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Abstract

We report the results of a study we conducted using a simple multiplayer online game that simulates the spread of an
infectious disease through a population composed of the players. We use our virtual epidemics game to examine how
people respond to epidemics. The analysis shows that people’s behavior is responsive to the cost of self-protection, the
reported prevalence of disease, and their experiences earlier in the epidemic. Specifically, decreasing the cost of self-
protection increases the rate of safe behavior. Higher reported prevalence also raises the likelihood that individuals would
engage in self-protection, where the magnitude of this effect depends on how much time has elapsed in the epidemic.
Individuals’ experiences in terms of how often an infection was acquired when they did not engage in self-protection are
another factor that determines whether they will invest in preventive measures later on. All else being equal, individuals
who were infected at a higher rate are more likely to engage in self-protective behavior compared to those with a lower rate
of infection. Lastly, fixing everything else, people’s willingness to engage in safe behavior waxes or wanes over time,
depending on the severity of an epidemic: when prevalence is high, people are more likely to adopt self-protective
measures as time goes by; when prevalence is low, a ‘self-protection fatigue’ effect sets in whereby individuals are less
willing to engage in safe behavior over time.
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Introduction

Thanks to globalization, urbanization, and air travel, infectious

diseases can spread faster, wider, and to more people today than

ever before [1]. Moreover, diseases such as HIV/AIDS and TB

continue to exert a significant burden on the world population,

especially the people living in developing countries [2,3].

Understanding how—and to what extent—people would

change their behavior in response to an epidemic is critical for

formulating public health policies to control the spread of

infectious diseases. This is so since behavioral changes, even when

there are no treatments or vaccines available, can be highly

effective at slowing or even stopping disease transmission. For

instance, a shift in behavior towards safer sexual practices lowered

the prevalence of HIV/AIDS considerably in some developing

countries [4–7]. It has also been argued that behavioral responses,

such as wearing of mask, more frequent washing of hands, and

avoiding crowded places, of people to the 2003 SARS outbreak

contributed significantly to the containment of that epidemic [8].

There are several factors that appear to affect individuals’

incentives to adopt precautionary measures in response to an

epidemic. Surveys conducted during the 2009 H1N1 pandemic

suggest that people’s willingness to engage in self-protective

behavior depends positively on, among other variables: the level

of anxiety regarding the disease, the perceived risk of the disease,

the perceived efficacy of the self-protective measures, and

household size [9–13].

From the perspective of formulating public health policy, it is

important to know how changes in individuals’ incentive structures

affect their level of self-protective behavior. Public policies, such as

subsidizing vaccines, recommending social distancing, or provid-

ing updates on the severity of an epidemic, in general alter people’s

decision environments, which in turn can lead to behavior

modifications. It is thus crucial for determining the optimal way

to contain the spread of infectious diseases that we have a full

grasp of how people make decisions regarding self-protective

behavior during epidemics.

However, data on how people respond to changes in their

incentive structure, such as those resulting from government

policies, are not always readily available in the context of infectious

disease epidemiology. When an epidemic strikes, it is often simply

not feasible to perform controlled experiments that allow us to

compare the effects of different policies on a population. This is

why epidemiologists rely heavily on the use of mathematical

models to predict the effects of various policies and control

measures [14]. Of course, the predictions of these models depend

critically on the assumptions that the modeler makes about the

behavior of people. When forecasting, for instance, the severity of

a flu epidemic, the modeler may need to make some assumptions
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about the fraction of the population that would choose to get a flu

shot. When looking at how many people would become infected

with a sexually transmitted disease (STD) if certain policies were

implemented, the epidemiologist may have to specify, among

other things, how many sexual partners people typically have.

Thus, unless the models employ the right behavioral specification,

their predictions regarding the course of an epidemic or the impact

of public policies can be off target.

Some recent advances in the theoretical modeling of infectious

disease transmission have incorporated the analytical tools from

the fields of economics and game theory to capture more

realistically the complex interplay between human behavior and

the spread of infectious diseases [15–21]. Many of the results and

implications derived from these models, however, are ultimately

dependent on the assumptions that are made about how people

arrive at their decisions when faced with choice problems.

In order to better understand people’s willingness to engage in

self-protective behavior during an epidemic, we created a simple

dynamic multiplayer online game that simulates the spread of an

infectious disease through a population composed of the players.

In every round of the game, healthy players have the option to

choose—at a cost—a protective action that reduces the likelihood

of getting infected. Players receive points based on their simulated

health status and how often they choose the self-protective action.

The use of our multiplayer virtual epidemics game to study how

people respond to an infectious disease offers many advantages,

including the ability to alter the players’ decision environments

and the epidemiological properties of the disease such as its

transmission probability and the duration of infection. It also

allows us to obtain a wealth of data on the players’ behavior by

tracking their decisions and the outcomes of their decisions

throughout the course of the game. Our virtual epidemics game is

similar in spirit to the ‘havatar’—human-avatar pairing—frame-

work that others have proposed recently to study the spread of

HIV/AIDS [22]. Methodologically, our study follows a growing

trend in economics of utilizing controlled experiments to study

economic decision-making (see [23] and [24] for an overview of

some major results from the field of experimental economics). To

the best of our knowledge, our work is the first virtual

experimental study in economic epidemiology.

Here, we report the results of a study we conducted using our

epidemics game where the disease has the property that infected

individuals recover after a certain amount of time and are once

again fully susceptible. This general assumption is appropriate for

some real world diseases, in particular STDs such as chlamydia

and gonorrhea. We look at the effects of various factors such as

prevalence, cost of the protective action, and individuals’ infection

history to determine what drives people’s decision to adopt self-

protective measures during an epidemic.

Materials and Methods

The version of the virtual epidemics game that we used in our

study is based on a susceptible-infected-susceptible (SIS) model of

infectious disease transmission. We give a general overview of the

game in this section; a more detailed description of the game setup

is provided in Supporting Information S1. The game has T time

periods or rounds, and every player is either ‘healthy’ or ‘infected’

in any round. Infection lasts for t,T rounds, after which a player

becomes healthy. In any round, a healthy player can choose a safe

action (self-protect) or a risky action (not self-protect) by clicking on

the appropriate button on the computer screen. The safe action

guarantees that the player will remain healthy in the following

(one) round. As an example, in the context of STDs, the safe

action can be thought of as using condoms, which can be highly

effective in preventing the spread of disease [25]. If the player

chooses the risky action, then the player becomes infected in the

next round with a probability that is proportional to the fraction of

players that are infected; specifically, the probability that a healthy

player in round t will get infected in round t+1 without taking the

safe action is

bIt

Nt{1
, ð1Þ

where b is the transmission probability, It is the number of infected

players in round t, and Nt is the total number of players in round t.

Infected players have no decisions to make. We note that, since

players in our study have the option to discontinue participation at

any time, the total number of players may not be constant

throughout the game.

In every round (except for the first one) before the healthy

players make their choices, all the players are told the disease

prevalence—the fraction of players that are infected—in the

previous round, i.e., at the beginning of round t.1, the players are

informed of It21/Nt21. Throughout the play of the game, all the

players are told the values of t and T, as well as what the current

round is; additionally, in every round, healthy players are

informed that the probability of getting infected in the following

round without taking the safe action is determined according to

rule (1).

Players earn points in every round based on their health status

and the action that is chosen. Players receive more points for being

healthy than for being infected. We assume that self-protection is a

costly activity, so that healthy subjects who choose the safe action

receive fewer points than healthy subjects who choose not to self-

protect. Specifically, in any round, a healthy player who chooses

the risky action receives PH points; a healthy player who chooses to

self-protect receives PH2C points; and an infected player earns PI

points, where PH.PH2C$PI.0. We chose the following param-

eter values for the present study: T = 45, t = 4, b = 0.8, PH = 0.6,

PI = 0.1. For the cost parameter C, we chose two different values:

0.35 and 0.45. These choices were made partly for practical

considerations (see the Discussion and Conclusion section for an

explanation).

Participants for our study were recruited using online classified

advertisements. The first page of the website set up for our study is

an informed consent page. After clicking on a button on the

computer screen consenting to participate in the study and after

signing up, the subjects were randomly assigned to the low cost

condition (C = 0.35) and the high cost condition (C = 0.45). Three

players in each condition were randomly selected to be infected in

round 1 (with duration of infection equal to t = 4), while the rest

started the game in the healthy state. We note that, while all the

players were told when they signed up for the study that three of

them would be randomly picked to be infected to start the game,

they were not reminded of this fact at the start of round 1.

For participating in the study, players received an electronic

Amazon.com gift card with a value equal to the total number of

points that the players earned in the game. At the end of the game,

all players were invited via e-mail to complete a brief questionnaire

asking for basic demographic information. The players were given

an additional $3 in gift card value for completing the question-

naire. The protocol for the study was approved by Wake Forest

University’s Institutional Review Board.

For each condition, we had 53 players at the start of the game.

Because the length of time for each round is fixed, if in any round

a healthy player did not submit a choice by the time the round

Using Virtual Diseases to Study Human Behavior
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ended, a default choice of the risky action was assigned to the

player. All players were informed at the beginning of every round

the duration of each round and that the computer program would

automatically select the default action—the risky action—for

healthy players if they do not enter a choice by the end of any

round. (See Figures S1 and S2 for sample screenshots of the game

webpage.)

Results

Basic demographic information collected from the participants

in the study is shown in Table S1. The distribution of participants

is very similar across the two conditions, indicating successful

random assignment by our game program. To control for

individual characteristics which may affect the decision to self-

protect, our empirical analysis of players’ behavior later on makes

use of these demographic data.

Prevalence—the fraction of infected players—as well as the

percentage of healthy players using the safe action—which we

refer to as the rate of safe behavior—in every round for each of the

conditions are shown in Figure 1. An epidemic phase is observed

initially—up to rounds 9 or 10. Thereafter, the virtual disease

appears to enter into an endemic phase. To avoid issues with

multicollinearity, our empirical analysis later on utilizes only

observations from round 10 onwards. Therefore, our results can

be interpreted as how people behave when a disease is endemic,

rather than during the initial stage. As can be seen from Figure 1, a

significant proportion of healthy players engaged in self-protective

behavior during the course of the game; consequently, the

prevalence of the virtual disease was substantially lower than the

level that would obtain if no one ever chose the safe action.

To get a sense of how often players were infected, we examined

the distribution of players according to the number of times they

acquired an infection. The results (see Figure S3) show that the

proportion of players who were infected a high number of times (at

least three) is greater in the high cost condition, while the low cost

condition yielded a higher fraction of players who were infected

two or fewer times.

Because choosing the safe action in our game involves actively

clicking on a button on the computer screen, while the risky action

can be chosen by clicking on the appropriate button or by not

clicking on any buttons (recall that the risky action is the default

option if a healthy player does not submit an action choice by the

end of any round), we also examined the rate with which the

players actively entered a choice when they were healthy—which

we refer to as the choice rate here. The results are given in Table S2.

The distribution of choice rates is bimodal in the two conditions,

with most of the players having an extremely high or extremely

low choice rate. About half of the participants had a choice rate of

at least 80%, and 63% of all the players had a choice rate greater

than 60%. We note that while 34% of the players had a choice

rate of less than 20%, 86% of all the players completed the end-of-

study questionnaire. This suggests that some of the players with a

low choice rate were in fact attentive to the game and intentionally

let the computer select the default option for them during the

game. In what follows—unless noted otherwise—we will describe

a player as having chosen the risky action whether the player

actively entered a choice of the risky action or let the computer

pick it as the default option.

We hypothesized that the prevalence of disease in the previous

round would affect the propensity a player has for engaging in self-

protective behavior. Specifically, the likelihood that a player will

choose the safe action should be increasing in the previous-round

prevalence since the chances of acquiring an infection from

engaging in risky behavior (and, hence, of earning fewer points in

the game) are higher when more people are infected. Such

prevalence-dependent behavior is predicted by many theoretical

models in economic epidemiology, such as those presented in

[15]–[][17]. As shown in Figure 2, in the high- and low-cost

conditions, the fraction of healthy players choosing the safe action

in any round rises when the prevalence in the previous round

increases. Moreover, the effect of prevalence on behavior is

stronger when the cost of the safe action is low. In other words,

players’ behavior is more sensitive to prevalence when it is cheaper

for them to adopt the self-protective action.

Interestingly, for either the high- or low-cost condition, the

relationship between players’ behavior and disease prevalence

seems to depend on how many rounds—i.e., how much time—

have elapsed in the game. As can be seen from Figure 3, in either

condition, players’ behavior appears to be more sensitive to a

prevalence change in the latter rounds compared to the early-to-

middle part of the game.

A player’s risk preferences should affect the player’s behavior in

the game since the choice between the safe action and the risky

action is also a choice between a ‘‘sure thing’’ and a gamble that

can yield—relative to the sure thing—either a higher or a lower

payoff. Thus, all else being fixed, we would expect the likelihood of

choosing the safe action to be higher for someone who dislikes risk

immensely compared to someone who is not as averse to risk.

Although there is no direct way to measure a player’s risk

preferences in our study, it is reasonable to assume that players

who chose the safe action the first time they had a chance to make

a decision are more risk-averse than those who chose the risky

option for their first action. (Note that, except for the three players

in each condition that were randomly selected to be infected in

round 1, a player’s first choice of action is the action choice in

round 1.) Because a player’s first action choice is not a function of

the player’s experience or history with the virtual epidemic, it

should be determined to a large extent by a player’s risk

preference. Figure 4 shows the comparison between the rate of

safe behavior among those who chose the safe action as their first

action and the rate of safe behavior among those players whose

first action is the risky action. For both conditions, the rate of safe

behavior among players who chose the safe action as their first

action is higher in every round of the game than the rate of safe

behavior among the players who chose the risky action first. When

we omit from consideration players who never chose the safe

action, and compare the rate of safe behavior of those whose first

action was the safe action to the rate of safe behavior among those

players who chose the safe action at least once and whose first

action was the risky one, we obtain a similar result: except for

rounds 39 through 44 in the low cost condition, the rate of safe

behavior is higher among the players who chose the safe action for

their first action (see Figure S4). These results are consistent with

the hypothesis that players who are more averse to risk—and thus

more likely to choose the safe action for their first choice—engage

in self-protective behavior at a higher rate throughout the virtual

epidemic.

To get a better sense of what determines the players’ choice of

actions in the game when they are healthy, we performed a probit

analysis with the probability of choosing the safe action as the

dependent variable (we obtained similar results using a logit

analysis; see Table S5). We included as independent variables the

cost of the safe action, the prevalence of disease in the previous

round, and players’ first action choice to account for individuals’

attitude towards risk. Furthermore, we incorporated the demo-

graphic information collected from the end-of-study questionnaire

Using Virtual Diseases to Study Human Behavior
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Figure 1. Prevalence of disease and rate of safe behavior in the game. (a) The fraction of players that were infected in each condition. Using
computer simulation results, the short dash line shows the mean prevalence over time if no one ever chooses the safe behavior. The computational
model used the same parameter values as the virtual epidemics game and had 50 players, with three chosen to be infected in round 1. The
simulations were run 500 times, and the two dash-dot lines indicate 1 standard deviation above and below the mean. (b) The fraction of healthy
players that chose the safe action in each condition.
doi:10.1371/journal.pone.0052814.g001
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since personal attributes such as gender may affect the propensity

a player has for engaging in self-protective behavior.

Because a player’s decision in any round may be affected by the

player’s experiences from taking the risky action from earlier in the

game, we also added a measure of how often the player was

infected in previous rounds—adjusting for how many times the

player chose the risky action in the past—in our empirical model.

We refer to this measure by infectriskratio, defined to be the number

of times a player has been infected divided by the number of times

a player’s action was the risky one. Given the results shown in

Figure 3—specifically, the finding that players’ behavior appears

to be more sensitive to prevalence later in the game—we included

Figure 2. The relationship between prevalence and rate of safe behavior in the following round. The solid and dash lines are the
regression lines for the low and high cost conditions, respectively.
doi:10.1371/journal.pone.0052814.g002

Figure 3. Relationship between prevalence and rate of safe behavior—the effect of the number of rounds elapsed. The solid lines are
the regression lines for the data points from rounds 10 to 26; the dashed lines are the regression lines for the data points from rounds 28 to 44.
doi:10.1371/journal.pone.0052814.g003
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the number of rounds elapsed and a prevalence-round interaction

term in the empirical analysis to determine whether having more

experience with the virtual epidemic affects the way players

respond to the news update on disease prevalence.

Our empirical model is given as follows:

safeir~b0zb1costlowizb2prevknownir

zb3firstactionizb4infectriskratioir

zb5roundrzb6prevknownir � roundrzcXizeir,

ð2Þ

where safeir = 1 if the i-th individual chooses to self-protect in round

r, and 0 otherwise. Xi is a vector of demographic characteristics

including gender, race, education, marital status, and employment

status. Table S4 gives the definitions of the terms in (2). Assuming

the error term is normally distributed, we can use a standard

probit model to estimate the coefficients in equation (2). As

mentioned previously, because prevalence is highly correlated with

rounds early in the game—up to round 10—we restricted our data

sample to observations from round 10 and beyond.

Marginal effects derived from the probit results are given in

Table 1. All players are included in the empirical model in the first

two columns, while columns (3) and (4) show the results when

restricting the sample to only those players with a choice rate of

over 60%. The difference between the first and second columns—

and between the last two columns—lies in how the dependent

variable is defined. In columns (1) and (3), a risky action is

considered to be any response other than the safe action—thus,

either clicking on the button for the risky action or letting the

computer select the default option is counted as a risky action. On

the other hand, in columns (2) and (4), only clicking on the button

for the risky action is considered to be taking the risky action—not

clicking on a button and letting the computer pick the default

option is counted as a missing response in the probit analysis. (In

defining the independent variables infectriskratio and firstaction, any

response other than the safe action is counted as a risky action.)

For brevity, we omitted the results for the demographic variables

from Table 1 since, for the most part, the players’ behavior does

not depend on them (see Table S3). In particular, we note that

while some studies of risk-taking behavior have found that women

in general are more risk-averse than men [26], we did not find

evidence of this in our study as the gender coefficient in our probit

analysis is not statistically significant.

Except for the first model (column 1)—in which the coefficient

on cost is not significant—the probit results show that the

likelihood of choosing the safe action is higher when its cost is

lower. Specifically, all else equal, players in the low cost treatment

are roughly 20 percentage points more likely to choose the safe

action than players in the high cost treatment. This indicates that

the cost of preventative measures plays a critical role in

individuals’ decision to engage in self-protection.

Our probit analysis also shows that the players do respond to

information regarding disease prevalence—and that their respon-

siveness to prevalence increases over time. The marginal effects

shown in Table 1 indicate that the impact of the reported

prevalence on the probability of picking the safe action is strictly

increasing by round (from (2), the size of this effect is given by

b2+b6 round). For instance, all else being the same, a 10 percentage

Figure 4. Comparing the rate of safe behavior among those whose first action was the risky action to the rate of safe behavior
among those whose first action was the safe action. The ‘‘safe’’ group is composed of those players whose first action was safe. For the low
cost condition, there are 13 players in the safe group; for the high cost condition, there are 11 players in the safe group. The ‘‘risky’’ group is
composed of those players whose first action was risky. For the low cost condition, there are 38 players in the risky group; for the high cost condition,
there are 40 players in the risky group.
doi:10.1371/journal.pone.0052814.g004
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point increase in the reported prevalence in round 10 would on

average lead to a 4-to-5 percentage point increase in the

probability of selecting the safe action. This impact increases to

between 9 and 11 percentage points by round 20, and 22 to 23

percentage points by the end of the game.

The variable firstaction is statistically significant in all the

specifications that we examined, which tells us that players’ risk

preferences do play a role in how likely they are to engage in self-

protective behavior. Specifically, players that revealed themselves

to be more risk-averse by choosing the safe action at their first

opportunity are roughly 20 percentage points more likely than

their less risk-averse peers to choose the safe action in any round,

all else equal. This effect is significantly bigger in column (1), at 38

percentage points, but once we focus on players with a high choice

rate (at least 60%), we find a fairly robust impact. This indicates

that the first result is likely picking up the fact that more risk-averse

players are also more likely to have a high choice rate.

Our results show that players’ behavior in the virtual epidemic is

highly dependent on how many rounds have elapsed in the game

and on the outcomes of their (risky) actions in earlier rounds. The

coefficient on infectriskratio is positive and significant, indicating that

players who were infected more often earlier in the game—

adjusting for the number of times they chose the risky action—are

more likely to self-protect in later rounds. For example, if a

player’s history increased from getting infected only once per 4

risky actions (infectriskratio = 0.25) to being infected once for every 2

risky actions (infectriskratio = 0.5), the player’s probability of

choosing the safe action would increase by 12.5 percentage points,

all else being equal. Therefore, holding prevalence constant, one’s

history with the disease has a significant impact on self-protection

behavior; the worse the experiences one has had with the disease,

the more likely the player is to self-protect in the future.

How the number of rounds that have taken place since the start

of the epidemic affects players’ behavior depends on the disease

prevalence. From (2), this effect can be measured by b5+b6

prevknown. Holding all else constant, if the prevalence is high, say,

around 0.4 (and remains fixed), then the likelihood that a player

would choose to self-protect increases over time. For instance,

from the specification shown in column 1 of Table 1, the

probability of selecting the safe action rises by 3.7 percentage

points for every 10 rounds that go by. Similar results obtain using

the other specifications shown in Table 1. This tendency for

players to become more ‘‘cautious’’ as the epidemic progresses is

even stronger when the prevalence is higher. Assuming that

prevalence is fixed at 0.5, for example, the probability of choosing

the safe action increases by 9 percentage points for every 10

rounds.

The opposite, however, is true when prevalence is low, i.e.,

when the number of infected individuals is small, players are less

likely to self-protect over time. For a prevalence level of 0.2, the

probability of picking the safe action falls between 6 and 10

percentage points every 10 rounds, depending on which specifi-

cation we look at. The decline is even steeper—between 12 and 16

percentage points—when the prevalence is 0.1. This result

suggests that while an epidemic may originally have a strong

impact on behavior, the overall salience of the disease may

diminish over time when prevalence is low, thus leading to a

decrease in self-protection. Such an effect is reminiscent of

condom fatigue—the declining use of condom as a preventive

measure—in the context of HIV/AIDS prevention.

Discussion and Conclusion

Here, we have reported on the results of an online experiment

that we conducted to examine the incentives that people have for

investing in self-protective action during epidemics. The analysis

shows that people’s behavior is responsive to the cost of self-

protection, the reported prevalence of disease, and their experi-

ences earlier in the epidemic. Specifically, decreasing the cost of

the self-protective action increases the rate of safe behavior.

Higher reported prevalence also raises the likelihood that

individuals would engage in self-protection, where the magnitude

of this effect depends on how much time has elapsed in the

epidemic. Our results show that the effect of a change in reported

prevalence on people’s behavior is stronger later on in an epidemic

compared to the earlier stages. Individuals’ experiences in terms of

how often an infection was acquired when they did not engage in

self-protection are another factor that determines whether they

will invest in preventive measures later on. All else being equal,

individuals who were infected at a higher rate are more likely to

engage in self-protective behavior compared to those with a lower

rate of infection. Lastly, fixing everything else, people’s willingness

to engage in safe behavior waxes or wanes over time, depending

on the severity of an epidemic: when prevalence is high, people are

more likely to adopt self-protective measures as time goes by; when

prevalence is low, a ‘self-protection fatigue’ effect sets in whereby

individuals are less willing to engage in safe behavior over time.

Table 1. Marginal effects evaluated at the mean using probit results of estimation of equation (2).

Probability of choosing safe

All players Players with choice rate $60%

Default choice counted
as risky

Default choice counted
as missing

Default choice counted
as risky

Default choice counted as
missing

(1) (2) (3) (4)

costlow 0.104 (0.0975) 0.205** (0.0972) 0.199* (0.105) 0.204** (0.103)

prevknown 20.135 (0.468) 20.101 (0.518) 20.212 (0.538) 20.179 (0.540)

firstaction 0.381*** (0.0995) 0.183** (0.0836) 0.199** (0.0896) 0.164* (0.0892)

infectriskratio 0.227 (0.229) 0.507** (0.200) 0.471** (0.201) 0.534*** (0.203)

round 20.0170** (0.00689) 20.0198** (0.00781) 20.0192** (0.00785) 20.0219*** (0.00783)

prevknown6round 0.0518*** (0.0172) 0.0584*** (0.0196) 0.0555*** (0.0197) 0.0630*** (0.0199)

Observations 2296 1560 1641 1521

doi:10.1371/journal.pone.0052814.t001
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Some significant policy implications for controlling the spread of

infectious diseases follow directly from our results. Firstly, making

preventive measures available during an epidemic—where the cost

of these measures are not prohibitive—can be highly effective in

reducing the prevalence of disease. Secondly, people respond to

incentives: making these preventive measures less costly—through

subsidies, for example—encourages more people to engage in safer

behavior that reduces the transmission of disease. It is important to

note that the costs of self-protective behavior need not be entirely

pecuniary. For instance, the cost of using condoms in the

prevention of STDs reflects not only the purchase price of these

products, but also the ease with which people can find them, the

loss of pleasure one may experience from using them, as well as

other factors such as cultural beliefs that impact people’s

willingness to wear them. In the case of influenza, the cost to an

individual of getting a flu shot can include—besides the price of a

vaccine—all the adverse side effects that the individual believes it

to have. Therefore, decreasing the cost of engaging in self-

protection does not necessarily entail lowering the amount of

money individuals have to give up in exchange for the protective

measures.

Individual attributes such as preferences for risk-taking also

determine the likelihood that one will choose to adopt preventive

measures in response to an epidemic. Given that people can vary

widely in terms of their preferences, it follows that any policy that

is highly efficacious in inducing safer behavior in one group of

people—say, those that are extremely risk-averse—may have

smaller effects on other groups. Similarly, individuals can differ

significantly in their infection history. Some people, for instance,

may rarely get sick during flu season even without getting

vaccinated, while others may be more prone to infections without

getting a flu shot. If people react differentially to epidemics based

on their infection history, then control policies that do not account

for this heterogeneity in behavior may end up being less successful

in inducing behavior change than anticipated. Thus, with respect

to policy effectiveness, it may be preferable to implement a

‘‘menu’’ of policies and interventions that are tailored for different

segments of the population than to attempt to formulate ‘‘one-size-

fits-all’’ policies that are aimed at all members of a population.

Lastly, because people’s behavior in our study is time- and

history-dependent, the results suggest that policy interventions

should be dynamic, flexible, and adaptable. Given that individuals

are not as responsive in their behavior to increases in reported

prevalence early on, policies to actively encourage individuals to

adopt protective measures in the initial phases of an epidemic

could be particularly important in halting or slowing disease

spread later on. The finding that, all else being fixed, individuals’

propensity to self-protect can change over time depending on how

widespread a disease is suggests that intervention efforts may need

to be continually revised throughout the course of an epidemic in

order to complement or offset changes in people’s willingness to

engage in self-protective behavior.

Note that since the safe action in our epidemics game is

perfectly effective in blocking transmission, eradication of the

virtual disease in either condition can be brought about in any

round beyond round 4. If all healthy players choose the safe action

for at most 4 rounds (which is the length of infection in the game),

then eradication is guaranteed to occur, after which all players can

receive the maximum payoff (the payoff from being healthy)

without having to incur the cost of being infected or the cost of

taking the self-protective action. Theoretical models that utilize

analytical tools from the fields of economics and game theory

predict that, under certain conditions, if a disease will be endemic

when no one has access to protective measures, then the disease

will also be endemic when protective measures are available, no

matter the cost or the efficacy of these protective measures [27].

The fact that the virtual disease in our experiment appeared to

settle into an endemic phase in both conditions is consistent with

this prediction and underscores how difficult it is for disease

eradication to occur under decentralized independent decision-

making in the population.

Some aspects of our study design warrant further elaboration.

We utilized an SIS model of transmission in our game mainly for

two reasons. Firstly, we wanted to examine how an individual’s

infection history impacts that individual’s future decisions to

engage in self-protective activities. The second reason is a

pragmatic one: to maximize the number of data points we can

gather given a fixed number of players, we sought a game

structure that would allow players to be actively involved for the

entire duration of the game. For example, without some

modifications to the game rules or added features, the suscepti-

ble-infected (SI) model—in which a player has no possibility of

recovery—or the susceptible-infected-removed (SIR) model—in

which an infected player can recover after a certain amount of

time and subsequently become immune to infection—does not

fulfill this criterion as well as an SIS model. With the SI model, no

data points can be collected from a player once the player becomes

infected. The same is essentially true of the SIR model since

recovered players have no incentive to adopt precautionary

measures. This is also one of the reasons why in our study we

chose for our ‘safe’ action one that is effective for only one round.

If, for instance, we had instead chosen a ‘vaccine’ for our safe

action that is (perfectly) effective for multiple rounds (e.g., the

duration of the game), then we would not have been able to collect

any data points from a player once that player chose the safe

action.

Relatedly, our choice of parameter values for the study was—as

mentioned earlier—motivated partly by practical considerations.

We wanted the game to be long so that we can obtain a large

number of observations, but we also wanted the length of time

needed for study completion to be reasonable (from the

participants’ perspective). Since only players in the healthy state

had to make decisions in our study, we purposely kept the duration

of infection t relatively short so that infected players would not be

‘‘disengaged’’ from the game for long. The transmission proba-

bility b was set high so that the likelihood that the virtual disease

would die out before study completion is small, since no useful

data can be collected in the disease-free outcome. This is also the

reason why we set the number of players infected in round 1 to be

three. The choice of how many points to assign to the different

health states and of the cost of the safe action was driven by our

research budget constraints, the amount of compensation that is

typically given to participants of experimental economics studies,

and a simple cost-benefit analysis of how the players in our study

might behave. We chose the risky action to be the default action

since we believe this more accurately reflects what happens in

reality. To engage in self-protective behavior such as more

frequent washing of hands in the case of flu or using condoms in

the context of STDs requires actively and consciously changing

one’s routine; this is why we set up the game so that one has to

manually select the safe action.

Of course, whether one cares about maximizing the number of

observations that can be collected per participant or not, our

online experimental framework can accommodate different

disease transmission processes as well as various types of self-

protective actions (including ones that are not perfectly effica-

cious). We purposely employed a simple random mixing process

for our study to better isolate and understand the effects of a few
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determinants of individual behavior such as reported prevalence,

cost of self-protection, and infection history. An important

extension of the present study is to consider network effects and

how individuals’ location in their social network, which determines

how likely people will acquire infection from—or transmit

infection to—their social contacts, impacts their decision to

engage in self-protective behavior during an epidemic.

Another line of research that can be pursued in the future is the

formulation of mathematical models of behavior-disease interac-

tions that can account for the results from our study. Such

empirically grounded models would provide an analytical frame-

work that can be used to make predictions regarding how, for

instance, people would respond to an epidemic under various

policies or interventions. While most modeling work in economic

epidemiology, following the convention in economics, assumes

that agents are rational, forward-looking, payoff- or utility-

maximizers, the experimental results presented here suggest that

some of these standard assumptions on behavior do not hold in

our study. One of the major findings from our study is that one’s

decision to engage in self-protective behavior is strongly correlated

with one’s infection history, i.e., people are ‘backward-looking’ in

their decision-making process. However, in economic models with

forward-looking agents, where all agents are perfectly informed of

the ‘rules of the game’, one’s past experiences should have no

impact on one’s current or future behavior. In addition, results

obtained from analyses of standard economic models looking at

similar decision environments suggest that the players in our

virtual epidemics game would utilize a threshold rule in deciding

whether to engage in the self-protective behavior or not: choose

the safe action if the reported prevalence is above a threshold level;

otherwise, choose the risky action. Most of the players in our study,

however, did not exhibit such threshold behavior (results not

shown). Future modeling work should therefore relax some of the

restrictions imposed by the standard economic approach and

consider extensions that, for instance, incorporate elements of

backward-looking decision-making. Disease transmission models

with backward-looking agents have been explored recently (see, for

example, [28] and the references therein); these could serve as

useful building blocks for formulating models that better account

for the experimental results presented here.

Our study design possesses many of the advantages of

experiments carried out in controlled laboratory settings, including

having a framework to generate data that are otherwise not

available and being able to easily manipulate and alter experi-

mental conditions. In addition, since our study takes place entirely

online in cyberspace, it has the added benefit of extreme

flexibility—as long as one has access to a computer and the

internet, experiments can be run anywhere and at any time.

Our setup is also subject to many of the same caveats that apply

to laboratory experiments. The game environment abstracts away

many aspects of real world infectious diseases. Moreover, it may be

difficult to capture all the motivational forces driving people’s

behavior during real epidemics in an online or virtual setting such

as ours. However, as noted by the Nobel Prize-winning economist

James Heckman and his colleague, criticizing laboratory experi-

ments in the social sciences as lacking realism misses the point of

what ‘‘the nature of evidence in science’’ is; in their words, ‘‘(t)he

real issue is determining the best way to isolate the causal effect of

interest,’’ and laboratory experiments are no less valid than other

methods, such as field experiments and surveys, in accomplishing

this [29]. Given that human beings respond to incentives and that

understanding incentives is an important component of containing

epidemics, furthering our knowledge of what affects people’s

decision to engage in self-protection—even if obtained from virtual

world experiments—can only help us in controlling the spread of

infectious diseases.

We note that many of the results from our virtual epidemics

study are consistent with those obtained by other researchers

using survey-based methods to examine the determinants of self-

protective behavior. For instance, a review of previous research

on flu shot acceptance finds that demographic variables such as

gender, level of education, and ethnicity generally have no impact

on vaccination decisions, while perceived likelihood of getting the

flu and having had a flu shot previously are significantly

correlated with the decision to have a flu shot [30]. Given that

the likelihood of infection in our virtual epidemics study is

proportional to reported prevalence, our results regarding self-

protective behavior with respect to the effects of demographic

variables, reported prevalence, and past decision to engage in

self-protection precisely mirror those obtained by others looking

at flu vaccination behavior. This suggests that an experimental

paradigm utilizing virtual diseases can be valuable for studying

how people respond to the spread of infectious diseases.

Moreover, while surveys can only provide one-time snapshots

of people’s behavior, our virtual epidemics framework allows

researchers to examine behavioral responses in a dynamic context

and to analyze how people’s incentive to engage in self-protection

changes over time. Thus, our experimental framework can serve

as a complement to traditional survey methodology to provide a

more complete understanding of the determinants of self-

protective behavior.
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Figure S1 Sample game page for an infected player in
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(TIF)

Figure S2 Sample game page for a healthy player in the
low cost condition.

(TIF)

Figure S3 The distribution of players according to the
number of times they were infected in the game.

(EPS)

Figure S4 Comparing the rate of safe behavior among
those whose first action was the risky action and who
chose the safe action at least once to the rate of safe
behavior among those whose first action was the safe
action. The ‘‘risky’’ group is composed of those players whose

first action was risky and who chose the safe action at least once.

For the low cost condition, there are 19 players in the risky group;

for the high cost condition, there are 20 players in the risky group.

(EPS)

Table S1 Demographic information for the participants in the

study.

(DOCX)

Table S2 The distribution of choice rates in the game. The

choice rate r is defined to be the percentage of times in which a

player actively made a choice on the computer—and did not let

the computer choose the default option—when the player’s

simulated health status was healthy. The numbers do not include

the players that dropped out of the study before its completion.
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Table S3 Marginal effects evaluated at the mean using probit

results of estimation of equation (2)—complete results.

(DOCX)

Using Virtual Diseases to Study Human Behavior

PLOS ONE | www.plosone.org 9 January 2013 | Volume 8 | Issue 1 | e52814
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