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Abstract
Social media, seen by some as the modern public square, is vulnerable to manipulation. By controlling inauthentic accounts 
impersonating humans, malicious actors can amplify disinformation within target communities. The consequences of such 
operations are difficult to evaluate due to the challenges posed by collecting data and carrying out ethical experiments that would 
influence online communities. Here we use a social media model that simulates information diffusion in an empirical network to 
quantify the impacts of adversarial manipulation tactics on the quality of content. We find that the presence of hub accounts, a 
hallmark of social media, exacerbates the vulnerabilities of online communities to manipulation. Among the explored tactics that bad 
actors can employ, infiltrating a community is the most likely to make low-quality content go viral. Such harm can be further 
compounded by inauthentic agents flooding the network with low-quality, yet appealing content, but is mitigated when bad actors 
focus on specific targets, such as influential or vulnerable individuals. These insights suggest countermeasures that platforms could 
employ to increase the resilience of social media users to manipulation.
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We show that social media users are vulnerable to adversarial manipulation tactics, through which bad actors can amplify exposure 
to content that threatens, for example, democratic elections and public health. While tactics such as flooding the network with low- 
quality yet appealing content are damaging, getting users to follow inauthentic accounts has the most detrimental impact. Bad actors 
can increase harm by maximizing coverage rather than targeting particular individuals, such as influential ones. The varying degrees 
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Introduction
The vision of social media as the modern public square has been 
challenged as users have become victims of manipulation by 
astroturf (1, 2), trolling (3), impersonation (4), and misinformation 
(5–7). False news have been reported to spread virally—similarly 
to reliable information (8) or even more (9) depending on oper
ational definitions. These kinds of manipulation exploit a complex 
interplay of socio-cognitive (10, 11), ideological (7), and algorith
mic (12, 13) biases. The exploitation is enabled or greatly facili
tated by inauthentic accounts that impersonate people with 
malicious intent. Many such accounts can be coordinated by a sin
gle entity (14). If this is done through software, such accounts are 
commonly referred to as social bots (15, 16). Inauthentic and/or co
ordinated accounts have been observed to amplify disinformation 
(8), influence public opinion (14, 17–19), commit financial fraud 
(14, 20), infiltrate vulnerable communities (3, 21, 22), and disrupt 
communication (23, 24).

Can social media be manipulated to the point that they no lon
ger function as a public square? Under what conditions? It is dif
ficult to carry out empirical experiments and analyzes in the 
real world to explore these questions (25, 26). One challenge is 
the limited size of experiments in the wild, stemming from both 
costs and ethical concerns about the potentially harmful nature 
of content from bad actors. A second difficulty is the limited 
data from social media platforms available to researchers (27), ex
acerbated by recent events such as changes at Twitter/X. These 
difficulties have led, for example, to conflicting accounts about 
whether disinformation campaigns on social media can sway 
elections (28–33). Evidence suggests that these operations mainly 
impact specific vulnerable communities (34, 35). However, we lack 
a comprehensive quantitative understanding of how coordinated 
inauthentic tactics can disrupt online communities. This prevents 
the informed design of moderation or regulatory policies to pro
tect the online public square from manipulation.
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Here we introduce SimSoM, a minimalistic model of a generic social 
media platform. The model allows us to explore scenarios in which 
an information-sharing network is manipulated by malicious actors 
controlling inauthentic accounts, and to measure the consequences 
of such information operations. We assume that bad actors aim to 
spread low-quality information. While there are different kinds of 
low-quality content in reality—disinformation, conspiracy theories, 
malware, or other harmful messages—our model uses an abstract 
definition of low-quality content that encompasses these different 
types. The impact of the manipulation is measured in terms of the 
quality of information to which users are exposed in the network.

We find that the presence of manipulation is sufficient to sup
press quality information, driving low-quality content to spread 
virally in the network. We also examine network vulnerabilities 
that may amplify the effects of manipulation, and evaluate the 
overall information quality as a result of different malicious tac
tics. We focus on four well-documented tactics commonly em
ployed in influence operations across various platforms (36): (i) 
infiltrating a community, for example through social bots (6, 37), 
follow trains (38), or by impersonating news outlets (36, 37); (ii) 
generating deceptively appealing content, such as novel narra
tives (9) or emotional messages (39); (iii) flooding the network 
with high volumes of content by posting at high frequency to arti
ficially inflate popularity/engagement indicators (8, 37, 40), and 
possibly deleting content to avoid detection (41); and (iv) targeting 
specific users, such as influential (8) or vulnerable individuals (6). 
Insights from analyzes of these tactics are instrumental in devel
oping countermeasures to increase the resilience of social media 
and their users against manipulation. We discuss mitigation steps 
that platforms could take and the issues that arise from regula
tions aimed at protecting human speech from suppression.

Results
We model information diffusion in a social media platform such as 
Twitter/X, Instagram, or Mastodon. The information system is a 

directed network with nodes representing accounts and links rep
resenting follower relations. Similar to real-world platforms, con
tent circulates through messages that appear in news feeds. 
Agents can post new messages or reshare messages from their 
feeds, generated by their friends, i.e. the accounts they follow. 
The information diffusion process is illustrated in Fig. 1. 
Messages represent information that could take the form of text, 
links, hashtags, images, or other media. An agent can introduce 
a new message into the system or, alternatively, select a message 
from their news feed to reshare. Messages created and reshared by 
an agent then appear on the news feeds of their followers.

Even though people prefer quality content (42), their sharing 
behavior is mediated by other factors such as laziness (43) and 
message appeal. To account for this, each message m in the model 
has two intrinsic and independent attributes, appeal am and quality 
qm. Everything else being equal, messages with higher appeal are 
more likely to be reshared (Fig. 1). Quality, on the other hand, rep
resents objective, desirable properties of content such as the ori
ginality of an idea or the accuracy of a claim. Here we naively 
represent quality and appeal as scalar values. Deceptive posts 
may have low quality yet high appeal. For example, false news 
and junk science articles have low quality—most people would 
not share them knowingly. Yet such low-quality content may be 
even more likely to spread virally than high-quality information 
(9). Low-quality content may be novel, clickbait, ripped from 
headlines, and/or may appeal to people’s political, emotional, or 
conspiratorial bias. Worse yet, bad actors can employ generative 
AI to produce such content at scale (37).

The model captures bias towards appeal as well as two other 
ingredients that are prioritized by the ranking algorithms of social 
media platforms, namely social engagement and recency (44). An 
agent selects a message to reshare from the news feed, which is an 
inventory of distinct messages recently shared by the agent’s 
friends. The message is selected with probability proportional 
to: (i) its appeal; (ii) its social engagement, defined as the number 
of times it has been shared by the agent’s friends; and (iii) its 

Fig. 1. Illustration of the SimSoM model. Each agent has a limited-size news feed, containing messages posted or reposted by friends. Dashed arrows 
represent follower links; messages propagate from agents to their followers along solid links. At each time step, an active agent (colored node) either posts 
a new message (here, m20) or reposts one of the existing messages in their feed, selected with probability proportional to their appeal a, social engagement 
e, and recency r (here, m2 is selected). The message spreads to the node’s followers and shows up on their feeds.
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recency, which decreases with time in the feed (see details in 
Methods).

Unlike authentic agents, whose intention is to consume and 
share high-quality information, we define inauthentic agents as 
accounts that are controlled by bad (adversarial) actors to spread 
low-quality content among authentic agents. We refer to these ac
counts as “bad actors” or “inauthentic agents” throughout this pa
per. Such accounts may be controlled by humans (trolls), software 
(social bots), or a mixture (cyborgs). The model has three param
eters to model manipulation tactics by bad actors: infiltration, de
ception, and flooding, explained next.

Infiltration describes how bad actors amplify exposure to their 
messages by getting authentic accounts to follow them (Fig. 2a). 
Bad-actor infiltration of the social network is modeled by a param
eter γ, the probability that each bad actor is followed by each au
thentic agent. Unless otherwise stated, we assume that authentic 
agents follow bad actors uniformly at random. Figure 2b illus
trates the effective suppression of information quality when γ is 
high.

The quality q and appeal a of messages originating from au
thentic accounts are drawn independently from two distinct 

distributions, reflecting empirical evidence that these messages 
tend to have high quality and low appeal (see Supplementary 
Material). In contrast, we assume that bad actors can manipulate 
information in the network by creating messages with low quality 
(q = 0) and deceptively high appeal. The appeal differential of con
tent from bad actors is modeled by the deception parameter ϕ. In 
the absence of deception (ϕ = 0), the appeal of bad-actor messages 
is drawn from the same distribution as those from authentic ac
counts. If ϕ > 0, it represents the probability that bad-actor con
tent has a = 1, making it irresistible (see details in Methods).

Flooding is another tactic inauthentic accounts can use to amp
lify their influence, by crowding out high-quality information. To 
model this, the parameter θ is defined as a boost of engagement 
for bad-actor content (see Methods).

SimSoM lets us explore information diffusion on social media, 
including the properties of authentic accounts that might render 
them vulnerable to adversarial attacks and the effects of different 
manipulation tactics. In the next sections, we present the results 
from simulations of the model on online communities derived 
from an empirical follower network (N ≈ 104 Twitter accounts). 
The network has both scale-free structure (hubs) and high 

Fig. 2. Subnetworks modeling authentic accounts (purple nodes) and bad actors (yellow nodes). a) Illustration of the follower link structure. Solid links 
indicate follower relations within each subnetwork. Both subnetworks have hub and clustering structure that mimics or derives from online social 
networks. Dashed links represent authentic accounts following bad actors, according to the infiltration parameter γ, which represents the probability 
that an authentic node follows any given bad actor. When γ = 0 there is no infiltration and bad actors are isolated, therefore harmless; the opposite 
extreme γ = 1 indicates complete infiltration, such that bad actors are followed by all authentic accounts. b) Effects of bad-actor infiltration γ on the 
quality of messages in synthetic networks with 103 authentic agents and 100 inauthentic agents. For illustration purposes, both the authentic and 
inauthentic subnetworks in this panel are generated with the same method used for the inauthentic subnetworks in our experiments (see Methods). 
Node size represents the number of followers. The darker an authentic agent node, the lower the quality of messages in their feed.
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clustering (triangles), structural characteristics that are ubiqui
tous in socio-technical networks. It also has a realistic community 
structure, with two well-separated clusters of accounts capturing 
political polarization (see Methods).

Once the system reaches a steady state, in which the message 
quality across the network has stabilized (see Methods), we record 
the mean quality of the messages in the feeds of authentic agents. 
These measurements are further averaged across simulation runs 
with the same parameters but different random seeds. We simu
late the information diffusion process in networks with different 
structures to explore whether social network features render 
communities vulnerable to bad-actor tactics. Similarly, we evalu
ate the impact of these tactics by evaluating the model with vary
ing levels of bad-actor infiltration (γ), deception (ϕ), flooding (θ), 
and targeting specific types of accounts. We report on the relative 
quality, defined as the ratio of the average quality of authentic 
agents to that of a baseline without bad actors (see Methods).

Network vulnerabilities
Key structural features of the social network may play a role in amp
lifying our vulnerability to manipulation by bad actors. The empirical 

network has two features that are ubiquitous in social media: the 
presence of hubs and highly clustered communities. We can explore 
how overall quality is affected by these features through three alter
native networks constructed by shuffling links while preserving 
hubs, cluster structure, or neither (see Methods). Figure 3 shows 
that the presence of clusters does not significantly affect the overall 
quality (purple vs. blue) because we assume that agents in each clus
ter are equally likely to follow bad actors. On the other hand, having 
hubs makes a network more vulnerable to manipulation: the relative 
system quality is significantly lower in the presence of hubs, both 
when there are clusters (purple vs. green, p < 10−3) and not (blue 
vs. orange, p < 10−3). This is because node in-degrees and out- 
degrees are highly correlated (Spearman correlation 0.9, p < 10−4) 
in the empirical network. Therefore, when authentic followers are 
concentrated among hubs, high-quality content is also concentrated 
among those hubs. This implies that high-quality content has more 
competition and becomes obsolete more quickly compared to the 
case in which this content is uniformly distributed among authentic 
nodes. The same does not apply to content from bad actors because 
this content spreads uniformly among authentic users. (The scen
ario in which content from bad actors mostly concentrates among 
hubs is explored later.)

Fig. 3. Impacts of different network structural features on the average information quality, relative to the scenario without bad actors. The original 
network (“hubs + clusters”) is visualized along with shuffled networks in which links from the original network are rewired while preserving clusters, 
hubs, or neither (“random”). Node size and color represent, respectively, the number of followers of an account and their political leaning ranging from 
liberal to conservative (red to blue, see Methods). Yellow nodes are bad actors. Pairwise statistical significance is calculated using the Mann–Whitney U 
test (∗∗∗ for p < 10−3); only significant differences are reported.
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Infiltration, deception, and flooding tactics
Bad actors may maximize their message spread by combining 
various manipulation tactics. We systematically quantify the ef
fects of these tactics through simulations varying the parameters 
for infiltration (10−4 ≤ γ ≤ 10−1), deception (0 ≤ ϕ ≤ 1), and flooding 
(1 ≤ θ ≤ 64). See Methods for further details. Figure 4a,b,c illus
trates the effects of individual malicious tactics on the overall 
quality of information spreading through the network, compared 
to a baseline scenario without bad actors. We observe that infiltra
tion is the most harmful manipulation tactic: when authentic 
agents have a γ = 10% probability of following each bad actor, 
the average quality in the system is reduced to less than half. 
Flooding and deception have smaller effects. When low-quality 
content has θ = 64 times more exposure than authentic content, 
quality is reduced to less than 70%. When bad actors generate 
content with maximum appeal exclusively (ϕ = 1), quality is re
duced to about 70%.

Similarly, Figure 4d,e,f shows the effects of pairs of tactics com
bined. Infiltration is dominant, but more harm can be done in 
combination with flooding or deception: the average quality is re
duced to 40% when γ = 0.1 and θ = 64 (Fig. 4d) or ϕ = 1 (Fig. 4e). 
Combining flooding and deception (θ = 64, ϕ = 1, Fig. 4f) only re
sults in marginal loss of quality (below 70%). With all three tactics 
combined (γ = 0.1, θ = 64, ϕ = 1, not shown), bad actors can further 
reduce the quality to 30%.

Reshare and exposure cascades
Empirical evidence has shown that among fact-checked claims, 
low-quality content (debunked claims) tends to have larger 
retweet cascades than high-quality content (confirmed claims) 
(9, 45). SimSoM allows us to examine how different factors may 

contribute to such a virality pattern. Figure 5 illustrates the effects 
of bad-actor tactics on the size of reshare cascades for content 
generated by both authentic agents (“high-quality”) and inauthen
tic agents (“low-quality”). We observe that low-quality cascade 
size is boosted by appeal. This is in line with the hypothesis that 
factors like novelty make false news more viral (9). However, low- 
quality cascades can be boosted most effectively through high 
bad-actor infiltration. Importantly, empirical analyses that do 
not reconstruct actual cascades from the data may underestimate 
intermediary amplification by inauthentic accounts, even when 
those accounts are removed as originators (cascade tree roots). 
On the other hand, our model lets us reconstruct the likely reshare 
cascades that include intermediary amplification by inauthentic 
accounts (see Methods).

To date, empirical data from social media platforms has al
lowed researchers to measure reshare cascades, but not exposure. 
As a result, few studies focus on exposure (46). Using the SimSoM 
model, it is possible to reconstruct not only likely reshare net
works but also exposure networks, thus estimating how many ac
counts are exposed to (i.e. view) a message even if they do not 
reshare it (see Methods). Figure 6 compares the sizes of reshare 
and exposure cascades. In general, reshares underestimate expo
sures by roughly one order of magnitude. Excluding the smallest 
cascades and the largest ones (to avoid finite-size effects), we ob
serve that exposure networks grow sub-linearly with reshare net
works: sv ∼ sν

r where sv and sr are the exposure and reshare 
cascade sizes, respectively, and ν < 1 is the scaling exponent. 
This means that as messages go viral, exposures grow more slowly 
than reshares. The exponent is higher for low-quality (ν ≈ 0.8) 
than for high-quality content (ν ≈ 0.6), suggesting that for each ex
tra reshare, messages posted by inauthentic agents gain more 
views.

a b c

e fd

Fig. 4. Effects of individual and combined tactics by bad actors on the system’s message quality, relative to the scenario without bad actors. a) Varying 
infiltration γ, without flooding (θ = 1) or deception (ϕ = 0). Shading represents 95% confidence intervals across runs in panels a–c. b) Varying flooding θ with 
infiltration γ = 0.01 and no deception (ϕ = 0). c) Varying deception ϕ with infiltration γ = 0.01 and no flooding (θ = 1). d) Joint infiltration and flooding with no 
deception. e) Joint infiltration and deception with no flooding. f) Joint deception and flooding with infiltration γ = 0.01.

Truong et al. | 5



a

b

c

Fig. 5. Complementary cumulative distributions of reshare cascade sizes for low- and high-quality content, generated by inauthentic and authentic 
agents, respectively. The plots are based on 10 simulations. a) Effect of bad-actor infiltration γ, with no flooding (θ = 1) or deception (ϕ = 0). b) Effect of 
flooding θ, with low infiltration (γ = 10−3) and no deception (ϕ = 0). c) Effect of deception ϕ, with low infiltration (γ = 10−3) and no flooding (θ = 1).

b

ca

d

Fig. 6. Scaling between reshare and exposure cascade sizes. a) Scaling for low-quality messages (posted by inauthentic agents). b) Scaling for high-quality 
messages (posted by authentic agents). The exposure cascade size is averaged across messages with the same reshare cascade size, based on 10 
simulations. The dashed lines provide a linear scaling reference, while the solid lines show the slopes (exponents) ν of power-law fits for reshare cascades 
of size between 10 and 1,000, yielding ν = 0.80 ± 0.01 (low-quality messages) and ν = 0.56 ± 0.01 (high-quality messages). The largest reshare and exposure 
cascades (corresponding to the circles in panels a and b) are also visualized for c) low-quality and d) high-quality messages, based on one simulation. 
Node colors are the same as in Fig. 3; node size represents out-degree, or influence. Here we use θ = 1, ϕ = 0, γ = 10−2; the results are similar for other γ 
values.
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Targeting tactics
The above results show that bad actors can use inauthentic ac
counts to infiltrate and disrupt an online public square. We have 
thus far assumed that all authentic agents have the same prob
ability of following inauthentic ones, reflecting a scenario in 
which bad actors do not focus their efforts on specific potential 
followers. However, those interested in manipulating the network 
may want to maximize the spread of low-quality content through 
the community by targeting certain groups of accounts.

As an example, an adversary might target influentials based on 
the assumption that having such followers can multiply their im
pact—a message reshared by an influential account has a higher 
chance of going viral. Targeting influentials is well within the cap
ability of bad actors and even automated accounts; the number of 
followers, often used as a proxy for influence (47), is public infor
mation on all social media platforms. A bad actor can easily inter
act with accounts having many followers by mentioning and/or 
following them (38, 48); other ploys include retweeting, quoting, 
and/or liking their tweets. There is empirical evidence of preferen
tial targeting by bad actors that spread misinformation (1, 8). 
Targeting politically active accounts or habitual misinformation 
spreaders are also conceivable tactics.

An important question, then, is whether tactics targeting spe
cific authentic accounts do in fact increase the manipulative 
power of bad actors. To explore this question, the model can be ex
tended to account for various features of social media users. Here 
we consider five features that are available in the empirical data: 
number of followers (hubs tactic), propensity to share 

misinformation (misinformation tactic), political partisanship 
(partisanship tactic), or specific political leaning (liberal and conser
vative tactic). We then introduce a preferential targeting tactic for 
adversarial actors, according to which authentic agents have dif
ferent probabilities of following inauthentic ones, proportional to 
one of these features. See Methods for details.

Figure 7 shows the impact of these targeting tactics on informa
tion quality. Counterintuitively, preferential targeting is less 
harmful than random targeting: the distribution of quality is un
even so that the targeted population is worse off, but other parts 
of the community are spared. Targeting tactics therefore tend to 
backfire if we assume that bad actors intend to maximize the 
spread of their content across the full community.

Targeting hubs, for example, results in a network with signifi
cantly higher average quality (p < 10−4). The amplification power 

of an influential is counterbalanced by the concentration of low- 

quality content, which has fewer chances to be reshared; the ma

jority of other agents are left relatively free from manipulation. 

Note that this is analog to the reason why the presence of hubs 

leads to high-quality content being forgotten more quickly when 

hubs are not targeted by bad actors, as seen earlier.
The harm of manipulation through the network also dimin

ishes when bad actors target accounts sharing a lot of misinfor
mation or with specific political leaning (p < 10−4). The 
echo-chamber structure of the empirical network (Fig. 7b) helps 
interpret the latter finding: low-quality messages get shared and 
become obsolete rapidly within one densely connected partisan 
cluster, sparing the rest of the network.

a b

Fig. 7. Effects of targeting tactics. a) Average information quality resulting from each tactic, as well as the default random targeting, relative to the 
scenario without bad actors. We highlight significant differences calculated using The Mann–Whitney U test (∗∗∗∗ for p < 10−4). b) Suppression of quality in 
the empirical network when bad actors specifically target influential accounts (hubs), and when they target politically left- (liberal) and right-leaning 
(conservative) accounts. The network has 103 authentic agents (purple nodes) and 50 inauthentic agents. Node size represents the number of followers. 
The darker an authentic agent node, the lower the quality of messages in their feed. Significant changes due to targeting tactics are only observed when 
bad-actor infiltration is sufficiently high, therefore we use γ = 10−1 in experiments for both panels.
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Discussion
Social media platforms have enhanced the so-called attention econ
omy, in which abundant content must compete for our scarce at
tention (49). But how to ensure that accurate, relevant, timely 
information wins this competition? To date, the policies that gov
ern social media have been mainly guided by the concept of a free 
marketplace of ideas, rooted in John Milton’s centuries-old reason
ing that truth prevails in a free and open encounter of opinions 
(50). In an ideal world, the wisdom of the crowd (51) would realize 
this vision by combining the opinions of many users (52). 
Unfortunately, several aspects of modern social media challenge 
the illusion of a public square or marketplace in which wise 
crowds access and select quality information (53, 54). First, infor
mation production is affected by information consumption (55), 
creating incentives to produce appealing but not necessarily high- 
quality content. Second, social influence undermines the wisdom 
of crowds because the information and opinions to which we are 
exposed online may be inauthentic, correlated through coordin
ation (56, 57), or dominated by few influential individuals (58). 
Third, confirmation bias (59) can increase vulnerability to misin
formation in social media (11, 60). Finally, the structure of infor
mation flow networks can distort perceptions and increase 
vulnerability to malicious actors (61, 62).

Exploration using SimSoM quantifies how manipulation by bad 
actors can prevent social media from functioning as a public town 
square. Simulations of the model reveal that making low-quality 
content highly appealing plays a lesser role compared to other 
harmful tactics by inauthentic accounts. This suggests that nov
elty, for example, may not provide the primary explanation for 
the virality of fake news, as previously hypothesized (9). Tactics 
that inflate engagement indicators, such as flooding, can erode 
the system’s quality just as well. More importantly, we find that 
infiltrating the network is a dominant harmful tactic available 
to bad actors—these accounts can drastically suppress quality 
by inducing only a small fraction of the community into following 
them.

A wealth of previous models and experiments have focused on 
information diffusion and popularity. Several studies have inves
tigated the role played by network mechanisms affecting the 
popularity of individual posts, including exogenous and endogen
ous bursts of attention (63, 64), memory (65), novelty (66, 67), and 
position bias (68, 69). This literature considers the popularity of 
pieces of information in isolation. Market-like environments in 
which many messages compete for limited attention have received 
less consideration. Exceptions have considered the cost of learn
ing about quality (70), distortions of quality assessments that re
sult from aggregate knowledge of peer choices (56), and 
confirmation bias in the spread of misinformation (71). The 
SimSoM model proposed here extends the model of Weng et al. 
(72), who demonstrated that some posts inevitably achieve viral 
popularity irrespective of quality in the presence of competition 
among networked agents with limited attention. The model was 
formalized as a critical branching process and studied analytical
ly, predicting that the popularity of posts follows a power-law dis
tribution with heavy tails (73–75).

The current SimSoM model has several limitations. First, it ne
glects many mechanisms of actual online social media that may 
contribute to message exposure, such as search, personalization, 
and other details of secret platform algorithms. For example, in
creasingly popular feed ranking algorithms are based less on 
what is shared by social connections and more on out-of-network 
recommendations. Bad-actor tactics could be affected differently 

by such algorithmic changes (see Supplementary Material). While 
the present model captures several universal criteria of feed algo
rithms (appeal, social engagement, recency), future work should 
investigate the vulnerability of different algorithmic affordances. 
Second, real user behaviors are driven by complex cognitive proc
esses. Beyond finite attention, such cognitive aspects of informa
tion sharing are not explored here. Instead, the model assumes 
that all authentic agents follow a simple probabilistic rule in se
lecting the content to be shared. Large language models have re
cently been proposed as a way to model agents with more 
realistic behaviors (76). In addition, SimSoM models information 
diffusion through simple contagion. While this approach is in 
line with prior modeling (77), theoretical (45), and empirical (78) 
studies, complex contagion (25) can also play a role in the spread 
of certain types of harmful information (26). Despite these limita
tions, the current model’s predictions are consistent with empir
ical findings about the difference in virality between low- and 
high-quality information on Twitter (8, 9). This suggests a reason
able balance between model realism and generality.

We can think of inauthentic accounts as zealots, a minority of 
agents committed to a particular view. Opinion dynamics models 
have shown that a critical minority of active zealots can quickly 
drive a system to consensus toward their opinion (79–82). In our 
social media model, we only explore the capacity to suppress in
formation quality rather than to drive consensus to a particular 
opinion.

While the structure of online social networks evolves over time, 
the follower network used in our experiments provides a more 
realistic setting than synthetic networks to run our simulations. 
In particular, it captures features of real social networks—hubs, 
clustering, and political homophily structure—that have been ob
served consistently over the years and across platforms (83–85) 
and that are known to play key roles in information diffusion 
(86–88). Furthermore, our sampling procedure captures a commu
nity of accounts that are both active and vulnerable to misinfor
mation, as needed to study manipulation tactics that target 
such communities. Finally, the assumption that the follower net
work is static during an information-spreading simulation is con
sistent with observations that the dynamics of unfollowing are 
slow (89).

Our results suggest that, surprisingly, inauthentic accounts do 
not need to target hubs (influentials); they can do more damage by 
connecting to random accounts. Future research should focus on 
whether the strategic placement of bad actors within/across po
larized online communities can sway users toward a particular 
outcome, for example by distorting popularity perceptions 
(61, 62). Further work is also needed to characterize the effects 
of strategic targeting when the attacker has limited resources.

The insights gained from the present findings suggest several 
countermeasures to increase the resilience of social media to ma
nipulation. The first lesson is that we must make it more difficult 
for bad actors to infiltrate the network. Platform efforts to detect 
and take down deceptive accounts must be strengthened, espe
cially as tactics to hack follower networks get more sophisticated 
(38).

Recent models show that caps on the depth and/or breadth of 
diffusion networks can decrease the ratio of distorted messages 
received by social media users (90). While these models assume 
that distortions occur randomly, SimSoM demonstrates how ad
versarial actors can exploit vulnerabilities by flooding our news 
feeds, thereby crowding out quality information. A countermeas
ure would be to challenge accounts that post at very high rates to 
prove that they are human. Users could also be warned when they 
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follow accounts that post low-quality content and/or when friend 
accounts are suspended or take suspicious actions, such as chan
ging names/handles (14) or posting and deleting large volumes of 
content (41).

Our findings suggest that a winning tactic for malicious ac
counts is to target all social media users, and not only the most in
fluential, if their goal is to spread harm widely across the network. 
Literacy programs may provide some protection against disinfor
mation. This is also suggested by a binary agreement model that 
assumes each agent may be committed to truth or disinformation 
(91). Social media platforms could lead by educating users about 
their vulnerability to manipulation and deception. The simplest 
version of this is through accuracy reminders, which can improve 
content quality during both posting (92) and resharing (93). 
Flooding reduces the effectiveness of such accuracy interventions 
(94). Our model could be extended to explore ways to combine fric
tion and accuracy nudges by, e.g. lowering the probability that 
low-quality messages are reshared by agents after they are ex
posed to warnings.

Given that inauthentic accounts can be used to suppress 
human speech, granting them (or any entity that controls 
them) unlimited free-speech rights would seem to lead to a lo
gical contradiction (95). Yet, ironically, efforts by social media 
platforms to moderate abusive accounts and even research on 
social bot detection have been assailed by some with charges 
of censorship (96). These questions may have significant reper
cussions on regulations designed to protect the online public 
square (53).

Methods
Social media diffusion model
SimSoMa is a parsimonious agent-based model inspired by the long 
tradition of representing the spread of ideas as an epidemic pro
cess where messages are passed along the edges of a network 
(97). The model simulates a directed follower network, as in 
Twitter/X, Mastodon, or Threads. Nodes represent agents (users) 
and links represent follower relations, which may or may not be 
reciprocal. The direction of a link goes from the follower to the fol
lowed (friend) account, capturing the flow of attention; when a 
friend’s post is reshared by a follower, information spreads in 
the opposite direction. In line with previous work (45, 77, 78), the 
diffusion process is modeled as simple contagion, where each ex
posure to a message results in the same resharing probability. We 
assume that the structure of the network is static (no unfollowing/ 
blocking of accounts) during the information-spreading process. 
In contrast to classical epidemiological models, new messages 
are continuously introduced into the system in an exogenous 
fashion.

At each time step, an agent i produces a new message with 
probability μ or chooses one of the messages in their news feed 
to be reshared with probability 1 − μ (Fig. 1). The new or 
reshared message is then added to the news feeds of i’s 
followers. We set μ = 0.5, reflecting the empirical average ratio 
for English-language tweets (98). Based on empirical data, agents 
are assumed to have limited-size inventories: only the most re
cent σ = 15 messages are retained in each news feed (see 
Supplementary Material). The results are robust for different val
ues of μ and σ (see Fig. S1 in Supplementary Material).

We assume authentic agents prefer to reshare messages posted 
by their friends that are appealing, recent, and popular. This 
is based on empirical evidence that users are more likely to 
share popular content according to engagement signals (99). The 

probability that an agent shares a message from their news 
feed, allowing it to spread, is proportional to the message’s appeal, 
social engagement, and recency. More explicitly, let Mi be the feed 
of i (|Mi| = σ). The probability of message m ∈ Mi being selected is 
P(m) = amemrm/

􏽐
j∈Mi

ajejrj where am is the appeal of message m, 
em is the social engagement, i.e. the number of times it was (re) 
shared by i’s friends, and rm is the recency. Message recency de
cays with time as a stretched exponential function rm(t) = e−0.4t0.4

, 
where t is the “age,” or the time passed since m was first introduced 
to the agent’s news feed. This decay function is based on empirical 
online news engagement data (67). To model flooding, bad actors 
can be more active than authentic agents, sharing a message θ 
times such that it appears to have higher engagement than au
thentic content.

Quality and appeal
Both the quality q and the appeal a of new messages are defined in 
the unit interval. Informed by empirical data, q and a for authentic 
accounts are assumed to be independent (see Fig. S2 in 
Supplementary Material). For authentic accounts, quality q is 
drawn from an exponential distribution P(q) = Ceτq where high- 
quality information is more common than low-quality informa
tion. The term C = τ

eτ −1 is a normalizing constant such that 
∫10 P(q)dq = 1; the exponent τ = 10 is estimated empirically (see 
Fig. S3 in Supplementary Material). We independently draw ap
peal from the distribution P(a) = (1 + α)(1 − a)α, with α > 1 (Fig. S4a 
in Supplementary Material). We set α = 4. This choice for the ap
peal probability density function reproduces a broad distribution 
of reshares comparable to that observed in real-world informa
tion diffusion networks: few messages go viral while the majority 
do not (Fig. S4b in Supplementary Material).

On the other hand, we assume that bad actors strictly generate 
low-quality messages (q = 0). The potentially deceptive nature of 
this content is modeled by the deception parameter ϕ (0 ≤ ϕ ≤ 1), 
the probability that a bad-actor message is irresistibly appealing. 
With probability ϕ, we set a = 1, and with probability 1 − ϕ we draw 
appeal from the same distribution as for authentic accounts, 
P(a) = (1 + α)(1 − a)α. If ϕ = 0, bad actors and authentic accounts 
generate messages with appeal drawn from the same distribution. 
If ϕ > 0, bad-actor messages are more likely to have high appeal; 
the larger ϕ, the greater the potential virality of low-quality con
tent by bad actors.

Follower network
We run simulations on a follower network derived from empirical 
Twitter data. This network was constructed from a 10% random 
sample of public tweets between 2017 June 1 and 30 (100). The 
data include users (excluding likely automated accounts) that 
shared at least 10 links to news sources, at least one of which 
was to a source labeled as low-quality. Only news sources with 
known political valence were considered. Based on the shared 
links, most accounts in the dataset have an associated partisanship 
score (from −1 for left-leaning to +1 for right-leaning) defined as 
the average political bias of the news sources they share; and a 
misinformation score defined as the fraction of posts linking to low- 
credibility sources. Both partisanship and misinformation scores, 
included in the original network dataset, were based on news 
source labels from third-party fact-checkers (84).

From the original dataset, we select nodes with both partisan
ship and misinformation attributes. We further reduce the size of 
the network to speed up our simulations. We apply k-core decom
position to select N = 10,006 nodes forming the k = 94 core. Finally, 
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we remove a random sample of edges to decrease the density of 
this core while preserving the average in/out-degree (number of 
friends/followers) of the original network (k = 0 core). This results 
in E = 1,809,798 edges; each node has on average approximately 
180 friends/followers (Fig. 3, “hubs+clusters” network).

Bad-actor subnetwork
Since the empirical network described above does not include 
likely inauthentic accounts, we use it to model the subnetwork 
of authentic accounts. We then add a subnetwork representing in
authentic accounts that infiltrate the system. The ratio between 
the sizes of the two subnetworks is described by β, i.e. for an au
thentic agent subnetwork of N nodes, the inauthentic subnetwork 
is composed of βN nodes (Fig. 2). Since there are many types of in
authentic accounts (trolls, social bots, cyborgs), estimating the 
percentage of these on social media is a very difficult task. We 
thus set β = 0.05 following a rough estimation of the prevalence 
of bots on Twitter.b Note that from the perspective of information 
quality in the model, increasing the prevalence of bad actors is 
equivalent to increasing their infiltration. Therefore, we focus 
on the effects of varying γ rather than β.

The inauthentic account subnetwork is created using a di
rected variant of the random-walk growth model (101). This cap
tures the presence of hubs and clustering (directed triads). 
Specifically, the network is initialized with four fully connected 
nodes. We then add one new node at a time, assuming that each 
has fixed out-degree kout = 3. Once a new node i comes into the net
work, it links to (follows) a randomly selected target node (friend) 
j. Each of the remaining kout − 1 = 2 friends are selected as follows: 
with probability expressed by a parameter p, i follows a random 
friend of j’s; with probability 1 − p, i follows another randomly se
lected node. Following friends of a friend has the effect of generat
ing closed, directed triads and approximates a preferential 
attachment process, giving rise to hub nodes with high in-degree. 
The parameter p thus models both hubs and clustering. We use 
p = 0.5.

In addition, the bad-actor subnetwork is designed to manipu
late information flow and collective attention by spreading certain 
messages. Therefore, we assume that bad actors get random au
thentic accounts to follow them: we add a directed link from 
each authentic node to each bad-actor node with probability γ. 
(In the next subsection, we present alternatives to this random 
targeting tactic.) The parameter γ models the degree of infiltration 
of the network by bad actors (Fig. 2). When γ = 0, there is no infil
tration and bad actors are isolated, therefore harmless; the oppos
ite extreme γ = 1 indicates complete infiltration such that bad 
actors dominate the network. Because we are not concerned 
with the quality of messages on bad-actor news feeds, they do 
not follow or reshare content from authentic agents for the ana
lyzes in this paper.

Bad-actor targeting tactics
In the scheme described above, the authentic agents that follow 
bad actors do so randomly. We also study scenarios in which 
bad actors target certain accounts as potential followers (Fig. 7). 
In all of these scenarios, each bad actor is still followed by γN au
thentic accounts on average, but these targets are selected ac
cording to some criterion, such as whether they are politically 
active or have many followers.

Each targeting tactic is modeled by making the probability that 
an authentic agent i follows bad actors proportional to some fea
ture f (i). In the hubs tactic, we set f (i) = kin(i), the number of 

followers of i. Misinformation and partisanship attributes of au
thentic accounts in the empirical network allow us to model other 
targeting scenarios. In the misinformation tactic, f (i) is set to i’s 
misinformation score, i.e. their propensity to share misinforma
tion. The partisanship score is used in the liberal and conservative 
tactics, while its absolute value is used in the partisanship tactic.

Overall quality
The effects of manipulation on authentic agents are quantified by 
the quality of all content in circulation. The overall quality of the 
information system at time t is measured by the average quality 
across all the messages visible through the feeds of the authentic 
agents:

Qt =
1

σN

􏽘N

i=1

􏽘

m∈Mi

qi,m,t, 

where qi,m,t is the quality of the message in the mth position in au

thentic user i’s feed at time t.
The system’s quality at each time step t is calculated with an 

exponential moving average Q̅t = ρQ̅t−1 + (1 − ρ)Qt. As the simula
tion takes place, some of the messages become obsolete quickly, 
while others live longer and infect a larger fraction of the network. 
The simulation ends once the system reaches a steady state in 
which the difference between two consecutive values of the 
quality moving average is smaller than a threshold, i.e. 
|Q̅t − Q̅t−1|/Q̅t−1 < ϵ. See Supplementary Material for further details 
about model convergence to a steady state. The average quality 
reported for all analyzes is calculated at the end of the simulation.

Cascade construction
A reshare cascade is a tree that begins when an agent i (root) posts a 
new message m. After that, a new link is created when a follower j 
of i reshares m. We say that i is the parent of j in the tree. Similarly, 
an agent’s exposure to a message is defined as having that mes
sage on their feed while being activated—we assume that an agent 
who is about to share or reshare a post has seen the content on 
their feed. A link in the exposure cascade for message m is created 
between an activated agent with m in their feed and their friend 
who had shared m. When constructing both reshare and exposure 
cascades, m may have been reshared by more than one of an 
agent’s friends. When this occurs, one of them is selected at ran
dom to be the parent in the cascade tree. This choice does not af
fect a cascade tree’s size, but might affect its structure. Other 
alternatives, such as selecting as parent the friend who most re
cently shared m, can be explored if one desires to analyze the 
structure of the reshare or exposure cascades. By definition, re
share cascades can be as small as one and exposure cascades 
can be as small as zero.

To capture the complete diffusion cascades, the size distribu
tions plotted in Fig. 5 include only cascades of “extinct” messages, 
those that have become obsolete and are no longer present in any 
news feed by the end of simulations.

Simulation framework and parameters
For each set of parameters, we run 10 simulations starting from 
random conditions; the reported average quality is the average 
across these runs.

We explore values of the bad-actor parameters to cover broad 
ranges of manipulation tactics. The infiltration parameter γ is a prob
ability, and we consider values in the unit interval on a logarithmic 
scale to focus on more realistic low-probability values. The deception 
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parameter ϕ also represents a probability and we examine the full 
unit interval. Finally, the flooding parameter θ is a multiplicative fac
tor on the volume of posts, and we explore the range 1–64 on a loga
rithmic scale to capture the high volumes observed in empirical 
analyzes (41). In scenarios with bad actors in the system, the default 
parameters are γ = 0.01, ϕ = 0, and θ = 1. Except for the simulations 
exploring inauthentic targeting tactics, authentic followers of the 
bad actors are selected at random.

The parameters ρ = 0.8 and ϵ = 0.0001 were tested to ensure 
that the system’s quality stabilizes at the steady state (see 
Supplementary Material).

We shuffle the follower network in various ways to derive the 
scenarios reported in Fig. 3. The “hubs+cluters” network is the ori
ginal one. In the “hubs” network, we shuffle the original network 
while preserving the degree distribution and destroying any com
munity clustering. In the “clusters” network, the outgoing end
point of each edge in the original network is rewired to another 
node within the same cluster; this preserves the cluster structure 
and destroys the hub structure. In the “random” shuffle, all edges 
are rewired at random with uniform probability, destroying all 
hub and clustering structure.

Notes
a Code and data to implement the model and reproduce results are 

available at github.com/osome-iu/SimSoM.
b theconversation.com/how-many-bots-are-on-twitter-the-question- 

is-difficult-to-answer-and-misses-the-point-183425.
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