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ABSTRACT Heat stress as an environmental stressor
causes abnormal bone remodeling and micro-
architectural deterioration. The objective of this study
was to investigate the effects of aBacillus subtilis–based
probiotic on bone mass of broilers subjected to cycling
high ambient temperature. One hundred and twenty 1-
day-old Ross 708 male broiler chicks were randomly
assigned to 2 dietary treatments (12 pens per treat-
ment): control diet and the control diet plus 250-ppm
probiotic consisting of 3 strains of Bacillus subtilis.
Room temperature was gradually decreased from 35�C
on day 1 by 0.5�C/d until day 15, when ambient tem-
perature was increased from 28�C to 32�C for 10 h
(07:00 h–17:00 h) daily until day 44. Samples of blood,
leg bones (tibia and femur), and brains (raphe nuclei
and hypothalamus) were collected at day 43, while la-
tency to lie test was conducted at day 44. Compared
with controls, probiotic supplementation increased
bone mineral content, weight, size, weight to length
index, and reduced robusticity index in the tibia and
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femur (P , 0.05) of broilers subjected to heat stress.
Serum concentrations of c-terminal telopeptide of type I
collagen (CTX) were reduced (P 5 0.02) by the pro-
biotic supplementation, while ionized calcium, phos-
phate, and osteocalcin were not affected (P . 0.05).
Moreover, tumor necrosis factor-a (TNF-a) in probiotic
fed broilers was decreased (P5 0.003) without changes
of plasma interleukin (IL)-6, IL-10, interferon-g, and
corticosterone concentrations. There were no treatment
effects on the concentrations of peripheral serotonin
and central serotonin and catecholamines (norepi-
nephrine, epinephrine, and dopamine) as well as their
metabolites. These results may indicate that dietary
supplementation of Bacillus subtilis–based probiotic
increases bone growth in broilers under a cyclic heating
episode probably via inhibition of bone resorption,
resulting from downregulation of the circulating TNF-a
and CTX. Dietary probiotic supplementation may be a
management strategy for increasing skeletal health of
broilers under hot weather.
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INTRODUCTION

High ambient temperatures, especially combined with
high humidity, impose severe stress on broilers because
of their limited ability to regulate heat loss by feathering
and great metabolic rate resulting from selecting and
breeding for fast growth (Geraert et al., 1996).
Subsequently, heat stress (HS) causes detrimental ef-
fects in broilers ranging from reduced growth rate and
carcass quality to eventually death, which leads to not
only economic loss for poultry producers but also welfare
concerns (Lara and Rostagno, 2013). Rapid growth–
associated leg disorders commonly cause chronic pain
and lameness in broilers (Caplen et al., 2013a). Reduced
bone mass, such as ash content and bone volume, occurs
in both broilers and turkeys exposed to high tempera-
tures (Jankowski et al., 2015; Hosseini-Vashan et al.,
2016). The underlying mechanisms for HS-induced
bone developmental disorders in broilers are still being
investigated, but the bone remodeling regulators
including mineral metabolism, hormonal homeostasis,
and immune factors are all directly impacted by HS.
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HS-induced behavioral changes include decreased
feeding and increased panting (Mack et al., 2013). In or-
der to cope with hot rearing environments, depressed
appetite in birds decreases metabolic heat production,
which also reduces the availability of nutrients and min-
erals absorbed from the gastrointestinal tract, such as
amino acids and calcium (Ca) required for bone health
and body growth. Panting is the major cooling method
used by birds to dissipate excess heat through evapora-
tion of moisture in the upper respiratory tract. However,
excessive rapid breathing may cause respiratory alka-
losis, decreased ionized Ca (bioavailable Ca) in the
blood. In addition, chronic HS in broilers can induce in-
testinal injury such as reduced height of villi, thinner gut
mucosa, and decreased alkaline phosphatase activity
(Hu et al., 2017), which further hampers intestinal Ca
absorption. Therefore, a decrease in the bioavailability
of circulating Ca may be a contributor toward reduced
bone mineralization, strength, ash, and other indicators
of bone traits in heat-stressed broilers (Jankowski et al.,
2015; Hosseini-Vashan et al., 2016). HS also induces
overactivation of the hypothalamic-pituitary-adrenal
axis, leading to elevated blood corticosterone (CORT)
(Quinteiro-Filho et al., 2012). Excess glucocorticoid
negatively affects bone mass through inhibiting osteo-
blastogenesis, increasing osteoblast and osteocyte
apoptosis (O’Brien et al., 2004), and promoting osteo-
clast survival (Jia et al., 2006). In addition, numerous
studies have demonstrated that HS induces immunosup-
pression in broilers (Jahanian and Rasouli, 2015),
accompanied by the changes in cytokines synthesis
such as increased spleen concentrations of tumor necro-
sis factor-a (TNF-a) and interleukin (IL)-4 but
decreased concentrations of interferon-g (IFN-g) and
IL-2 (Xu et al., 2014). As a proinflammatory cytokine,
TNF-a locally produced in bone is involved in bone
resorption by directly enhancing osteoclastic activity
(Schett, 2011) and indirectly acting through downregu-
lation of osteoprotegerin-associated osteoclastogenesis
(Boyce et al., 2005). In contrast to TNF-a, as a balance
system, IFN-g released by the mesenchymal stem cells
and cells of immune origin within the bone microenviron-
ment promotes bone formation in mice (Duque et al.,
2011) as an exceptionally strong inhibitor of osteoclast
differentiation (Schett, 2011). Considering the vital
role of cytokines on bone cells and related metabolism
(Inada and Miyaura, 2010; Schett, 2011), an alteration
of bone homeostasis may be caused by the changes of
the hypothalamic-pituitary-adrenal axis and cytokines
of the immune system under HS.
Several probiotics have been reported to play a role in

optimizing bone mass in various animals, including
laying hens (Abdelqader et al., 2013; Yan et al., 2019b)
and broilers (Houshmand et al., 2011; Sadeghi, 2014;
Yan et al., 2019a). Although the mechanisms have not
been not widely investigated in poultry, Bacillus subti-
lis–based probiotic has been reported to promote bone
mass in broilers under a thermoneutral environment
through increased circulating Ca levels and reduced
bone resorption mediated by serotonin (5-HT)-
suppressed sympathetic activity (Yan et al., 2018). In
addition, the probiotic with Lactobacillus reuteri in-
creases bone mass in rats, resulting from reduced intesti-
nal TNF-a expression (McCabe et al., 2013). Therefore,
probiotics could play a critical role in bone health and
related mineralization in heat-stressed animals. The
objective of this study was to investigate the effects of
a Bacillus subtilis–based probiotic on bone mass of
broilers subjected to cycling heat episodes. It was hy-
pothesized that probiotic supplementation would
improve bone mass in broilers under elevated
temperatures.
MATERIALS AND METHODS

Animals, Management, and Sample
Collection

A total of one hundred and twenty 1-day-old Ross 708
male broiler chicks (Miller Poultry, Orland, IN) were
used in this study. Chicks were randomly placed into
24 floor pens (152 cm ! 81 cm) with 5 chicks each in
an environmentally controlled room. The pens were
randomly assigned to 2 dietary treatments (n5 12): con-
trol diet (Table 1) and the control diet plus 0.25 g/kg
probiotic (Sporulin; Pacific Vet Group, Inc., Fayette-
ville, AR). Average BW were similar among all the
pens (control: 34.78 6 0.17 g, and probiotic:
34.92 6 0.16 g, P 5 0.55). The probiotic consists of 3
strains of Bacillus subtilis. The control diets were formu-
lated according to Aviagen’s formulations (2019) in
mash. The probiotic mixed diets were prepared based
on our previous studies (Yan et al., 2018), and the final
dose was 1.0 ! 106 spores/g of feed. All the diets were
sampled for bacterial analysis before each feeding period.

Each pen was equipped with 1 hanging feeder and
drinker. Feed and water were provided ad libitum.
Wood shavings were used as flooring material. Room
temperature was gradually decreased from 35�C on
day 1 by 0.5�C/d until 15 d of age at which time ambient
temperature was increased from 28�C to 32�C for 10 h
(07:00 h–17:00 h) daily until 44 d of age. The study
was conducted in the summer months from June to
July. Data loggers (HOBO; Onset Computer Corpora-
tion, Bourne, MA) were used for recording the room
temperature and humidity, and the data were presented
in Table 2. The lighting program was gradually
decreased from 23 light:1 dark (01:00–02:00 h) at 30
lux up to day 7, then 20 light:4 dark (01:00–05:00 h) at
10 lux until the end of this study.

The following samples were collected during the HS
time period. At 44 d of age, 1 bird per pen was randomly
picked, weighed, and then sedated using sodium pento-
barbital (30 mg/kg of BW, i.v.). A total of 8 mL of blood
was collected from each bird via cardiac puncture, with
5 mL placed into ice-cooled EDTA-coated plasma tube
and 3 mL placed into a serum tube. For plasma, the
blood samples were centrifuged at 1,500 ! g at 4�C for
15 min. For serum, the blood samples were kept at
room temperature for 30 min, and then centrifuged at



Table 1. The ration formulation.

Item Starter (Day 1–14) Grower (Day 15–28) Finisher (Day 29–44)

Ingredient, %
Corn 52 52.3 62.8
Soybean meal, 48% crude protein 40 39.1 29.7
Soybean oil 3.59 4.97 4.11
Sodium chloride 0.51 0.46 0.43
DL Methionine 0.3 0.24 0.23
L-Lysine HCL 0.13 — 0.07
Threonine 0.06 — —
Limestone 1.29 1.15 1.12
Monocalcium phosphate 1.75 1.48 1.17
Vitamin/mineral premix1 0.35 0.35 0.35

Calculated analyses
Crude protein % 23.4 22.8 19.2
ME kcal/kg 3,050 3,151 3,200
Ca % 0.95 0.85 0.75
Available P % 0.5 0.44 0.36
Methionine % 0.66 0.59 0.53
Methionine 1 cystine % 1.04 0.97 0.86
Lysine % 1.42 1.29 1.09
Threonine % 0.97 0.89 0.74
Na % 0.22 0.20 0.19

1Provided per kilogram of diet: vitaminA, 13,233 IU; vitaminD3, 6,636 IU; vitamin E, 44.1 IU; vitaminK, 4.5mg;
thiamine, 2.21 mg; riboflavin, 6.6 mg; pantothenic acid, 24.3 mg; niacin, 88.2 mg; pyridoxine, 3.31 mg; folic acid,
1.10 mg; biotin, 0.33 mg; vitamin B12, 24.8 mg; choline, 669.8 mg; iron from ferrous sulfate, 50.1 mg; copper from
copper sulfate, 7.7 mg; manganese from manganese oxide, 125.1 mg; zinc from zinc oxide, 125.1 mg; iodine from
ethylene diamine dihydroiodide, 2.10 mg; selenium from sodium selenite, 0.30 mg.
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1,500! g for 10 min. Samples of plasma and serum were
then stored at 280�C until assayed. The birds were
euthanized immediately after bleeding by cervical dislo-
cation. The left tibia and femur were collected and
placed in individual plastic bags, then kept at220�C un-
til assayed. The hypothalamus and raphe nuclei were
dissected, immediately frozen on dry ice, and then stored
at 280�C until assayed.
Bone Traits

The tibia and femur were measured for bone mineral
density (BMD), bone mineral content (BMC), and
bone area using a dual energy x-ray absorptiometry
(Norland Medical Systems Inc., Fort Atkinson, WI) as
previously described (Hester et al., 2013). The BMD
was calculated as BMC divided by the area of the
bone. After scanning, all the bones were boiled for
5 min, and then the soft tissues including meat, connec-
tive tissue, and the fibula bone were removed (Hall et al.,
2003). Bone weight, length, width, and cortical bone
thickness were determined using a digital micrometer
(Coolant Proof Micrometer Series 293; Mitutoyo Amer-
ica Corp., Aurora, IL). Bone weight to length index and
robusticity index were also calculated (Riesenfeld, 1972;
Seedor et al., 1991). In addition, 2 broilers per pen were
Table 2. The temperature and humidity at different ages of bir

Age

Temperature (�C)1

Day time (07:00–17:00 h) Night time (17:00–07:00

Day 15–28 31.89 6 0.61 26.43 6 0.72
Day 29–44 32.07 6 0.45 26.74 6 0.81

1Mean 6 SDs were presented.
used to perform the latency to lie test at 44 d of age
following the procedure descripted previously (Berg
and Sanotra, 2003).
Blood Analyses

Serum concentrations of osteocalcin (OC), c-terminal
telopeptide of type I collagen (CTX), ionized Ca, and
phosphate (Pi) were determined using the commercial
kits (MyBioSource, San Diego, CA; BioAssay Systems,
Hayward, CA). Plasma samples were used for detecting
concentrations of 5-HT, tryptophan, and cytokines of
IL-6, IL-10, TNF-a, and IFN-g using the commercial
ELISA kits (MyBioSource, San Diego, CA). All the
kits were used following the relative manufactural in-
structions. Plasma concentrations of CORT were
measured using the commercial 125I CORT radioimmu-
noassay kit (MP Biomedicals, Orangeburg, NY)
following the method described previously (Cheng
et al., 2001).
Brain Monoamine Analyses

Monoamines and their metabolites of the left hypo-
thalamus and raphe nuclei were analyzed using HPLC
(UltiMate 3000 RSLCnano System; Thermo Fisher
ds.

Humidity (relative humidity %)1

h) Day time (07:00–17:00 h) Night time (17:00–07:00 h)

52.21 6 1.72 55.02 6 1.77
56.83 6 1.39 59.16 6 1.65
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Scientific Inc., Waltham, MA). Each brain sample was
weighed and homogenized with ice-cold 0.2-M perchloric
acid at a 10:1 ratio (mL of perchloric acid:mg of sample).
The homogenized mixture was centrifuged at 18,187 g
for 15 min at 4�C. The resultant supernatant was drawn
into a microcentrifuge tube and diluted 1:1 with mobile
phase (MD-TM Mobile Phase, Thermo Fisher Scientific
Inc., Waltham, MA). The mixture was then centrifuged
at 18,187 g for 10 min at 4�C. The supernatant was
filtered through a 0.2-mm polyvinylidene fluoride filter
into a HPLC sample vial. The mobile phase flow rate
was 0.8 mL/min. The concentrations of 5-HT, trypto-
phan, 5-hydroxyindoleacetic acid (5-HIAA), dopamine
(DA), norepinephrine (NE), epinephrine (EP), 3,4-
dihydroxyphenylacetic acid (DOPAC), and homovanil-
lic acid (HVA) were calculated from its reference curve
made by using the relative standards. The 5-HIAA/
5-HT, DOPAC/DA, and the HVA/DOPAC turnover
ratios were additionally calculated as indexes of seroto-
nergic and dopaminergic activities, respectively.
Table 3. The effects of probiotic on bone traits of 43-day-old
broilers subjected to daily cycling heating episodes.

Item Control Probiotic SEM P value
Statistical Analysis

A one-way ANOVA of the mixed model procedure of
SAS 9.4 software (SAS Institute Inc., Cary, NC) was
used for the data analysis with probiotic treatment as
the fixed effect. The experiment unit was the pen
(n 5 12). Transformation of data was performed for
normality when variances were not homogeneous
(Steel et al., 1997). Statistical trends were similar for
both transformed and untransformed data; therefore,
the untransformed least square means and the SEM
were presented. Statistical significance was set at
P , 0.05, and tendency to a significant difference was
set at 0.05�P � 0.10.
Tibia
BMD (g/cm2) 0.167 0.176 0.001 0.07
BMC (g) 2.05 2.44 0.02 0.001
Area (cm2) 12.23 13.91 0.12 0.003
Weight (g) 6.50 9.04 0.22 0.01
Relative weight1 (g/kg) 3.37 4.09 0.09 0.07
Length (mm) 92.11 93.50 0.44 0.44
Width (mm) 8.17 9.31 0.11 0.02
Medial thickness (mm) 1.07 1.14 0.01 0.15
Lateral thickness (mm) 1.61 1.60 0.02 0.91
Weight/length index

(mg/mm)
70.29 96.87 2.37 0.01

Robusticity index (g, cm) 5.00 4.52 0.04 0.02
Femur

BMD (g/cm2) 0.142 0.145 0.001 0.56
BMC (g) 1.33 1.55 0.02 0.01
Area (cm2) 9.38 10.75 0.11 0.01
Weight (g) 5.42 7.45 0.22 0.03
Relative weight1 (g/kg) 2.80 3.38 0.09 0.13
Length (mm) 69.33 71.33 0.37 0.20
Width (mm) 8.51 9.19 0.09 0.07
Medial thickness (mm) 1.41 1.27 0.03 0.25
Lateral thickness (mm) 1.41 1.50 0.02 0.38
Weight/length index

(mg/mm)
77.85 103.74 2.66 0.03

Robusticity index (g, cm) 3.99 3.68 0.03 0.03

Least square means were presented (n 5 12).
Abbreviations: BMC, bone mineral content; BMD, bone mineral

density.
1Relative weight was calculated as bone weight in g divided by body

weight in kg.
RESULTS

Bone Traits

Compared to controls, the inclusion of probiotic signif-
icantly increased the BMC and area of tibia in broilers
subjected to elevated temperature (P 5 0.001 and
0.003; Table 3), with a tendency of higher BMD
(P 5 0.07). A tendency of higher relative tibia weight
was also noticed (P 5 0.07). The width of tibia was
also significantly increased by probiotic supplementa-
tion (P5 0.02), whereas the length and bone wall thick-
ness (both medial and lateral) were not changed. The
anatomical changes lead to greater weight/length but
lower robusticity indexes in the tibia (P 5 0.01 and
0.02) by the inclusion of dietary probiotic.
Similarly, the femoral BMC, area, and weight of

probiotic-fed broilers were significantly increased
compared with those of control diet-fed broilers
(P , 0.05), with a tendency of wider width
(P 5 0.07). The weight to length index of femur was
significantly higher, and the robusticity index was signif-
icantly lower (P 5 0.03).
The results of latency to lie test at day 44 were similar
between the probiotic-fed and the control broilers (pro-
biotic: 122.42 6 10.97 s; control:114.33 6 10.97 s;
P 5 0.85). Compared with controls, serum concentra-
tions of CTX (P 5 0.02; Figure 1) but not OC were
reduced in probiotic-fed broilers.

Blood Parameters

Serum levels of Ca (P 5 0.32) and phosphate
(P 5 0.14) were similar between probiotic-fed and con-
trol broilers (Table 4). There were also no treatment ef-
fects on the concentrations of blood 5-HT (P 5 0.50),
tryptophan (P 5 0.93), and CORT (P 5 0.42).

Brain Monoamines and Metabolites

In the raphe nuclei, the concentrations of 5-HT
(P 5 0.60), its precursor tryptophan (P 5 0.81), and
metabolite 5-HIAA (P5 0.46) were not affected by pro-
biotic supplementation (Table 5). In addition, probiotic
supplementation had no effects on the concentrations of
catecholamines (NE [P 5 0.83], EP [P 5 0.66], and DA
[P5 0.79]) and DAmetabolites (DOPAC [P5 0.74] and
HVA [P5 0.95]). The metabolic ratios of 5-HT, 5HIAA/
5-HT (P5 0.51), and DA, DOPAC/DA (P5 0.3), were
not different between treatments (P 5 0.51).

In the hypothalamus, there was no treatment effects
on the concentrations of 5-HT and catecholamines,
except for 5-HT and DA metabolites (Table 6). A ten-
dency for higher concentrations of DOPAC (P 5 0.10)
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and HVA (P 5 0.07) was found in probiotic-fed broilers
compared with controls. Probiotic-fed broilers also had a
tendency for higher concentrations of 5-HIAA
(P 5 0.08), resulting in a higher 5-HIAA to 5-HT ratio
(P 5 0.07).

Cytokines

The concentrations of TNF-a were significantly
decreased in broilers fed diet supplemented with the pro-
biotic (P 5 0.003; Figure 2) without effects on the con-
centrations of IL-6 (P 5 0.22), IL-10 (P 5 0.31), and
IFN-g (P 5 0.62) compared to control broilers.
Table 5. The effects of probiotic on catecholamines, 5-HT, and
respective metabolites in the raphe nuclei of 43-day-old broilers
subjected to daily cycling heating episodes (n 5 12).

Item Control Probiotic SEM P value

Catecholamine system
DA (ng/g) 106.69 103.08 2.00 0.79
NE (ng/g) 921.93 946.96 23.34 0.83
EP (ng/g) 156.46 161.41 5.71 0.66
DOPAC (ng/g) 52.32 53.29 0.71 0.74
DISCUSSION

The current heat episode 32�C/10 h/d (Lu et al., 2017;
Mohammed et al., 2018) or similar ambient conditions
32�C to 33�C for 8 h/d (Cheng et al., 2019) have been re-
ported to induce HS in broilers. In one of our parallel
studies, heat-stressed broilers showed the signs of
distress including panting, wing spreading, and squat-
ting close to the ground; and these HS-associated behav-
iors were reduced by the dietary inclusion of the
probiotic (Wang et al., 2018).

Numerous studies have demonstrated the function of
probiotics on bone health in humans and various animals
(Quach and Britton, 2017; McCabe and Parameswaran,
2018) including poultry (Houshmand et al., 2011; Ziaie
et al., 2011; Abdelqader et al., 2013; Fuentes et al.,
2013; Sadeghi, 2014; Yan et al., 2019b). However, the
Table 4. The effects of probiotic on serum parameters of 43-day-
old broilers subjected to daily cycling heating episodes.

Item Control Probiotic SEM P value

Calcium (mg/dL) 11.86 11.34 0.13 0.32
Phosphate (mg/dL) 2.06 2.19 0.02 0.14
5-Hydroxytryptamine (ng/mL) 35.81 31.33 11.44 0.50
Tryptophan (umol/L) 68.77 68.37 24.97 0.93
Corticosterone (ng/mL) 2.99 2.19 0.80 0.42

Least square means were presented (n 5 12).
bone-promoting effects of probiotics in poultry under
HS have not been widely evaluated, with one reported
increased bone mass of the tibia, femur, and humerus
in broilers after consuming a synbiotic mixed diet for
6 wk (Yan et al., 2019a). In the present study, our results
showed that the dietary inclusion of the probiotic, Bacil-
lus subtilis, increased the size, weight, and BMC of tibia
and femur in 43-day-old broilers under HS, but the
changes in BMD and bone wall thickness were not signif-
icant. The increase in BMC in broilers fed the probiotic
diet is most likely due to increased body weight as a
result of nutrient absorption and improved intestinal
integrity. As reported by one of our parallel studies, pro-
biotic supplementation had no effect on feed consump-
tion of broilers but improved group averaged body
weight (Wang et al., 2018). It has been reported else-
where that the inclusion of probiotics ameliorates the
negative effect of heat on gut health in broilers (Song
et al., 2014) and laying hens (Deng et al., 2012). In the
present study, the concentrations of Ca and phosphate
in broilers may be increased as a result of feeding the
HVA (ng/g) 156.39 155.82 2.40 0.95
DOPAC/DA 0.49 0.53 0.01 0.30
HVA/DOPAC 1.48 1.56 0.04 0.64

5-HT system
TRP (ng/g) 5753.77 5887.75 141.30 0.81
5-HT (ng/g) 472.39 448.69 10.97 0.60
5-HIAA (ng/g) 376.39 411.81 11.69 0.46
5-HIAA/5-HT 0.84 0.95 0.04 0.51

Least square means were presented (n 5 12).
Abbreviations: 5-HIAA, 5-hydroxyindoleacetic acid; 5-HT,

5-hydroxytryptamine; DA, dopamine; DOPAC, 3,4-Dihydroxyphenylacetic
acid; EP, epinephrine; HVA, homovanillic acid; NE, norepinephrine; TRP,
tryptophan.



Table 6. The effects of probiotic on catecholamines, 5-HT, and
respective metabolites in the hypothalamus of 43-day-old broilers
subjected to daily cycling heating episodes.

Item Control Probiotic SEM P value

Catecholamine system
DA (ng/g) 301.77 295.84 6.76 0.37
NE (ng/g) 1673.75 1780.36 28.71 0.11
EP (ng/g) 273.22 322.92 7.39 0.83
DOPAC (ng/g) 88.25 97.36 1.31 0.10
HVA (ng/g) 235.71 268.94 4.27 0.07
DOPAC/DA 0.30 0.33 0.01 0.23
HVA/DOPAC 0.80 0.92 0.02 0.19

5-HT system
TRP (ng/g) 5041.90 5609.00 107.84 0.21
5-HT (ng/g) 966.84 954.74 13.43 0.82
5-HIAA (ng/g) 275.33 328.64 7.21 0.08
5-HIAA/5-HT 0.28 0.35 0.01 0.07

Least square means were presented (n 5 12).
Abbreviations: 5-HIAA, 5-hydroxyindoleacetic acid; 5-HT,

5-hydroxytryptamine; DA, dopamine; DOPAC, 3,4-dihydroxyphenylacetic
acid; EP, epinephrine; HVA, homovanillic acid; NE, norepinephrine; TRP,
tryptophan.
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probiotic, but it could occur in bones without reflection
in the blood. Bone Ca was not measured in the present
study; however, highly positive correlation between
BMC and bone Ca has been reported for tibia and hu-
merus in laying hens (Robison and Karcher, 2019).
The effect of probiotic on serum Ca levels under thermo-
neutral condition has also been reported previously (Yan
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Figure 2. The effects of probiotic on systemic immune cytokines in 43
A, tumor necrosis factor-a (TNF-a); B, interleukin-6 (IL-6); C, interferon
ences P , 0.01.
et al., 2018), and Ca levels were increased in probiotic-
fed broilers at day 14 but not at day 43. On the other
hand, these results are not in line with our previous find-
ings that the Bacillus subtilis–based probiotic supple-
mentation significantly promoted BMD of the femur
and tibia under a thermoneutral condition (Yan et al.,
2018). Possibly, the elevated cycling temperature inves-
tigated in the present study impaired the effectiveness of
the probiotic to promote intestinal Ca absorption,
affecting the deposition of Ca along with phosphate
into bone tissues. HS-reduced Ca resorption in the intes-
tine has been found in laying hens (Hansen et al., 2004).

The results collected from the latency to lie test sug-
gest that probiotic supplementation does not improve
lameness of broilers reared under elevated temperatures.
The test has routinely been used as an indirect measure
of the leg strength, especially for assessing the severity of
lameness in broilers (Aydin et al., 2015). Under thermo-
neutral conditions, probiotics prophylactically can
reduce incidences of lameness in wire-reared broilers
(Wideman et al., 2012). The reasons without the treat-
ment effect found in this study are unclear but could
be related to water cooling effects. Heat-stressed broilers
may lie down in water quickly for cooling regardless of
water-associated stimulations, making it more difficult
to show diet treatment effects. The hypothesis may
further support that animals’ adaption to stressors is
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based on their biological needs, such as HS vs. water
stimulation, which is based on if the stressor affects an-
imal survival and reproduction (Chrousos and Gold,
1992). This hypothesis will be tested in future studies.

Osteoblasts synthesize and release OC to facilitate
bone mineralization and growth. Another role of OC is
to assist with maintaining Ca balance between the tissue
organs and blood (Zoch et al., 2016) under the influences
of the Ca-regulating hormones. In the present study,
there was no treatment effect on serum OC, which
may contribute to the findings of constant levels of circu-
lating Ca between probiotic-fed broilers and controls.
Besides increased availability of minerals and nutrients
needed for bone formation, other pathways, such as
reduced bone resorption, may also be involved in stimu-
lating bone growth and bone size traits in probiotic-fed
broilers under the HS condition. Serum CTX is often
used as a biomarker of bone resorption for evaluating
bone turnover in humans because circulating levels of
CTX are positively correlated with osteoclastic activity
(Song, 2017). In the present study, the lower concentra-
tion of serum CTX as compared to controls may indicate
that bone resorption is reduced in HS broilers fed probi-
otic diet, by which it may facilitate bone growth.

The effect of 5-HT on bone remodeling is dependent
on its source, central or peripheral synthesis. In the
brain, 5-HT is synthesized by the raphe serotonergic
neurons, while in the peripheral, 5-HT is synthesized
by the intestinal enterochromaffin cells (Fouquet et al.,
2019). Brain 5-HT, acting as a neurotransmitter, stimu-
lates bone formation and inhibits bone resorption, pro-
moting bone development and increasing bone mass,
whereas peripheral 5-HT, acting as a hormone, has an
opposite effect on bone remodeling, resulting in inhibi-
tion of bone formation (Yadav et al., 2009). In our pre-
vious study, we revealed that the reduced bone
resorption in probiotic-fed broilers reared under thermo-
neutral conditions is mediated by 5-HT–induced reduc-
tion of sympathetic activity (Yan et al., 2018).
According to the proposed underlying regulation, similar
to mammals (Koed and Linnet, 2000), probiotics upre-
gulate 5-HT synthesis in the raphe nuclei which is then
transported and released in the terminal areas within
the hypothalamus, inhibiting NE synthesis. The reduced
sympathetic outflow in turn contributes to reduced bone
resorption. The endogenous sympathetic outflow such as
releasing NE regulates bone remodeling, leading to
reduced bone formation and increased bone resorption
(Ma et al., 2013). A greater sympathetic activity has
been used as a risk factor for stress-induced bone deteri-
oration in humans (Kim et al., 2018) and mice (Baldock
et al., 2014). However, this proposed mechanism is not
upheld under the condition of cycling heating episodes
as there are no significant effects of probiotic on both
the peripheral and central 5-HT concentrations as well
as the central catecholamines (NE, EP, and DA) and
related metabolites. Other biological systems rather
than the 5-HT and catecholamine systems may be
involved in the regulation of bone remodeling in broilers
under the current rearing conditions.
The immune system and bone health are tightly linked
(Criscitiello et al., 2015), especially via the innate
immune-bone axis (Charles and Nakamura, 2014). The
activity of the RANKL/RANK axis is regulated by a va-
riety of cytokines. For instance, IFN-g, the main Th1
cytokine, functions to inhibit osteoclastogenesis
(Pappalardo and Thompson, 2013). IL-10 causes im-
mune response to inhibit osteoclastic bone resorption
and regulate osteoblastic bone formation (Fujioka
et al., 2015). In addition, some proinflammatory cyto-
kines, such as IL-6 (Yokota et al., 2014) and TNF-a
(de Vries et al., 2016), also involve in bone remodeling
through regulation of osteoclast formation. HS has
been shown to suppress immunity (Jahanian and
Rasouli, 2015), including a rapid change of circulating
cytokines. For instance, a study reported increased
TNF-a and IL-4 levels but decreased IFN-g and IL-2
levels in the spleen of chickens exposed to cycling heat
for 16 h daily (4 h of 23.9�C–37�C, 8 h of 37�C, and
4 h of 37�C–23.9�C) for 4 wk (Xu et al., 2014). Our re-
sults showed that compared with controls, probiotic sup-
plementation reduced the plasma concentrations of
TNF-a in HS broilers. Consequently, the lowered levels
of TNF-a may decrease osteoclast formation, which
was paralleled with the reduced serum CTX concentra-
tions, a bone resorption indicator, in the present study.
The reduced TNF-a expression was correlated to facili-
tated bone development and growth in probiotic-fed
broilers. In line with our findings, reduced TNF-a con-
centration or gene expression has been considered as
the major reason of improved bone mass in germ-free
mice or mice fed probiotic supplementations (Sjogren
et al., 2012; McCabe et al., 2013). In addition, probiotics,
such as Bacillus licheniformis, reduce HS-induced eleva-
tion of both serum TNF-a and CORT concentrations
(Deng et al., 2012). In the present study, however, there
was no probiotic effects on serum CORT concentrations,
which may suggest that the probiotic regulates bone
traits in broilers reared under HS mainly through the
downregulation of the circulating proinflammatory
TNF-a cytokine via the gut-microbiota-immune-bone
axis.
Dietary supplementation of Bacillus subtilis–based

probiotic promoted bone development, resulting in
larger and heavier leg bones in broilers under cycling
heat episodes. Mechanistically, the probiotic may inhibit
HS-induced osteoclastogenesis by suppressing TNF-a
expression to reduce bone resorption. The current find-
ings suggest that dietary probiotic supplementation
has a potential value as a management strategy for
increasing skeletal health in broilers, especially for those
reared at the tropical and subtropical locations.
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