate at which activated neutrophils are killed by
inflammatory monocytes

200/monocyte/h Estimated

Table 5: Definition of parameters and experimental values in full model.

Parameters Description Value References

𝑟
𝑐𝑎max

Themaximum number of IL-10 being released by monocytes
per enzyme molecule per hour

10000/h Estimated

𝐶
𝐴ℎ

Number of monocytes at which the reaction rate is half of the
maximum production rate

10000 cells Estimated

𝑢
𝑐𝑎 Degradation rate of IL-10 0.02/h Estimated

𝐶
∞ Dissociation rate of IL-10 0.02 Estimated

(8), (9), and (10) for the neutrophil immune response model.
Equation (18) calibrates the release of HMGB-1 per hour by
activated monocytes and apoptotic hepatocytes. The process
of releasing HMGB-1 is similar to the process of releasing
TNF-𝛼. The definition of parameters and corresponding
experimental data for newly added system parameters in
the monocyte immune response model are summarized in
Table 4 (refer to Appendix).

2.6. Step 5: SDMM of Innate Immunity. As one type of
anti-inflammatory cytokines, IL-10 was found to prevent
subsequent tissue damage by inhibiting activation of phago-
cytes, including neutrophils and monocytes [74]. This anti-
inflammatorymediator, produced bymacrophages, dendritic
cells (DC), B cells, and various subsets of CD4+ and CD8+ T
cells [75], follows the same mechanism as proinflammatory
(TNF-𝛼 andHMGB-1) release. Because ourmain focus in this
paper was tomodel innate immune responses, we ignored the

release of IL-10 by B cells and T cells during adaptive immune
responses; therefore, wemodeled the release of IL-10 similarly
to proinflammatory cytokine release:

𝑑𝐶
𝐴

𝑑𝑡

= (

𝑟
𝑐𝑎max𝑀𝑏
𝐶
𝐴ℎ

+𝑀
𝑏

)𝑀
𝑏
−𝑢
𝑐𝑎
𝐶
𝐴
. (19)

In (20), 𝐶
𝐴
represents the number of anti-inflammatory

cytokine (IL-10) during AIR, and (𝑟
𝑐𝑎max𝑀𝑏/(𝐶𝐴ℎ + 𝑀

𝑏
))

represents the release rate of anti-inflammatory cytokine
(IL-10) by activated monocytes, derived from enzymatic
kinetics. The first term in (20) calibrates the increase in the
number of anti-inflammatory cytokines every hour and the
second term 𝑢

𝑐𝑎
𝐶
𝐴
calibrates the decrease in the number

of anti-inflammatory cytokines every hour due to natural
degradation. Corresponding parameters and their values are
defined in Table 5 (refer to Appendix). After incorporating
(𝐶
𝐴
, 𝑥) = 𝑥/(1 + 𝐶

𝐴
/𝐶
∞
), the inhibition function of IL-10,

we derived a comprehensive mathematical model for innate
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immunity of AIR as follows. 𝐶
∞

represents the dissociation
rate of IL-10 with initial estimated value equivalent to 0.02.
Consider

𝑑𝑃

𝑑𝑡

= 𝑘pg𝑃(1−
𝑃

𝑃
∞

)− 𝑟
𝑝𝑚𝑘

[𝑃
𝑛
]

[𝑃
𝑛
+ 𝑘
𝑛

𝑐1]
𝑀
𝑘𝑓
𝑃
∗

− 𝑟
𝑝𝑛

[𝑃
𝑛
]

[𝑃
𝑛
+ 𝑘
𝑛

𝑐2]
(𝑁
𝑓
+𝑁
𝑏
) 𝑃
∗

− 𝑟
𝑝𝑚

[𝑃
𝑛
]

[𝑃
𝑛
+ 𝑘
𝑛

𝑐4]
(𝑀
𝑓
+𝑀
𝑏
) 𝑃
∗
,

(20)

𝑑𝑀
𝑘𝑓

𝑑𝑡

= 𝑘
𝑚𝑘
𝑀
𝑘𝑓
(1−

𝑀
𝑘𝑓

𝐾
∞

)+ 𝑘
𝑚𝑘𝑢𝑏

𝑀
𝑘𝑏

−

[𝑃
𝑛
]

[𝑃
𝑛
+ 𝑘
𝑛

𝑐1]
𝑀
𝑘𝑓
𝑃
∗
−𝑢
𝑚𝑘
𝑀
𝑘𝑓
,

(21)

𝑑𝑀
𝑘𝑏

𝑑𝑡

=

[𝑃
𝑛
]

[𝑃
𝑛
+ 𝑘
𝑛

𝑐1]
𝑀
𝑘𝑓
𝑃
∗
− 𝑘
𝑚𝑘𝑢𝑏

𝑀
𝑘𝑏
, (22)

𝑑𝑇

𝑑𝑡

= (

𝑟
𝑡1max𝑀𝑘𝑏
𝑚
𝑡1 +𝑀𝑘𝑏

)𝑀
𝑘𝑏
+(

𝑟
𝑡2max𝑁𝑏
𝑚
𝑡2 + 𝑁𝑏

)𝑁
𝑏

−𝑢
𝑡
𝑇,

(23)

𝑑𝑁
𝑅

𝑑𝑡

= 𝑘
𝑟𝑑
𝑁
𝑅
(1−

𝑁
𝑅

𝑁
𝑆

)−

𝑟1𝑁𝑅 (𝑇 + 𝑃)
∗

(1 + 𝐶
𝐴
/𝐶
∞
)

− 𝜇
𝑛𝑟
𝑁
𝑅
,

(24)

𝑑𝑁
𝑓

𝑑𝑡

=

𝑟1𝑁𝑅 (𝑇 + 𝑃)
∗

(1 + 𝐶
𝐴
/𝐶
∞
)

+ 𝑘
𝑛𝑢𝑏

𝑁
𝑏

−

[𝑃
𝑛
]

[𝑃
𝑛
+ 𝑘
𝑛

𝑐2]
𝑁
𝑓
𝑃
∗
−𝜇
𝑛
𝑁
𝑓
,

(25)

𝑑𝑁
𝑏

𝑑𝑡

=

[𝑃
𝑛
]

[𝑃
𝑛
+ 𝑘
𝑛

𝑐2]
𝑁
𝑓
𝑃
∗
−𝑢
𝑚𝑛
𝑁
𝑏
𝑀
∗

𝑓
− 𝑘
𝑛𝑢𝑏

𝑁
𝑏
, (26)

𝑑𝑟1
𝑑𝑡

= 𝑘
𝑟1 (1+ tanh (𝑁

∗

𝑓
)) − 𝜇

𝑟1𝑟1, (27)

𝑑𝐷

𝑑𝑡

= 𝑟hn
[𝐷
𝑛
]

[𝐷
𝑛
+ 𝑘
𝑛

𝑐3]
𝑁
𝑓
𝐷
∗
(1− 𝐷

𝐴
∞

)− 𝑟ah𝐷, (28)

𝑑𝑀
𝑅

𝑑𝑡

= 𝑘
𝑚𝑟
𝑀
𝑅
(1−

𝑀
𝑅

𝑀
𝑠

)−

𝑟2𝑀𝑅 (𝐻 + 𝑇)
∗

(1 + 𝐶
𝐴
/𝐶
∞
)

− 𝜇
𝑚𝑟
𝑀
𝑅
,

(29)

𝑑𝑀
𝑓

𝑑𝑡

=

𝑟2𝑀𝑅 (𝐻 + 𝑇)
∗

(1 + 𝐶
𝐴
/𝐶
∞
)

+ 𝑘
𝑢𝑚𝑏

𝑀
𝑏

−

[𝑃
𝑛
]

[𝑃
𝑛
+ 𝑘
𝑛

𝑐4]
𝑀
𝑓
𝑃
∗
−𝜇
𝑚
𝑀
𝑓
,

(30)

𝑑𝑀
𝑏

𝑑𝑡

=

[𝑃
𝑛
]

[𝑃
𝑛
+ 𝑘
𝑛

𝑐4]
𝑀
𝑓
𝑃
∗
− 𝑘
𝑢𝑚𝑏

𝑀
𝑏
, (31)

𝑑𝐻

𝑑𝑡

= (

𝑟
ℎ1max (𝑀𝑏 + 𝐷)

𝑚ℎ1 +𝑀𝑏 + 𝐷
) (𝑀
𝑏
+𝐷)− 𝑢

ℎ
𝐻, (32)

𝑑𝐶
𝐴

𝑑𝑡

= (

𝑟
𝑐𝑎max𝑀𝑏
𝐶
𝐴ℎ

+𝑀
𝑏

)𝑀
𝑏
−𝑢
𝑐𝑎
𝐶
𝐴
. (33)

In this 14-equation SDMM, variables 𝑃, 𝑀
𝑘𝑓
, 𝑀
𝑘𝑏
, 𝑇,

𝑁
𝑅
, 𝑁
𝑓
, 𝑁
𝑏
, 𝑟
1
, 𝐷,𝑀

𝑅
,𝑀
𝑓
,𝑀
𝑏
, 𝐻, and 𝐶

𝐴
represent levels

of pathogen, free Kupffer Cell, bound Kupffer Cell, TNF-
𝛼, resting neutrophil, free activated neutrophil, bound acti-
vated neutrophil, rate of resting neutrophil activated under
infection, damaged tissue, resting monocyte, free activated
monocytes, bound activated monocytes, HMGB-1, and IL-
10, respectively. These variables are identified and selected as
essential indicators in AIR. All system parameters (𝑘pg and so
on), which reflect the strength of the host’s immune system,
are adjustable during model simulation. Detailed description
of system parameters is presented in the Appendix.

2.7. Step 6: SDMM Incorporated with Adaptive Immunity.
Innate immunity plays a significant role in regulating
pathogen clearance through multiple types of cell interac-
tions, providing the first line of defense during early stages
of inflammation. Compared to innate immunity, adaptive
immunity is typically recognized as a late stage of immune
response to infection activated by antigen presenting cells
(APCs) [76].Thenature of adaptive immune response ismore
complicated than innate immune responses and involves
numerous interactions among cells and cytokines. To sim-
plify adaptive immunity, we selected four representative cells,
including CD4+ T cells, CD8+ T cells, B cells, and antibodies,
to simulate a series of immune responses during pathogenic
inflammation. The 18-equation SDMM incorporated with
adaptive immunity is presented as follows:

𝑑𝑃

𝑑𝑡

= 𝑘pg𝑃(1−
𝑃

𝑃
∞

)− 𝑟
𝑝𝑚𝑘

[𝑃
𝑛
]

[𝑃
𝑛
+ 𝑘
𝑛

𝑐1]
𝑀
𝑘𝑓
𝑃
∗

− 𝑟
𝑝𝑛

[𝑃
𝑛
]

[𝑃
𝑛
+ 𝑘
𝑛

𝑐2]
(𝑁
𝑓
+𝑁
𝑏
) 𝑃
∗

− 𝑟
𝑝𝑚

[𝑃
𝑛
]

[𝑃
𝑛
+ 𝑘
𝑛

𝑐4]
(𝑀
𝑓
+𝑀
𝑏
) 𝑃
∗

− 𝑟
𝑝𝐴𝑏

[𝑃
𝑛
]

[𝑃
𝑛
+ 𝑘
𝑛

𝑐5]
𝐴𝑃
∗

− 𝑟
𝑝cd4

[𝑃
𝑛
]

[𝑃
𝑛
+ 𝑘
𝑛

𝑐6]
𝑇CD4𝑃

∗
,

(34)

𝑑𝑀
𝑘𝑓

𝑑𝑡

= 𝑘
𝑚𝑘
𝑀
𝑘𝑓
(1−

𝑀
𝑘𝑓

𝐾
∞

)+ 𝑘
𝑚𝑘𝑢𝑏

𝑀
𝑘𝑏

−

[𝑃
𝑛
]

[𝑃
𝑛
+ 𝑘
𝑛

𝑐1]
𝑀
𝑘𝑓
𝑃
∗
−𝑢
𝑚𝑘
𝑀
𝑘𝑓
,

(35)

𝑑𝑀
𝑘𝑏

𝑑𝑡

=

[𝑃
𝑛
]

[𝑃
𝑛
+ 𝑘
𝑛

𝑐1]
𝑀
𝑘𝑓
𝑃
∗
− 𝑘
𝑚𝑘𝑢𝑏

𝑀
𝑘𝑏

− 𝑟
𝑀𝑘𝑏cd8

[𝑀
𝑛

𝑘𝑏
]

[𝑀
𝑛

𝑘𝑏
+ 𝑘
𝑛

𝑐7]
𝑇CD8𝑀

∗

𝑘𝑏
,

(36)
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𝑑𝑇

𝑑𝑡

= (

𝑟
𝑡1max𝑀𝑘𝑏
𝑚
𝑡1 +𝑀𝑘𝑏

)𝑀
𝑘𝑏
+(

𝑟
𝑡2max𝑁𝑏
𝑚
𝑡2 + 𝑁𝑏

)𝑁
𝑏

−𝑢
𝑡
𝑇,

(37)

𝑑𝑁
𝑅

𝑑𝑡

= 𝑘
𝑟𝑑
𝑁
𝑅
(1−

𝑁
𝑅

𝑁
𝑆

)−

𝑟1𝑁𝑅 (𝑇 + 𝑃)
∗

(1 + 𝐶
𝐴
/𝐶
∞
)

− 𝜇
𝑛𝑟
𝑁
𝑅
,

(38)

𝑑𝑁
𝑓

𝑑𝑡

=

𝑟1𝑁𝑅 (𝑇 + 𝑃)
∗

(1 + 𝐶
𝐴
/𝐶
∞
)

+ 𝑘
𝑛𝑢𝑏

𝑁
𝑏

−

[𝑃
𝑛
]

[𝑃
𝑛
+ 𝑘
𝑛

𝑐2]
𝑁
𝑓
𝑃
∗
−𝜇
𝑛
𝑁
𝑓
,

(39)

𝑑𝑁
𝑏

𝑑𝑡

=

[𝑃
𝑛
]

[𝑃
𝑛
+ 𝑘
𝑛

𝑐2]
𝑁
𝑓
𝑃
∗
−𝑢
𝑚𝑛
𝑁
𝑏
𝑀
∗

𝑓
− 𝑘
𝑛𝑢𝑏

𝑁
𝑏

− 𝑟
𝑁𝑏cd8

[𝑁
𝑛

𝑏
]

[𝑁
𝑛

𝑏
+ 𝑘
𝑛

𝑐7]
𝑇CD8𝑁

∗

𝑏
,

(40)

𝑑𝑟1
𝑑𝑡

= 𝑘
𝑟1 (1+ tanh (𝑁

∗

𝑓
)) − 𝜇

𝑟1𝑟1, (41)

𝑑𝐷

𝑑𝑡

= 𝑟hn
[𝐷
𝑛
]

[𝐷
𝑛
+ 𝑘
𝑛

𝑐3]
𝑁
𝑓
𝐷
∗
(1− 𝐷

𝐴
∞

)− 𝑟ah𝐷, (42)

𝑑𝑀
𝑅

𝑑𝑡

= 𝑘
𝑚𝑟
𝑀
𝑅
(1−

𝑀
𝑅

𝑀
𝑠

)

−

𝑟2𝑀𝑅 (𝐻 + 𝑇 + 𝑇CD4 + 𝑇CD8)
∗

(1 + 𝐶
𝐴
/𝐶
∞
)

− 𝜇
𝑚𝑟
𝑀
𝑅
,

(43)

𝑑𝑀
𝑓

𝑑𝑡

=

𝑟2𝑀𝑅 (𝐻 + 𝑇 + 𝑇CD4 + 𝑇CD8)
∗

(1 + 𝐶
𝐴
/𝐶
∞
)

+ 𝑘
𝑢𝑚𝑏

𝑀
𝑏

−

[𝑃
𝑛
]

[𝑃
𝑛
+ 𝑘
𝑛

𝑐4]
𝑀
𝑓
𝑃
∗
−𝜇
𝑚
𝑀
𝑓
,

(44)

𝑑𝑀
𝑏

𝑑𝑡

=

[𝑃
𝑛
]

[𝑃
𝑛
+ 𝑘
𝑛

𝑐4]
𝑀
𝑓
𝑃
∗
− 𝑘
𝑢𝑚𝑏

𝑀
𝑏

− 𝑟
𝑀𝑏cd8

[𝑀
𝑛

𝑏
]

[𝑀
𝑛

𝑏
+ 𝑘
𝑛

𝑐7]
𝑇CD8𝑀

∗

𝑏
,

(45)

𝑑𝐻

𝑑𝑡

= (

𝑟
ℎ1max (𝑀𝑏 + 𝐷)

𝑚ℎ1 +𝑀𝑏 + 𝐷
) (𝑀
𝑏
+𝐷)− 𝑢

ℎ
𝐻, (46)

𝑑𝐶
𝐴

𝑑𝑡

= (

𝑟
𝑐𝑎max𝑀𝑏
𝐶
𝐴ℎ

+𝑀
𝑏

)𝑀
𝑏
−𝑢
𝑐𝑎
𝐶
𝐴
, (47)

𝑑𝑇CD4
𝑑𝑡

= 𝑘cd4𝑇CD4 (1−
𝑇CD4
𝑇cd4∞

)

+ 𝑟cd4𝑀𝑏
[𝑀
𝑛

𝑏
]

[𝑀
𝑛

𝑏
+ 𝑘
𝑛

𝑐8]
𝑀
∗

𝑏
𝑇CD4

− 𝑘cd4𝑀
[𝑇
𝑛

cd4]

[𝑇
𝑛

cd4 + 𝑘
𝑛

𝑐10]
𝑇
∗

CD4 (𝑀𝑏 +𝑀𝑓)

− 𝑢cd4𝑇CD4,

(48)

𝑑𝑇CD8
𝑑𝑡

= 𝑘cd8𝑇CD8 (1−
𝑇CD8
𝑇cd8∞

)

+ 𝑟cd8𝑀𝑏
[𝑀
𝑛

𝑏
]

[𝑀
𝑛

𝑏
+ 𝑘
𝑛

𝑐8]
𝑀
∗

𝑏
𝑇CD8

− 𝑘cd8𝑀
[𝑇
𝑛

cd8]

[𝑇
𝑛

cd8 + 𝑘
𝑛

𝑐10]
𝑇
∗

CD8 (𝑀𝑏 +𝑀𝑓)

− 𝑢cd8𝑇CD8,

(49)

𝑑𝐵

𝑑𝑡

= 𝑘
𝐵
𝐵(1− 𝐵

𝐵
∞

)+ 𝑟
𝐵𝑡

[𝐵
𝑛
]

[𝐵
𝑛
+ 𝑘
𝑛

𝑐9]
𝐵
∗
𝑇cd4

−𝑢
𝐵
𝐵,

(50)

𝑑𝐴

𝑑𝑡

= (

𝑟
𝐴𝑏max𝐵

𝑚
𝐴𝑏
+ 𝐵

)𝐵−𝑢
𝐴𝑏
𝐴. (51)

Equation (48) describes the recruiting process of CD4+
T cells during adaptive immunity.The first term 𝑘cd4𝑇CD4(1−
𝑇CD4/𝑇cd4∞) in (48) is a standard logistic function to describe
the natural migration process of CD4+ T cells to the site
of infection, and 𝑘cd4 is a constant parameter to define
the recruitment rate of CD4+ T cells from lymph node
to the site of infection under undefined mechanisms in
our SDMM. Activated monocytes that are phagocytizing
pathogens were recognized as one type of APCs; APCs
display major histocompatibility complex class II (MHCII)
peptide on the surface available for binding to T cell
antigen-specific receptor (TCR) [77]. APCs also activate
the TCR on CD4+ T cells and enhance CD4+ T cell
migration to the site of infection through a TCR-MCHII
receptor-ligand response [76], represented by the second
term, 𝑟cd4𝑀𝑏(𝑀

𝑛

𝑏
/(𝑀
𝑛

𝑏
+𝑘
𝑛

𝑐8
))𝑀
∗

𝑏
𝑇CD4. Similar to the receptor-

ligand response we modeled in innate immunity, we used a
Hill-type (𝑀𝑛

𝑏
/(𝑀
𝑛

𝑏
+ 𝑘
𝑛

𝑐8
)) function to model the binding

rate of activated monocytes to CD4+ T cells. Receptor-ligand
kinetics 𝑟cd4𝑀𝑏(𝑀

𝑛

𝑏
/(𝑀
𝑛

𝑏
+𝑘
𝑛

𝑐8
))𝑀
∗

𝑏
𝑇CD4 represent the amount

of CD4+T cells activated by activatedmonocytes. Ourmodel
assumes that T cells become activated under TCR-MCHII
receptor-ligand response; however, we recognize that the acti-
vation process of T cells is much more complicated than we
modeled because T cell activation requires at least two signals
in order to become fully activated [77–80]. CD4+ T cells that
undergo apoptosis are phagocytized by activated monocytes
[81], represented by the third term in (48). We assume that
free activated monocytes and binding activated monocytes
phagocytize binding CD4+ T cells, represented by a receptor-
ligand response 𝑘cd4𝑀([𝑇

𝑛

cd4]/[𝑇
𝑛

cd4 + 𝑘
𝑛

𝑐10
])𝑇
∗

CD4(𝑀𝑏 + 𝑀
𝑓
),

with the binding rate equal to 𝑘cd4𝑀([𝑇
𝑛

cd4]/[𝑇
𝑛

cd4 + 𝑘
𝑛

𝑐10
])

and the phagocytosis rate equal to 𝑘cd4𝑀. The fourth term,
𝑢cd4𝑇CD4, in (48) describes a natural apoptosis process of
CD4+ T cell during migration and activation processes.

Similar to (48), (49) describes the recruitment process
of CD8+ T cells during adaptive immunity. The activation
process of CD8+ T cells through a major histocompatibility
complex class I peptide- (MHCI-) TCR mechanism follows
similar receptor-ligand kinetics of CD4+ T cells, represented
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Figure 3: A simplified mechanism of T cell activation.

by the second term, 𝑟cd8𝑀𝑏(𝑀
𝑛

𝑏
/(𝑀
𝑛

𝑏
+ 𝑘
𝑛

𝑐8
))𝑀
∗

𝑏
𝑇CD4, in (49).

The activation process of CD4+ T cells and CD8+ T cells is
depicted in Figure 3.

CD4+ T and CD8+ T cells mediate the host response
to sepsis in various ways. Experimental studies have shown
that Th1 effector cells proliferated by CD4+ T cells can
improve the phagocytosis rate of Kupffer Cells, activated
neutrophils, and activated monocytes through a receptor-
ligand response [82]. To simplify our SDMM, we used CD4+
T cell population to substitute for Th1 effector cell population,
and we measured a decrease in the amount of pathogens via
CD4+ T cell-dependent interactions using receptor-ligand
kinetics, represented by the sixth term 𝑟

𝑝cd4([𝑃
𝑛
]/[𝑃
𝑛
+

𝑘
𝑛

𝑐6
])𝑇CD4𝑃

∗ in (34). CD8+ T cells are cytotoxic cells because
their primary function is to kill infected target cells [82,
83]. Therefore, we incorporated receptor-ligand kinetics into
the third term in (36), the fourth term in (40), and the
third term in (45) to measure the decrease in binding
Kupffer Cells, binding activated neutrophils, and binding
activated monocytes. In SDMM, we used the population of
binding Kupffer Cells, binding activated neutrophils, and
binding activated monocytes to represent the population of
infected cells under the assumption that binding cells bind to
pathogens.Therefore, the population of binding cells was also
used to represent the population of APCs in our SDMM.

Macrophage activation is related to IFN-gamma released
by T cells [84–86]. Because we did not calibrate IFN-
gamma in our SDMM, we calculated the monocyte acti-
vation process using CD4+ T cell and CD8+ T cell pop-
ulations instead of interferon-gamma (IFN-gamma) pop-
ulation for simplicity. Under this assumption, we revised
the second term in (43) and the first term in (44)

to 𝑟
2
𝑀
𝑅
(𝐻 + 𝑇 + 𝑇CD4 + 𝑇CD8)

∗
/(1 + 𝐶

𝐴
/𝐶
∞
). The newly

revised term, 𝑟
2
𝑀
𝑅
(𝐻 + 𝑇 + 𝑇CD4 + 𝑇CD8)

∗
/(1 + 𝐶

𝐴
/𝐶
∞
),

incorporates the CD4+ T cell and CD8+ T cell populations
to reflect the role of CD4+ T cells and CD8+ T cells in the
resting monocyte activation process.

Th1 or Th2 effector cells activate B cells to release anti-
bodies [76]. Equation (50) describes the activation process of
B cells by the CD4+ T cell population under the assumption
that the CD4+ T cell population can represent Th1 and Th2
effector cell populations due tomodel simplification.The first
term 𝑘

𝐵
𝐵(1 − 𝐵/𝐵

∞
) in (50) measures the migration process

of B cells from lymph nodes to the site of infection, which is
derived from a standard logistic function. Derivation of the
second term, 𝑟

𝐵𝑡
([𝐵
𝑛
]/[𝐵
𝑛
+ 𝑘
𝑛

𝑐9
])𝐵
∗
𝑇cd4, in (50) is similar to

derivation of the second terms in (48) and (49), following
a receptor-ligand kinetics. Decrease in B cell population
was induced by natural apoptosis, represented by the third
term, 𝑢

𝐵
𝐵, in (50). Plasma cells secrete antibodies [76], but

we did not incorporate this specific mechanism into our
SDMM. Instead, we modeled that antibodies were released
by B cells. In (51), the release of antibodies from B cells is
represented by the first term, (𝑟

𝐴𝑏max𝐵/(𝑚𝐴𝑏+𝐵))𝐵, following
receptor-ligand kinetics and enzymatic kinetics (Michaelis-
Menten), similar to TNF-𝛼, HMGB-1, and IL-10 release pro-
cess described in innate immunity. The second term, 𝑢

𝐴𝑏
𝐴,

in (51) describes the natural catabolism of antibodies. When
antibodies are released from plasmas cells, TH cells define
the isotype of the antibody [76]; we did not model specific
isotype of antibodies in our model. Antibodies can opsonize
pathogen and contribute to further pathogen clearance at
the late stage of inflammation [76, 82], as represented by the
fifth term, 𝑟

𝑝𝐴𝑏
([𝑃
𝑛
]/[𝑃
𝑛
+ 𝑘
𝑛

𝑐5
])𝐴𝑃
∗, in (34). The definition
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Table 6: Definition of parameters and experimental values in full model with adaptive immunity.

Parameters Description Value References
𝑘cd4 The influx rate of CD4+ T cells to blood vessel 0.014 [52]
𝑇cd4∞ CD4+ T cell carrying capacity in the blood vessel 27.4 × 10

6 [52]
𝑢cd4 Degradation rate of CD4+ T cells 0.00083–0.001 [52]
𝑘cd8 The influx rate of CD8+ T cells to blood vessel 0.0625 [52]
𝑇cd8∞ CD8+ T cell carrying capacity in the blood vessel 5 × 10

6 [52]
𝑢cd8 Degradation rate of CD8+ T cells 0.00079–0.001 [52]
𝑘
𝐵 The influx rate of B cells to blood vessel 0.0122 [52]
𝐵
∞ B cell carrying capacity in the blood vessel 28.6 × 10

6 [52]
𝑢
𝐵 Degradation rate of B cells 0.00012–0.00016 [53, 54]
𝑟
𝐴𝑏max Themaximum production amount of antibody by B cells 0.00053 [49, 55, 56]

𝑚
𝐴𝑏

Number of B cells at which the reaction rate is half of
maximum production rate 10000 Estimated

𝑢
𝐴𝑏 Degradation rate of antibody 0.0035–0.01 [57]
𝑟
𝑝𝐴𝑏 Rate at which pathogens are killed by antibody 1 Estimated based on [49, 56, 57]
𝑘
𝑐5 Concentration of antibody which kills half of Salmonella 0.035 Estimated
𝑟
𝑝cd4 Rate at which pathogens are killed by CD4+ T cells 8 [47, 58, 59]

𝑘
𝑐6

Concentration of CD4+ T cells which kill half of
Salmonella 0.0015 Estimated

𝑟
𝑀𝑘𝑏cd8

Rate at which binding Kupffer Cells are killed by CD8+ T
cells 0.25 [59]

𝑘
𝑐7

Concentration of CD8+ T cells which kill half of binding
antigen presenting cells 0.0015 Estimated

𝑟
𝑁𝑏cd8

Rate at which binding activated neutrophils are killed by
CD8+ T cells 0.25 [59]

𝑟
𝑀𝑏cd8

Rate at which binding activated monocytes are killed by
CD8+ T cells 0.25 [59]

𝑟cd4𝑀𝑏 Rate at which CD4+ T cells bind to activated monocytes 4 [59]
𝑟cd8𝑀𝑏 Rate at which CD8+ T cells bind to activated monocytes 4 [59]

𝑘
𝑐8

Activated monocyte concentration produces half
occupation on T cells 0.0075 Estimated

𝑟
𝐵𝑡 Rate at which B cells bind to T cells 1–10 Estimated
𝑘
𝑐9 B cell concentration produces half occupation on T cells 0.045 Estimated

𝑘cd4𝑀
Rate at which binding CD4+ T cells are killed by activated
monocytes 0.73–2 [60]

𝑘cd8𝑀
Rate at which binding CD8+ T cells are killed by activated
monocytes 0.73–2 [60]

𝑘
𝑐10

Concentration of activated monocytes which kill half of
binding T cells 0.018 Estimated

and corresponding experimental data for newly added system
parameters in SDMM incorporated with adaptive immunity
are summarized in Table 6 (refer to the Appendix).

3. Simulated Results

Using SDMM, we identified three distinct dynamic patterns
of indicators that represent three states of AIR progression:
Healing Process, Persistent Infection, and Organ Dysfunc-
tion. Based on our computed results, we concluded that a
Healing Process occurs when the level of pathogens, level
of phagocytic cells (neutrophils and monocytes), and level
of inflammatory cytokines (TNF-𝛼, HMGB-1, and IL-10)

oscillate below threshold during infection. We recognized
that a Persistent Infection occurs if inflammatory responses
are active (damaged tissue oscillates above threshold during
infection).We also recognized thatOrganDysfunction occurs
if an overwhelming load of bacteria is observed. Computed
results are shown in Figure 4.

In order to initially validate our SDMM, model behav-
iors were compared to results from experimental designs
under specific parameter settings. If results did not match,
model reconfiguration was implemented by adjusting the
relationship between components (indicators) or fine-tuning
parameter values. We compared our simulated results to
experimental results [87] and simulated results from a latest
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Figure 4: Dynamic patterns of AIR progression related to various initial levels of indicators and adjustable system parameters. 𝑥-axis
represents time (in hours) and 𝑦-axis represents number of indicators (pathogen, dead hepatocyte, activated neutrophil, activated monocyte,
TNF-𝛼, HMGB-1, and IL-10) during AIR progression. (a) Combined dynamic patterns of indicators represent a Healing Process in AIR
progression (pathogen initial counts = 100). (b) Combined dynamic patterns of indicators represent a Persistent Infection in AIR progression
(pathogen initial counts = 10000). (c) Combined dynamic patterns of indicators represent Organ Dysfunction in AIR progression (pathogen
initial counts = 100000).

version of an AIR progression mathematical model [13]. We
observed that our simulated results had better agreement
with experimental results compared to simulated results from
the previous mathematical model because our simulated
results captured a dampened oscillated infection. We rec-
ognized that this improvement of simulation accuracy is
a result of additional cellular and molecular pathways of
AIR progression incorporated into our SDMM compared
to previous mathematical models [12, 13]. For example,
we simulated the effect of monocytes in our SDMM by
incorporating interactions of monocytes with other cells
and cytokines. In contrast, previous mathematical models
simulated the combined effect of neutrophils and monocytes
with the limitation of oversimplification of AIR progression.
Our simulated results indicated that time required for peak
levels of TNF-𝛼, HMGB-1, and IL-10 is approximately 12 hrs,
18 hrs, and 24 hrs, respectively. These results are consistent
with results from clinical trials [28], as shown in Figure 5.

We also explored the impact of pathogen initial load
on phagocytic cells, inflammatory cytokines, and damaged
tissue at low, medium, and high levels during AIR progres-
sion. We found that dynamic patterns of AIR progression
were identified as “Healing Process” if the initial number of
pathogens was set below 3.2 (result was transformed to a
base-10 logarithm) in simulation; dynamic patterns of AIR
progression were identified as “Persistent Infection” if the
initial number of pathogens was set between 3.2 and 5.9
(result was transformed to a base-10 logarithm) in simulation;
and dynamic patterns of AIR progression were identified as
“Organ Dysfunction” if the initial number of pathogens was
set above 5.9 (result was transformed to a base-10 logarithm)
in simulation. During some simulation replications, our
findings are inconsistent with pieces of evidence found from

experimental studies [88–90] that indicated outcomes of AIR
progression are more likely to lead to a healthy state with a
low-dose of pathogens, whichwill be further illustrated in the
Discussion.

By incorporating adaptive immunity to SDMM, we gen-
erated dynamic patterns of pathogen count, dead hepatocyte
count, activated neutrophil count, activated monocyte count,
TNF-𝛼, HMGB-1, IL-10, CD4+T cell, CD+ 8T cell, B cell, and
antibodies using Mathematica (Wolfram Mathematica 9.0).
Computed results are shown in Figures 6 and 7.

Based on our computed results, we observed pathogen
count converged toward 0 at approximately 14 days (336 hrs)
after infection during a Persistent Infection when the effect
of adaptive immunity was incorporated into the full model.
Compared to Persistent Infection observed in innate immu-
nity (shown in Figure 4(b)), the activated neutrophil count
and HMGB-1 count converged toward 0 at approximately 25
days (600 hrs) after infection. Convergence in TNF-𝛼 count
occurred at approximately 14 days after infection, earlier
than convergence in HMGB-1 count in innate immunity.
The peak level of activated monocytes increased to 26000,
which was 2 times higher than the peak level of activated
monocytes observed in innate immunity. No additional
dead hepatocytes were observed after 25 days (600 hrs) after
infection because cells (activated neutrophils and activated
monocytes) and cytokines (TNF-𝛼, HMGB-1, and IL-10)
associated with further tissue damage converged toward 0,
indicating adaptive immunity positively impacted outcomes
of sepsis progression.

By incorporating CD4+ T cells, CD8+ T cells, B cells, and
antibodies into innate immunity, we observed that elevated
pathogen count during Organ Dysfunction began to drop
at approximately 20 days after infection (500 hrs), and the
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Figure 5: Dynamic patterns of TNF-𝛼, HMGB-1, and IL-10 in mice livers during AIR generated from our SDMM. 𝑥-axis represents time (in
hours) and 𝑦-axis represents number of indicators.

process of pathogen clearance induced by adaptive immunity
persisted approximately 5 days after infection. Pathogen
count returned to 0 at 25 days after infection (720 hrs).
Cells (activated neutrophils and activated monocytes) and
cytokines (TNF-𝛼, HMGB-1, and IL-10) associated with
innate immunity dropped significantly during simulation,
but CD4+ T cells, CD8+ T cells, and B cells persistently
elevated after 500 hrs after infection, indicating adaptive
immunity’s contribution to pathogen clearance during the
late stage of sepsis progression. A mice model infected with a
high dose of Escherichia coli [52] showed that the number of
CD4+ T cells, CD8+ T cells, and B cells persisted throughout
7 days, thereby conforming to dynamic patterns of CD4+ T
cells, CD8+ T cells, and B cells observed in our SDMM.

4. Stability Analysis

In order to study model behaviors under various parameter
settings and initial conditions, bifurcation diagrams were
used to conduct stability analysis for each subsystem during
model construction. The objective of stability analysis was to
identify key parameters or key processes in sepsis episodes.
Numerical analysis that we used is similar to the previous
study [16].

We started with stability analysis by calculating equi-
librium points in Kupffer Cell local response model. The
equilibrium points were derived by setting equations in

Kupffer Cell local response model free of the time (time is
denoted by 𝑡 in equations), which imply that

𝑘pg𝑃(1−
𝑃

𝑃
∞

)− 𝑟
𝑝𝑚𝑘

[𝑃

𝑛

]

[𝑃

𝑛

+ 𝑘
𝑛

𝑐1]
𝑀
𝑘𝑓
𝑃

∗

= 0, (52)

𝑘
𝑚𝑘
𝑀
𝑘𝑓
(1−

𝑀
𝑘𝑓

𝐾
∞

)+𝑘
𝑚𝑘𝑢𝑏

𝑀
𝑘𝑏

−

[𝑃

𝑛

]

[𝑃

𝑛

+ 𝑘
𝑛

𝑐1]
𝑀
𝑘𝑓
𝑃

∗

−𝑢
𝑚𝑘
𝑀
𝑘𝑓
= 0,

(53)

[𝑃

𝑛

]

[𝑃

𝑛

+ 𝑘
𝑛

𝑐1]
𝑀
𝑘𝑓
𝑃

∗

− 𝑘
𝑚𝑘𝑢𝑏

𝑀
𝑘𝑏
= 0. (54)

To solve (52), (53), and (54), we firstly added (53) to (54),
which eliminate the (53) and (54) to (55):

𝑘
𝑚𝑘
𝑀
𝑘𝑓
(1−

𝑀
𝑘𝑓

𝐾
∞

)−𝑢
𝑚𝑘
𝑀
𝑘𝑓
= 0. (55)

By solving (52) and (55) together, we could obtain the
following feasible equilibrium points.
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Figure 6: An adaptive immunity influence on outcomes of sepsis progression (pathogen initial counts = 10000). 𝑥-axis represents time (in
hours) and 𝑦-axis represents number of indicators.

If 𝑘
𝑚𝑘𝑢𝑏

̸= 0,

(𝑀
𝑘𝑓
= 0, 𝑃 = 0,𝑀

𝑘𝑏
= 0)

or (𝑀
𝑘𝑓
= 0, 𝑃 =𝑃

∞
,𝑀
𝑘𝑏
= 0)

or (𝑀
𝑘𝑓
=

𝑘
∞
(𝑘
𝑚𝑘

− 𝜇
𝑚𝑘
)

𝑘
𝑚𝑘

, 𝑃 = 0,𝑀
𝑘𝑏
= 0) .

(56)

The above equilibrium points are valid if the following
conditions are satisfied:

𝑘
∞

̸= 0,

𝑃
∞

̸= 0,

𝑘
𝑐1

̸= 0,

𝑛 > 0.

(57)

From the derived feasible equilibriumpoints, we obtained
two disease-free equilibrium points given as

(𝑀
𝑘𝑓
= 0, 𝑃 = 0,𝑀

𝑘𝑏
= 0)

or (𝑀
𝑘𝑓
=

𝑘
∞
(𝑘
𝑚𝑘

− 𝜇
𝑚𝑘
)

𝑘
𝑚𝑘

, 𝑃 = 0,𝑀
𝑘𝑏
= 0) .

(58)

We further calculated the associated Jacobian matrix to
determine stability of the disease-free equilibrium points; the
Jacobian matrix was given as follows:

[

[

[

[

[

[

[

[

[

[

[

[

[

𝑘pg −
2𝑘pg𝑃
𝑃
∞

−

𝑟
𝑝𝑚𝑘

𝑀
𝑘𝑓
𝜎

𝑃
∞

, −𝑟
𝑝𝑚𝑘

𝑃

𝑛+1

(𝑃

𝑛

+ 𝑘
𝑛

𝑐1) 𝑃∞
, 0

−

𝑀
𝑘𝑓
𝜎

𝑃
∞

, (𝑘
𝑚𝑘

− 𝑢
𝑚𝑘
) −

2𝑘
𝑚𝑘
𝑀
𝑘𝑓

𝐾
∞

−

𝑃

𝑛+1

(𝑃

𝑛

+ 𝑘
𝑛

𝑐1) 𝑃∞
, 𝑘
𝑚𝑘𝑢𝑏

𝑀
𝑘𝑓
𝜎

𝑃
∞

𝑃

𝑛+1

(𝑃

𝑛

+ 𝑘
𝑛

𝑐1) 𝑃∞
, −𝑘

𝑚𝑘𝑢𝑏

]

]

]

]

]

]

]

]

]

]

]

]

]

, (59)

where 𝜎 = (𝑛𝑃

2𝑛
− 𝑛𝑃

𝑛

(𝑃

𝑛

+ 𝑘
𝑛

𝑐1))/(𝑃
𝑛

+ 𝑘
𝑛

𝑐1)
2.

Replacing the first disease-free equilibrium point (𝑀
𝑘𝑓
=

0, 𝑃 = 0,𝑀
𝑘𝑏

= 0) into the Jacobian matrix above (59), we
can further derive the following Jacobian matrix:

𝐽1 =
[

[

[

𝑘pg 0 0
0 𝑘
𝑚𝑘

− 𝑢
𝑚𝑘

𝑘
𝑚𝑘𝑢𝑏

0 0 −𝑘
𝑚𝑘𝑢𝑏

]

]

]

. (60)

In order to find the associated eigenvalues with (60), we
solved the following equation:

det (𝐽1 −𝜆𝐼)

=

[

[

[

[

𝑘pg − 𝜆 0 0

0 𝑘
𝑚𝑘

− 𝑢
𝑚𝑘

− 𝜆 𝑘
𝑚𝑘𝑢𝑏

0 0 −𝑘
𝑚𝑘𝑢𝑏

− 𝜆

]

]

]

]

= 0.
(61)
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Figure 7: An adaptive immunity influence on outcomes of sepsis progression (pathogen initial counts = 100000). 𝑥-axis represents time (in
hours) and 𝑦-axis represents number of indicators.

Using Mathematica (Wolfram Mathematica 9.0), we
obtained the eigenvalues of (61) as follows:

𝜆11 = − 𝑘
𝑚𝑘𝑢𝑏

,

𝜆
21
= 𝑘pg,

𝜆
31
= 𝑘
𝑚𝑘

−𝑢
𝑚𝑘
.

(62)

Thus, we concluded that the first disease-free equilibrium
point is stable if and only if the following conditions are
satisfied:

𝑘
𝑚𝑘𝑢𝑏

> 0,

𝑘pg < 0,

𝑘
𝑚𝑘

< 𝑢
𝑚𝑘
.

(63)

Following a similar procedure above, we replaced the
second disease-free equilibrium point (𝑀

𝑘𝑓
= 𝑘
∞
(𝑘
𝑚𝑘

−

𝜇
𝑚𝑘
)/𝑘
𝑚𝑘
, 𝑃 = 0,𝑀

𝑘𝑏
= 0) into the Jacobian matrix in (59).

The Jacobian matrix associated with the second disease-
free equilibrium point was revised to

𝐽2 =
[

[

[

𝑘pg 0 0
0 𝑢
𝑚𝑘

− 𝑘
𝑚𝑘

𝑘
𝑚𝑘𝑢𝑏

0 0 −𝑘
𝑚𝑘𝑢𝑏

]

]

]

. (64)

Again, by solving (65),

det (𝐽2 −𝜆𝐼)

=
[

[

[

𝑘pg − 𝜆 0 0
0 𝑢

𝑚𝑘
− 𝑘
𝑚𝑘

− 𝜆 𝑘
𝑚𝑘𝑢𝑏

0 0 −𝑘
𝑚𝑘𝑢𝑏

− 𝜆

]

]

]

= 0.
(65)

We obtained the eigenvalues associated with the second
disease-free equilibrium point, and the eigenvalues were
expressed as follows:

𝜆12 = − 𝑘
𝑚𝑘𝑢𝑏

,

𝜆
22
= 𝑘pg,

𝜆
32
= 𝑢
𝑚𝑘

− 𝑘
𝑚𝑘
.

(66)

Thus, the stability of the second disease-free equilibrium
can be achieved if and only if the following conditions are
satisfied:

𝑘
𝑚𝑘𝑢𝑏

> 0,

𝑘pg < 0,

𝑘
𝑚𝑘

> 𝑢
𝑚𝑘
.

(67)

Because 𝑘pg (the growth rate of pathogen) was assumed
to be always larger than 0, we concluded that the disease-free
equilibrium points for Kupffer Cell local response model are
always unstable.

In order to verify our conclusion, we did a numerical
study on the second disease-free equilibrium point (𝑀

𝑘𝑓
=

12000000, 𝑃 = 0,𝑀
𝑘𝑏

= 0). We found the disease-free
equilibrium point (𝑀

𝑘𝑓
= 12000000, 𝑃 = 0,𝑀

𝑘𝑏
=

0) changed if pathogen load was changed from 0 to 2 at
equilibria (a small perturbation was given); the simulated
results of change in the disease-free equilibriumpoint (𝑀

𝑘𝑓
=

12000000, 𝑃 = 0,𝑀
𝑘𝑏
= 0) are shown in Figure 8.

We also analyzed stability of the pathogen saturation
equilibrium point (𝑀

𝑘𝑓
= 0, 𝑃 = 𝑃

∞
,𝑀
𝑘𝑏
= 0). By numerical

analysis, we concluded that the pathogen saturation equilib-
rium point (𝑀

𝑘𝑓
= 0, 𝑃 = 𝑃

∞
,𝑀
𝑘𝑏

= 0) is stable if the
following conditions are satisfied:

𝑘
𝑚𝑘

< 0.5,

𝑢
𝑚𝑘

> 0.2.

(68)
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Figure 8: Change in the disease-free equilibrium point (𝑀
𝑘𝑓
= 12000000, 𝑃 = 0,𝑀

𝑘𝑏
= 0) when P = 2 and 𝑘pg = 1.2.

When 𝑘
𝑚𝑘

> 0.5, the pathogen saturation equilibrium
point (𝑀

𝑘𝑓
= 0, 𝑃 = 𝑃

∞
,𝑀
𝑘𝑏

= 0) became unstable. Simu-
lated results of change in the pathogen saturation equilibrium
point (𝑀

𝑘𝑓
= 0, 𝑃 = 𝑃

∞
,𝑀
𝑘𝑏
= 0) are shown in Figure 9.

Stability analysis of equilibrium points in Kupffer Cell
local response model indicated that Kupffer Cell local
response model is not a stable system. The disease-free
equilibrium point (𝑀

𝑘𝑓
= 12000000, 𝑃 = 0,𝑀

𝑘𝑏
=

0) changed when the second infection occurred (P was
changed from 0 to 2). However, recruiting more Kupffer
Cells positively contributed to the pathogen clearance after
a saturated infection (P = 𝑃

∞
), as shown in Figure 9.

Bifurcation diagrams are graphical tools to visualize
dynamic system behavior changes with parameters. In this
paper, we used Matcont to generate bifurcation diagrams.
Matcont, a Matlab continuation package with a graphic user
interface (GUI) for interactive numerical study of param-
eterized nonlinear ordinary differential equations (ODEs),
computes curves of equilibria, limit points, Hopf point, limit
cycles, fold, torus, and branch point bifurcation of limit cycles
[91].

In bifurcation diagrams, 𝑦-axis represents equilibria of
state variable and 𝑥-axis represents value of system parameter
that generates equilibria. Therefore, bifurcation diagrams
reflect change in equilibria of dynamic systems (change in

number of equilibria or change in numerical value of equilib-
ria) in relation to change in numerical value of system param-
eters.We analyzed stability of dynamic systems by identifying
types of bifurcation points in bifurcation diagrams because
bifurcation points are defined as points at which stability
changes from stable to unstable. Two typical bifurcation
points were evident in our bifurcation diagrams: limit point
(marked as “LP” in Matcont) and Hopf point (marked as “H”
in Matcont). Neutral saddle point was marked as “NS” in
the bifurcation diagram, but it is not a bifurcation point for
equilibrium because it is identified as a hyperbolic saddle.
Figure 10 shows that change in equilibria of state variable
pathogen is related to change in system parameters in the
neutrophil immune response model.

LPs in bifurcation diagrams of neutrophil immune
response model appeared when two equilibria merged into
one equilibrium; the number of equilibria of dynamic systems
changed when LPs were detected. LPs are also turning points
at which dynamic systems change from stability to instability.
In Figure 10(a), stable equilibria of pathogen are observed
when system parameter 𝑘pg increases from 0 to 4.93. When
𝑘pg equals 4.93, LP is identified and unstable equilibria of
pathogen are generated as 𝑘pg decreases from 4.93 to 0.
Therefore, equilibria of pathogen of our neutrophil immune
response model are bistable when 𝑘pg ranges from 0 to
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4.93. Similarly, equilibria of pathogen in Figure 10(b) are
bistable when system parameter 𝑟

𝑝𝑛
ranges from 25 to 200.

In Figure 10(c), equilibria of pathogen are bistable when 𝑢
𝑛

ranges from 0 to 0.21.
A Hopf bifurcation, identified in Figure 10(d), is a peri-

odic bifurcation in which a new limit cycle is born from a
stationary solution. Hopf point, a turning point for periodic
orbits, is detectedwhen systemparameter 𝑟

𝑡2max changes.The
detected Hopf point in Figure 10(d) begins a limit cycle con-
tinuation in which two cycles collide and disappear. Because
the first Lyapunov coefficient [92] is positive, an unstable
limit cycle exists, bifurcating from this equilibrium. Figures
11(a) and 11(b) show the family of limit cycles bifurcating
from detected Hopf point in Figure 10(d). The family of limit
cycles is represented using limit cycle planes, such as TNF-a-
pathogen plane and 𝑁

𝑓
-pathogen plane. Figure 11(c) shows a

limit cycle sphere represented by a TNF-a,𝑁
𝑓
, and pathogen

plane. Figure 11(d) indicates that two limit cycles occur when
𝑟
𝑡2max equals 5495.64 or 6265.00.

In Figure 11(c), the first family of limit cycle (small red
cycle in the center of the sphere) spirals outward as system
parameter 𝑟

𝑡2max decreases, and the second family of limit
cycle appears when 𝑟

𝑡2max decreases to 5495.64 (a red cycle
line appears). As 𝑟

𝑡2max increases from 5495.64, the second
family of limit cycle spirals outward again. When 𝑟

𝑡2max
increases to 6265.00, an unstable equilibrium is detected, as
depicted in Figure 12(a). If value of 𝑟

𝑡2max is between 5495.64

and 6265.00, equilibria of the neutrophil immune response
model are stable and converged, as shown in Figure 12(b).
This finding infers either a high release rate of TNF-𝛼 (𝑟

𝑡2max
is above 6265.00) or a low release rate of TNF-𝛼 (𝑟

𝑡2max
is below 5495.64), thereby inducing generation of unstable
equilibria in the neutrophil immune response model. From
a biological response perspective, high release rate of TNF-
𝛼 indicates overproduction of proinflammatory cytokines
related to overwhelming proinflammation; low release rate
of TNF-𝛼 leads to failure to recruit a sufficient amount
of neutrophils related to infection clearance. Based on our
stability analysis, we found that the release rate of TNF-𝛼
can positively or negatively influence outcomes of AIR pro-
gression, thereby conforming to experimental perturbation
findings regarding effectiveness of anti-TNF-𝛼 therapies [93–
95].

Continued stability analysis on the monocyte immune
response model indicated that change in system parameters
𝑘
𝑟𝑑
, 𝑢
𝑛𝑟
, and 𝑢

𝑛
induces bistability of the monocyte immune

response model. We observed that the monocyte immune
response model was bistable if at least one of the following
three conditions was met: 𝑘

𝑟𝑑
was between 0 and 0.32, 𝑢

𝑛𝑟

was between 0 and 0.28, or 𝑢
𝑛
was between 0 and 0.21.

Specifically, we observed that 𝑟
𝑡2max (maximum release rate

of TNF-𝛼 by activated neutrophil) and mt2 (number of
activated neutrophils at which the reaction rate is half of
the maximum production rate) are essential for oscillated
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monocyte immune responsemodel. Similar to the neutrophil
immune response model, limit cycles bifurcate from Hopf
point. Therefore, we conclude that the oscillated infection is
dependent on the amount of released TNF-a and recruited
neutrophils in AIR progression. However, released mono-
cytes and associated cytokines such as HMGB-1 do not
contribute to oscillation in AIR progression.

Building upon the monocyte immune response model,
we incorporated the effect of anti-inflammatory cytokine
(IL-10) into the full model. We observed that Hopf point
was detected when 𝑟

𝑡2max increased to 128000 because anti-
inflammatory cytokine inhibited activation of phagocytic
cells (neutrophils and monocytes). This trend indicates that
infection oscillation (harmful outcomes) requires additional
proinflammation activated by neutrophils in the full model,
compared to monocyte immune response model without
including the effect of anti-inflammatory cytokine.Therefore,
our simulated results demonstrated that AIR progression is
more likely to end with Healing Process if the effect of anti-
inflammatory cytokine is incorporated.

Strengthened (increased 𝑟
𝑡2max and mt2) proinflamma-

tory immune responses could also induce stable or unstable
equilibria, leading to a dampened oscillated infection or
diverged infection, similar to our observations in Figure 12.
However, we observed that if high effect of anti-inflammatory
cytokine was incorporated (dissociation rate equal to a base-
10 logarithm 8) at the beginning of infection, AIR progression
resulted in an unstable overwhelming pathogen load at
equilibria (refer to Figure 12(a)). However, a stable dampened
oscillated pathogen load at equilibria (refer to Figure 12(b))
was observed if medium effect of anti-inflammatory cytokine
(dissociation rate equal to a base-10 logarithm 5) was
incorporated. These observations confirmed that effects of
anti-inflammatory cytokine can be positive or negative to
AIR progression depending on levels of anti-inflammatory
cytokine.

We conducted bifurcation analysis for themodel incorpo-
rated with adaptive immunity, similar to bifurcation analysis

we conducted in the neutrophil subsystem, monocytes sub-
system, and fullmodel.We selected four bifurcation diagrams
as shown in Figure 13.

As shown in Figure 13(a), two Hopf bifurcations were
detected at 𝑘pg = 2.8 and 𝑘pg = 4.1. Similarly, Hopf bifurcations
were also detected in Figures 13(b) and 13(c) when 𝑟

𝑝𝑛
=

17, 𝑟
𝑝𝑛
= 38, or 𝑢

𝑛
= 0.047. Compared to innate immunity,

incorporation of adaptive immunity induced a further sta-
bilized limit cycles, bifurcation from the equilibrium. Our
stability analysis shown in Figure 13(d) illustrates that the
Hopf bifurcation moves to lower 𝑟

𝑡2max value compared to
Hopf bifurcation detected in innate immunity. The change in
bifurcations indicated the contribution of adaptive immunity
to sepsis progression.

In Figures 14(a), 14(b), and 14(c), the first family of limit
cycle (small red cycle in the center of the sphere, marked as
LPC) spiral outward as system parameter 𝑘pg decreases, and
the second family of limit cycle appears when 𝑘pg decreases
to 2.4 (a red cycle line appears). As 𝑘pg increases from 2.4,
the second family of limit cycle spirals outward again. A
period doubling is detected when 𝑘pg increases to 3, marked
as PD in Figure 14. Because the first Lyapunov coefficient
is negative, limit cycle bifurcations from the equilibrium
are stable compared to unstable limit cycles detected in the
neutrophil subsystem.

5. Discussion

Experimental results in literature have suggested that anti-
inflammatory mediator inhibits activation of phagocytes
and reduces the ability of activatedphagocytes to attack
pathogen [96], consequently related to mortality and severity
of infection in sepsis [97, 98]. However, other experimental
studies have shown that anti-inflammatory cytokine down-
regulates production of secreted cytokines by inhibiting
various behaviors of activated immune cells, thereby reducing
the risk of tissue damage [28, 99, 100]. Our computed results
from SDMM suggested that the effect of anti-inflammatory
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cytokines could be a “double-edged sword” for AIR because
anti-inflammatory cytokine would either decrease mortality
associated with tissue damage or increase mortality asso-
ciated with high load of bacteria. With a low effect of
anti-inflammatory cytokine (dissociation rate equal to a
base-10 logarithm 2), our computed results showed that
anti-inflammatory cytokine fails to inhibit the release of
activated immune cells (activated neutrophils and activated
monocytes) and subsequent cytokine production. Levels of
damaged tissue significantly accumulated during the first
500 hours (approximately 20 days) of simulation. With
the high effect of anti-inflammatory cytokine (dissociation
rate equal to a base-10 logarithm 8), our simulated results
and stability analysis demonstrated that sepsis progression
leads to increased chance of death caused by overwhelming
pathogen load at the end of simulation.

To further investigate effects of anti-inflammatory
cytokines, we simulated a medium effect of anti-inflammato-
ry cytokine (dissociation rate equal to a base-10 logarithm
5) and compared simulated results to high effect of anti-
inflammatory cytokine and low effect of anti-inflammatory
cytokine. Our computed results showed that pathogen
load decreases during the first 100 hours of infection in
combination with the total amount of dead hepatocytes.
Furthermore, we observed that production of activated
neutrophils and activated monocytes declined to baseline
near 0 at the end of simulation, indicating a positive trend
of sepsis progression to a healthy pattern. Therefore, we
conclude that the level of anti-inflammatory cytokines
significantly impacts direction of sepsis progression. We also
conclude that levels of anti-inflammatory cytokine and time
of intervention of anti-inflammatory cytokines determine
outcomes of AIR under specific system configuration. Based
on simulated results from our SDMM, we inferred that the
survival rate of the host (chance of ending with a Healing
Process) could be improved if a medium level of IL-10
injection was set between 3 hrs and 6 hrs after infection.

We assert that care must be taken when applying simu-
lated results to clinics before the implementer fully under-
stands the underlying setting of the simulation. Because it
was difficult to simultaneously incorporate every intermedi-
ate biological process of inflammatory response, reasonable
assumptions must be made when building a mathematical
model. In our SDMM, we did not model Salmonella repli-
cating within neutrophils. However, experimental study [58]
asserted that neutrophils and macrophages were the primary
sites for Salmonella proliferation in a mouse. Therefore,
Salmonella replication could be considered in the future
model if additional literature supported this fact. Various
T cell types were reported to be able to express IL-10
under various conditions [101]. Therefore, IL-10 production
estimation is difficult because IL-10 levels produced by T
cells were various due to stimuli type or the strength of
stimuli. In our model, we did not differentiate helper T
cells from specific types that are identified in biological
process. Plasma cells secrete antibodies [76], but we did not
incorporate this specific mechanism in our SDMM. Instead,
wemodeled that B cells released antibodies.When antibodies
are released from plasmas cells, TH cells define the isotype of

the antibody [76]; however, we also did not model specific
isotype of antibody in our model. Furthermore, we ignored
the fact that antibody opsonization induces stimulation of
cytokine release when they are phagocytized by inflamma-
tory cells. We ignored the fact that antibody opsonization
induces stimulation of the release of various cytokines from
neutrophils and macrophages [76]. Also, we ignored effects
of other proinflammatory cytokines such as IL-1, IL-12, and
IL-8 in our SDMM. Biological immune responses responding
to infection are recognized as a series of complex processes
including intracellular transductions (transfer of DNA) and
intercellular pathways between cells. These biological pro-
cesses will be developed with evolved understanding and
continued investigation of cellular and molecular mecha-
nisms [34], which could be further research interests in
the field. In our SDMM, we used numerical count, or the
number of indicators in the simulation, as the estimate of
cell or cytokine number in AIR. In practice, physicians must
translate data tomeasurable units of indicators similar to how
we translated clinical data to simulation data. Furthermore,
our conclusion regarding IL-10 was drawn based on specific
simulation settings including setting system parameters and
initial loads of indicators. Initial system setting must be fully
understood before considering application of IL-10 level for
preclinic experiments.

Based on our simulated results regarding anti-
inflammatory cytokine, we propose a hypothesis testing: If
medium levels of anti-inflammatory antibody were injected
into the host with sepsis between 3 hrs and 6 hrs would
survival rates of the host improve under hyperinflammation?
The purpose of this hypothesis testing is to detect effective
zones of the anti-inflammatory antibody related to Healing
Process of AIR in order to help develop therapeutic agents in
preclinical trials.

According to our simulation study, we found that initial
levels of pathogen significantly impact dynamic patterns of
AIR progression. However, inconsistency in observations
between our simulated results and existing experimental
studies forces us to propose another hypothesis testing:What
is the range of initial loads in pathogen with a maximum
likelihood of leading to a Healing Process? After discussing
with experts in the field, our initial assumption is that if
the initial load of pathogen is low, AIR progression has a
chance to end with a Persistent Infection because immune
responses fail to be fully activated at the beginning of
infection. However, if the initial load of pathogen is high, the
immune system fails to control and regulate infection that
could also lead to Organ Dysfunction. The purpose of this
hypothesis testing is to detect dangerous zones of initial loads
in pathogens in order to develop effective therapeutic targets
in preclinical trials.

Mathematical modeling, at various levels, could regu-
late individual components of inflammation and provide
insights into biological interactions in order to understand
complex inflammatory processes during sepsis progression.
However, the traditional mathematical model has unique
disadvantages. First, the model fails to capture stochastic
process for heterogeneous populations. Second, the model
fails to describe local interactions between heterogeneous
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populations, such as the movement of tissue macrophage
towards the local pathogen in the infected area. In order to
improve simulation accuracy and overcome disadvantages of
the mathematical model, a hybrid modeling framework may
be used to model and simulate sepsis progression in future
research [102].

6. Conclusion and Future Research

We proposed an 18-equation system dynamic mathematical
model and showed that the model has significant potential
to predict possible pathogenesis of sepsis based on the host’s
physiological conditions. Also, we showed that the model
provides essential biological insight into innate immunity
and adaptive immunity of sepsis episodes by exploring
various combinations of phagocyte and cytokine levels. We
focused primarily on the combined effects of pathogen load,
phagocytic cells, tissue damage, anti-inflammatory cytokine,
CD4+ T cell, CD8+ T cell, B cell, and antibodies by adding
cellular pathways during sepsis progression. We observed
that outcomes of sepsis progression could be improved
with IL-10 at a medium level in an early stage of infection
(between the first 3 hrs and the first 6 hrs after infection).
Furthermore, our model quantitatively measured levels of
phagocytes (neutrophils and monocytes) and captured a
dampened oscillated infection in AIR progression, compared
to existing mathematical models that provide more accurate
qualitative estimates.

Adaptive immunity contributes to further pathogen
clearance after innate immunity because it includes B cells,
T cells, and antibodies released from B cells [103]. We
conducted an initial study of adaptive immunity during sepsis
progression by incorporating CD4+ T cells, CD8+ T cells, B
cells, and antibodies to the SDMM. We observed that CD4+
T cell count, CD8+ T cell count, B cell count, and antibody
count were persistently elevated, which contributed to the
pathogen clearance during a late stage of sepsis progression.
Because we did not specify T cell type during SDMM, IL-
10 production by T cells was not considered in the current
SDMM. IL-10 production by T cells potentially leads to over-
production of anti-inflammatory cytokines by compensatory
anti-inflammatory response and eventually increases risk of
secondary infection and inaccurate prognosis [75, 103]. For
further research, we expect to explore prominent effects of
anti-inflammatorymediators secreted by T cells as they relate
to outcomes of sepsis progression.

The system dynamic mathematical model proposed in
this paper is a robust, accurate representation of comprehen-
sive immune responses within a sepsis episode.This underly-
ingmodel is general and flexible to be used to predict possible
outcomes and prognosis for various hosts’ initial conditions
with variousmodel parameters using experimental data from
the literature. In addition, hypothesis testing proposed based
on our simulated results could be a reference to help reduce
unnecessary clinical trials and focus on essential processes of
sepsis.

Appendix

See Tables 1–6.
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