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Abstract. Although bulk high‑throughput genomic profiling 
studies have led to a significant increase in the understanding 
of cancer biology, there is increasing awareness that bulk 
profiling approaches do not completely elucidate tumor 
heterogeneity. Single-cell genomic profiling enables the 
distinction of tumor heterogeneity, and may improve clinical 
diagnosis through the identification and characterization 
of putative subclonal populations. In the present study, the 
challenges associated with a single‑cell genomics profiling 
workflow for clinical diagnostics were investigated. Single‑cell 
RNA-sequencing (RNA-seq) was performed on 20 cells from 
an acute myeloid leukemia bone marrow sample. Putative 
blasts were identified based on their gene expression profiles 
and principal component analysis was performed to identify 
outlier cells. Variant calling was performed on the single-cell 
RNA-seq data. The present pilot study demonstrates a 
proof of concept for clinical single‑cell genomic profiling. 
The recognized limitations include significant stochastic 
RNA loss and the relatively low throughput of the current 
proposed platform. Although the results of the present study 
are promising, further technological advances and protocol 

optimization are necessary for single‑cell genomic profiling 
to be clinically viable.

Introduction

Bulk high‑throughput genomic profiling studies have improved 
the understanding of cancer biology and facilitated the devel-
opment of novel therapeutics. However, there is increasing 
awareness that bulk profiling approaches do not adequately 
produce information concerning tumor heterogeneity, an 
improved insight into which may facilitate the development of 
more effective therapeutic strategies (1).

Genomic profiling of individual single cells is currently 
technically available and recent reports of the highly parallel 
expression profiling of thousands of cells suggest that 
single‑cell genomic profiling for clinical applications may 
become a reality (2,3). Notably, single‑cell profiling using 
flow cytometry for immunophenotyping is currently a routine 
hematological diagnostic assay (4). Single-cell genomic 
profiling is therefore, in theory, potentially of clinical utility in 
the diagnostic work-up of a hematological malignancy such as 
acute myeloid leukemia (AML).

AML is a malignant disease of abnormally differentiated 
cells of the hematopoietic system (5). It is a clonally complex 
disease that is characterized by the presence of multiple clonal 
populations in the primary cancer, any of which may evolve to 
result in relapse (6).

Single‑cell genomic profiling enables the distinction of 
tumor heterogeneity, and may improve clinical diagnostics 
through the identification of putative subclonal populations 
and their respective drug sensitivity profiles (Fig. 1). In an 
attempt to develop a clinically relevant single-cell genomic 
profiling protocol, a pilot study of single‑cell RNA‑sequencing 
(RNA-seq) of an acute myeloid leukemia (AML) sample was 
performed.
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Materials and methods

Sample. An AML bone marrow sample, which was harvested in 
February 2011 from a 35-year-old female patient, was obtained 
from the archives of the Department of Hematology-Oncology 
(National University Hospital, Singapore). Ethical approval 
was obtained for the present study (Domain Specific 
Review Boards; National Healthcare Group, Singapore; ref. 
2016/00547). Informed consent was obtained from the subject 
participating in the present study.

Flow cytometry. A total of 250,000 events were acquired 
for multiparametric analysis using a lyse-wash method on 
bone marrow cells (7). Blasts were identified using a cluster 
of differentiation (CD) 45/CD34/CD117/human leukocyte 
antigen-antigen D related (HLA-DR) combination (7).

Single‑cell isolation for RNA‑seq. A total of 5x106 cells were 
incubated with anti-CD45 antibody (Miltenyi Biotec, Inc., 
Cambridge, MA, USA; cat. no. 130-080-201; clone, 5B1) for 
1 h at 4˚C to stain white blood cells, while Hoechst 33342 
(Thermo Fisher Scientific, Inc., Waltham, MA, USA; cat. 
no. H3570) was used to stain nuclei by adding the staining 
solution to the cells for 1 h at 4˚C. Cells were loaded at the 
optimal concentration (250,000 cells/ml, as recommended by 
the manufacturer) into the microfluidics chip.

Single cells were isolated into individual chambers 
using an integrated fluidic circuit (IFC) on the Automated 
Microf luidic C1 system (Fluidigm Corporation, San 
Francisco, CA, USA). Cells positive for CD45 and Hoechst 
were lysed, and RNA isolation and complementary DNA 
(cDNA) synthesis was performed using the SMART-Seq® 
v4 Ultra® Low Input RNA kit for Sequencing (Clontech 
Laboratories, Inc., Mountainview, CA, USA; cat. no. 634888) 
which was preamplified using a unique SMARTer II A 
oligonucleotide and template switch primer (both reagents 
being present in the SMARTer Ultra Low RNA kit; Clontech 
Laboratories, Inc.; cat. no. 634833), according to the manu-
facturer's protocol. The cDNA was harvested manually by 
retrieving 3.5 µl of cDNA from the wells of the IFC for 
library preparation. Notably, only RNA strands with polyad-
enylated [poly(A)] tails were converted to cDNA and used for 
downstream processing.

Library preparation and next‑generation sequencing. Using 
the coordinates from the imaging, 20 cells that stained posi-
tive for the leukocyte marker CD45 and had intact nuclei, 
as observed using the Hoechst stain, were selected. Library 
preparation was performed using the Nextera XT DNA 
Sample Preparation kit (Illumina, Inc., San Diego, CA, 
USA; cat. no. FC-131-1096), according to the manufacturer's 
protocol. The 20 libraries were processed individually, with 
each library being assigned a unique barcode for pooled 
multiplex sequencing using the Illumina HiSeq 2000 platform 
(Illumina, Inc.), according to the manufacturer's protocol. 
Paired-end 100 bp reads were generated for analysis.

Mapping and quantif ication of single‑cell RNA‑seq 
data. Paired-end FASTQ files were initially mapped to 
the reference human Hg19 transcriptome (ftp.ensembl.

org/pub/release-75/gtf/homo_sapiens/Homo_sapiens.GRCh37.75.
gtf.gz) (8) using Tophat2 (version 2.1.0; Johns Hopkins 
University, Baltimore, MD, USA) (9). Aligned reads (BAM 
files) were subsequently sorted and indexed using SAMtools 
(version 1.2; Wellcome Trust Sanger Institute, Cambridge, 
UK) (10). Cufflinks (version 2.2.1; University of Washington, 
Seattle, WA, USA) (11) was utilized for final transcriptome 
assembly (cufflink and cuffmerge function), and abundance 
estimation and normalization in Fragments Per Kilobase of 
transcript per Million mapped reads (FPKM) units (cuffnorm 
function).

Cell‑type classification. A heatmap was generated for the key 
cell‑type specific markers (typically used inimmunophenotyping 
using flow cytometry, including CD34 and CD45) based on 
their expression levels. For any gene, the presence of a transcript 
with an FPKM normalized expression value >0 is indicative of 
gene expression, while a FPKM normalized expression value of 
0 indicates absence of expression. The presence and absence of 
the cell‑type specific markers were plotted in a heatmap gener-
ated using the ‘pheatmap’ package (version 1.0.8) produced by 
the R Programming Environment (www.r-project.org).

Based on the gene expression profiles, cells that were 
CD34-positive, or HLA-DRA- and CD117-positive, were 
classified as ‘putative blasts’ (12).

Principal component analysis. Principal component analysis 
was carried out on the log2-transformed FPKM normalized 
expression values of all transcripts using the prcomp function 
of the R Programming Environment.

Table I. Number of RNA-sequencing reads per cell.

Cell number Number of reads, millions

RHA100   6.3
RHA101   9.9
RHA102   9.4
RHA103   5.1
RHA104   4.7
RHA105   8.2
RHA106 11.4
RHA107   7.4
RHA108   7.8
RHA109   9.2
RHA110   5.5
RHA111   5.2
RHA112   5.2
RHA113   5.9
RHA114   4.5
RHA115 11.4
RHA116   9.3
RHA117   6.8
RHA118   9.3
RHA119 10.1

RHA, RNA human acute myeloid leukemia.
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Targeted DNA‑sequencing (DNA‑seq). Targeted DNA-seq was 
performed as previously described (13,14). A total of 50 ng 
of genomic DNA was extracted from the AML bone marrow 
sample and processed using the TruSight Myeloid Sequencing 
Panel (Illumina, Inc.). A total of 54 genes known to be mutated 
inmyeloid neoplasms, including fms related tyrosine kinase 3 
(FLT3), nucleophosmin (NPM1) and DNA methyltransferase 
3 alpha (DNMT3A), were assessed. The TruSeq Amplicon 
(BaseSpace Workflow; version 1.1.0.0; Illumina, Inc.) was 
used to generate the BAM and VCF files. Visualization of 
reads was performed using the Integrative Genomics Viewer 
(version 2.3.69; Broad Institute, Cambridge, MA, USA) (15). 
Pindel (version 0.2.5a8; McDonnell Genome Institute, 
Washington University School of Medicine, St. Louis, MO, 
USA) (16) was used to identify the presence of FLT3 internal 
tandem duplications.

Variant calling of RNA‑seq data. Variant call ing 
analysis was carried out on the aligned paired end reads 
using the Genome Analysis Toolkit (Broad Institute) 
(version3.4.46; Haplotype Caller function) with refer-
ence to the aforementioned human Hg19 genome (17,18). 
Variants identified from the analysis were annotated using 
the SeattleSeq Annotation webserver (snp.gs.washington.
edu/SeattleSeqAnnotation138) (19). Visualization of reads was 
performed using the SAMtools tview function (10).

Results

Number of RNA‑seq reads per cell. The number of reads per 
cell was between 4.5 million and 11.4 million (Table I), which is 
consistent with previous single-cell RNA-seq studies (20-23).

Cell‑type classification. Immunophenotyping using flow 
cytometry demonstrated the blast population to comprise of 
~65% the total number of cells. Based on the single-cell gene 

expression profile, 11/20 cells were identified to be putative 
blasts (Fig. 2).

Principal component analysis. Principal component analysis 
was performed in an attempt to identify potential subclonal 
populations (Fig. 3). Two outlier cells were identified, RHA115 
and RHA118. Based on their gene expression profile (Fig. 2), 
these cells were classified as putative blasts.

Variant calling of RNA‑seq data. Targeted DNA-seq 
revealed the presence of aDNMT3A mutation (c.2644C>T; 
p.Arg882Cys; Fig. 4); an NPM1 mutation (c.859_860insTCTG; 
p.Trp288CysfsTer12); and a 108 bp FLT3 internal tandem 
duplication (data not shown).

Variant calling of the RNA-seq data did not identify cells 
with any of the aforementioned NPM1 and FLT3 mutations. 
The DNMT3A mutation (c.2644C>T; p.Arg882Cys) was iden-
tified in one cell (RNA human AML119) (Fig. 5). Coverage 
analysis was performed in an attempt to understand the 
apparent absence of NPM1 and FLT3 transcript mutations, and 
low abundance of DNMT3A transcript mutations across the 20 
cells. This revealed the reason to be the absence of transcripts 
mapping to the relevant mutation site, potentially secondary to 
stochastic transcript dropout (24).

Discussion

Single-cell genomic analysis of AML has been previously 
reported (25,26). However, these studies involved only DNA 
analysis. To the best of our knowledge, the present study is the 
first single‑cell transcriptomic analysis of AML.

In the present study, a clinical workflow for single‑cell 
transcriptomic profiling has been piloted. Using single‑cell 
RNA‑seq, putative blasts were identified based on the gene 
expression profile of conventional immunophenotypic markers 
used in routine flow cytometry. For flow cytometric analysis, 

Figure 1. Scheme of a proposed clinical single‑cell genomic profiling protocol. PC, principal component.
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~20 markers are typically used for profiling. There is a large 
contrast with transcriptomic analysis, as there are in prin-
ciple ≥20,000 markers (genes) (27) that can be utilized, and 
individual cellular characterization is able theoretically to be 
highly detailed.

In addition to information derived from expression 
profiling, mutational (variant) data provides further informa-
tion that maybe useful for individual cell categorization (26). 
Variant identification is most commonly performed on 
DNA-seq data (28). However, variant identification has 
also been performed on bulk (29) and single-cell RNA-seq 
data (23,30). In the present study, the DNMT3Ap.Arg882Cys 
mutation was identified in the transcript, providing evidence 
that the mutant transcript is expressed.

High-dimensional data presents an opportunity for 
increased cellular characterization and the potential identifica-
tion of subclonal populations. Principal component analysis 

of the dataset in the present study revealed two putative blasts 
that did not cluster with the other blasts. In future studies, the 
authors of the present study aim to investigate the possibility 
of predicting the drug sensitivity of putative subclonal popula-
tions based on high-dimensional characterization, as has been 
performed in previous studies (31).

One of the primary limitations of the protocol proposed 
in the present study is the stochastic RNA loss, in which 
between 60 and 90% of poly (A) RNA may be lost during 
sample preparation (24). In the presentstudy, FLT3 and NPM1 
transcript mutations were not identified in the 20 cells, while 
the DNMT3A (c.2644C>T; p.Arg882Cys) transcript mutation 
was identified in one cell. Following further analysis, this 
observation maybe explained by the absence of transcripts 
mapping to the relevant mutation site. Significant method-
ological improvements and protocol optimization are required 
to overcome this limitation.

Figure 3. PC analysis of transcriptomic data. Putative blasts are labeled red. PC, principal component; RHA, RNA human acute myeloid leukemia.

Figure 2. Single‑cell gene expression profile of the 20 cells. Putative blasts are labeled red. CD, cluster of differentiation; HLA‑DR, human leukocyte antigen‑ 
antigen D related; RHA, RNA human acute myeloid leukemia.
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Another current limitation is the relatively low throughput 
of the protocol proposed in the present study. Due to reasons 
of cost and logistics, routine clinical genomic profiling of a 
hundred cells is currently challenging (32). By contrast, flow 
cytometric immunophenotyping typically involves profiling 
tens of thousands of cells (33). With the development of 
higher-throughput platforms (2,3), there is the potential 
that the cost of single‑cell genomic profiling will decrease 
significantly to a point where it becomes viable for clinical 
implementation.

Despite the aforementioned limitations, single-cell 
genomic profiling may lead to the improved diagnosis and 

theragnosis of various types of cancer, including AML. In the 
present study, a possible single‑cell genomic profiling protocol 
was piloted for clinical diagnostics. In future studies, a larger 
number of cells may need to be profiled to identify distinct 
subclonal populations and predict respective drug sensitivity 
profiles based on subclonal genomic signatures.
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