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Tacit knowledge is the kind of knowledge that is difficult to transfer to another person by
means of writing it down or verbalizing it. In the mineral grinding process, the proficiency
of the operators depends on the tacit knowledge gained from their experience and
training rather than on knowledge learned from a handbook. This article proposed a
method combining the electroencephalogram (EEG) signals and the industrial process
to detect the proficiency of the operators in the mineral grinding process to reveal the
effect of tacit knowledge on the functional cortical connection. The functional brain
networks of operators were established based on partial direct coherence and directed
transfer function of EEG, and the multi-classifiers were used with the graph-theoretic
indexes of the FBNs as input to distinguish the trained operators (Hps) from the non-
trained operators (Lps). The results showed that the brain networks of Hps had a better
connectivity than those of Lps (p < 0.01), and the accuracy of classification was up to
94.2%. Our studies confirm that based on the performance of EEG features and the
combination of industrial operational operation and cognitive processes, the proficiency
of the operators can be detected.

Keywords: tacit knowledge, electroencephalogram, industrial process, functional brain network, graph theory

INTRODUCTION

Tacit knowledge is the opposite of explicit knowledge. It is a kind of knowledge that is difficult
to express to others by writing or using words (Schmidt and Hunter, 1993). In this study, it
is simply practical intelligence; for example, the practical intelligence on the operation of the
mineral grinding process can be obtained in training, rather than in some handbooks, guidelines, or
lectures (Cianciolo et al., 2006; Patalasmaliszewska and Sławomir, 2018). The training significantly
improves the generation of tacit knowledge while modulating the neural structure or function of
the brain. Therefore, the neural activity can be used as a measure of the tacit knowledge (Cianciolo
et al., 2006; Guo et al., 2017).

There was a lot of research on the correlation between tacit knowledge and the neural
signatures: Sanchez-Lopez et al. (2016) applied event-related potentials (ERPs) to investigate
the difference between the skilled and novice martial arts athletes during their motion-related
tasks, especially in the P100 and P200 components. Silva et al., used many assessments including
electroencephalogram (EEG) to verify the professionalism of the cyber security teams (Sanchez-
Lopez et al., 2016). Gallicchio et al. (2016) investigated the difference between expert golfers and
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novice golfers in the clustering state among the electrodes in
the high alpha rhythm and found that the functional connection
between left temporal and frontal regions was related to the
performance of the golfers: the connectivity of T7-Fz of the expert
golfers was weaker than that of the novice experts. Muraskin
et al. (2015) analyzed the difference in EEG when the expert
baseball players and the non-expert baseball players estimated
the opportunity of swing and found not only that the neural
activity in the supplementary movement area of the expert
baseball players was more inhibitory than that of the non-expert
baseball players but also that the sensor–motor coupling of the
expert baseball players was stronger than that of the non-expert
baseball players. Maddox et al. (2015) considered the gamma and
alpha rhythm as the indexes of the concentration and pressure
to estimate the proficiency of the surgeons in the laparoscopic
surgical simulation. The results suggested that the concentration
and pressure of the expert surgeons were higher and lower,
respectively. Luchsinger et al. (2016) found the difference in
neural activity in frontal theta rhythm between the expert and
the novice athletes. It is noticeable that all these methods of
studying neural activity are EEG. The reason why EEG is chosen
as a measure of neural activity corresponding to tacit knowledge
is that EEG is a relatively low-cost device that can record
the subject’s EEG during the task without any interruption. In
addition, EEG also provides a higher time solution to help analyze
changes in dynamic brain networks over time (Martis, 2013).

However, research on the relationship between the tacit
knowledge in the industrial field and the neural activity was
few. The tacit knowledge of human beings plays an essential
role in most industrial processes. Therefore, the purpose of
this study is to reveal the unknown connection between the
industrial process and the brain network hidden under the
operation training and to detect the operator’s proficiency by
analyzing the operator’s functional brain network (FBN) based
on the partial directed coherence (PDC) and the directed transfer
function (DTF) (Sameshima and Baccalá, 1999; Schelter, 2006;
Schelter et al., 2009; Florin et al., 2011). In addition, studying
the differences in the functional connection patterns of the
various brain regions of the high-proficiency operators and low-
proficiency operators at work will help to reveal the relationship
between human brain knowledge acquisition and brain function,
so as to understand the process of human brain cognition,
memory, and information processing. In terms of human–
computer interaction, the introduction of cognitive features
can help humans evaluate the proficiency of operators more
objectively and in advance.

In this study, PDC/DTF methods are employed to reveal
whether and how the structures are functionally connected,
thereby implying the difference in cognitive ability. In this
study, brain network is used to study the changes in the
brain function of the operators during work to reveal the
internal information flow of the operators’ brain, which helps
to understand the cognitive state of the operator in the process
of controlling grinding. Our studies confirm that based on the
performance of EEG features and the combination of industrial
operational operation and cognitive processes, the proficiency of
the operators can be detected.

MATERIALS AND METHODS

Experimental Procedure
The experiment was conducted in the State Key Laboratory
of Process Industry Automation of China, using a simulation
platform developed by Lu et al. (2014). The experiment process
is that the operators control the value of three grinding
variables to achieve a target grinding particle size (GPS) on
the ball mill grinding circuit simulator (see Figure 1). The
three variables that the operator should control are the feeding
capacity, feed-water quantity, and revolving speed of underflow
pump (see Figure 1: control parameters). It is a simulator
platform for industrial ball milling control, which can realize the
interference and control of process variables and product particle
size distribution.

Subjects and Training
There were two groups of subjects: high-proficiency operators
(Hps) and low-proficiency operators (Lps), the total number of
which was 20. Each group had 10 operators (Hps: 1 female and
9 males; Lps: 2 females and 8 males). All subjects are volunteer
students (mean age: 24 ± 2 years), are right-handed, and have
no reported history of neurological disease, neuropsychological
problems, or medication and drug abuse. All gave written
informed consent to participate in the study. In the experiment,
the mineral grinding platform was an open-loop control system,
which means that the operators did not monitor the grinding
particle size and did not know the effect of their operation.
The operational stage introduction of the simulation platform
to the two groups is the same. Hps were trained to operate the
simulation platform more than once a day (except weekends)
for 1 month, and each training time is 0.5–1 h. They would
learn more about the details of controlling process from the three
different values, such as the degree of influence on GPS, and have
the ability to estimate the value of GPS. Each operator had only
one chance to control the GPS to the target value during the
5-min experiment. After the training, a 10-point self-evaluation
report (1= low proficiency and 10= high proficiency) indicated
that Hps were successfully identified under the experimental
design because their scores were higher than 5 points.

EEG Recording and Preprocessing
In each trial, the subject is seated on a comfortable chair located
about 1 m in front of the computer screen. Each trial run lasted
for 5 min, and the subjects should try their best to achieve
the target GPS. The EEG of each subject was recorded when
he/she was controlling the mineral grinding process though
Neuroscan. The cap of Neuroscan has 37 electrodes (30 EEG
electrodes were distributed according to the International 10–
20 locations plus 4 EOG reference electrodes; 2 reference
electrodes were placed on the mastoid behind the ears, and 1
GND electrode was on the forehead) based on saline sensors.
The sampling rate is 1,000 Hz. The electrode impedance was
decreased by using saline liquid until the level required by the
software was reached (in the 10–20 k� range) and was checked
along the experiment.
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FIGURE 1 | The object is an operator of the mineral grinding process. His/her EEG is recorded while he/she is operating the ball mill grinding circuit stimulator
platform. Then, the FBN features are extracted from the EEG to detect the proficiency of the operator.

FIGURE 2 | General block diagram of the proposed system. (A) Electrode position; (B) EEG signal, where the horizontal axis represents time and the vertical axis
represents electrodes; (C) adjacent matrix, and the values in each cell represent PDC or DTF we calculated; (D) functional brain network.

The vision and execution are the key functions involved in
the mineral grinding task, which mainly refer to the prefrontal
and occipital regions of the cortex (Zeki et al., 1991; Duncan
and Owen, 2000), so in our experiment, only the eight EEG
electrodes FP1, FP2, F7, F8, F3, F4, O1, and O2 were used
(Figure 2A). The collected EEG signal is shown in Figure 2B.
All signals were low-pass filtered (cutoff frequency 50 Hz) and
then downsampled to 128 Hz to reduce the data size. For the
following calculation and classification, about 180 epochs with

1.5 s non-overlap were segmented and extracted uniformly from
each subject. Each epoch lasts for 1,280 points (10 s). Then, 3,343
epochs of EEG data were obtained to build FBNs.

Functional Brain Networks
The construction of the FBN is shown in Figure 3. There are
advantages to proposing FBN methods in the research of the
EEG, because the ability of the brain to conduct high-level
sensory and cognitive functions depends strongly on underlying
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interactions between two different brain functional regions
(Bullmore and Sporns, 2009). Although the analysis of structural
networks helps us to understand the fundamental architecture
of inter-regional connections, the functional networks must be
directly considered to elucidate how this architecture supports
neuro-physiological dynamics (Park and Friston, 2013; Coullaut-
Valera et al., 2014). The PDC/DTF methods are popular in the
analysis of the functional connection based on EEG signals in
recent years, and they are parametric methods to estimate the
causality among multi-channel signals with the consideration
of all channel signals’ influence. The two methods were named
by Kaminski and Blinowska (1991) and Baccala et al. (2001),
respectively. They can obtain more information than other
popular methods such as synchronization likelihood (Stam and
Van Dijk, 2002), fuzzy synchronization likelihood (Ahmadlou
and Adeli, 2011), and phase synchronization (Sauseng and
Klimesch, 2008; Gordon et al., 2012; Peraza et al., 2012;
Rangaprakash et al., 2013; Serletis et al., 2013) because they
are time-frequency and unsymmetrical methods. The value of
PDC/DTF is computed from parameters of the multivariate
autoregressive (MVAR) model based on the EEG recording. The
MVAR model is able to represent interactions among multi-
channel EEG signals in the form of linear difference equations.
It can be demonstrated that these methods lead to better
understanding of unsymmetrical connections between EEG
channels (Astolfi, 2007; Wang et al., 2007), and these methods
can be effectively used to estimate time- and frequency-varying
patterns of functional connectivity between cortical activations
(Astolfi, 2006). It has been proven that this method has
advantages in improving the reliability and importance of model
parameters. The FBN method based on PDC was also applied to
an analysis of mental fatigue (Sun et al., 2014), Parkinson’s disease
(Tropini et al., 2011), photosensitive generalized epilepsies
(Varotto et al., 2012), long-standing vegetative state (Varotto,
2014), and mental rotation task (Zhang, 2009). Blinowska et al.
(2013) propose DTF into construction of FBNs to analyze the
functional connection in working memory task.

Inspired by Cheung et al. (2009), the optimal model order
of the time-varying MVAR model was calculated by ARFIT
algorithm (Omidvarnia et al., 2011). Both the time-invariant
parameters of the MVAR model and its optimum order p were
estimated by ARFIT package. A time-varying N-variate AR
process of order p was expressed as:

 x1(n)
...

xN(n)

 = p∑
r=1

Ar

 x1(n− r)
...

xN(n− r)

+
 w1(n)

...

wN(n)

 (1)

Here, x is N-channel signal, w is a vector white noise, and the
matrices Ar are given by Cheung et al. (2009) and Omidvarnia
et al. (2011):

Ar =

 a11(r) · · · a1N(r)
...

. . .
...

aN1(r) · · · aNN(r)

 (2)

r = 1, 2. . ., p and their elements were estimated using the Yule–
Walker equation. The A value of PDC can be defined based on
the following transformation of the MVAR parameters (Ar) to the
frequency domain:

A(f ) = I −
p∑

r=1

Are−i2πrf (3)

PDC is computed as:

πij(f ) =
Aij(f )√

aH
j (f ) aj(f )

(4)

Here, aj (f ) indicates the jth column of the matrix A(f ), and
the superscript H is the Hermitian transpose. The value of PDC
is between 0 and 1, where a high value in a certain frequency band
reflects a directionally linear influence from channel j to channel
i in that band (Channel i← Channel j). the DTF was calculated
as follows (Kaminski and Blinowska, 1991):

vij(f ) =
Hij(f )√

hj(f ) hH
i (f )

(5)

where H(f ) = A−1(f ) is called transfer function matrix, and hi is
the ith row of the matrix H(f ).

In the left of the Figure 3, the matrices of PDC or DTF we
calculated were 3D [πij (f ) and vij (f ) were the elements of the 3D
PDC and the DTF matrix, respectively]. The two Ds of PDC or
DTF matrix were channels (i and j: FP1, FP2, F7, F8, F3, F4, O1,
and O2), and the third D was f : frequency (0–64 Hz). We divided
the third D into the following ranges: Delta (δ): 0.5–4.0 Hz, Theta
(θ): 4.0–8.0 Hz, Alpha (α): 8.0–14 Hz, Beta (β): 15.0–30.0 Hz, Low
gamma (γ): 30.5–50 Hz, All: 0–50 Hz, and then computed the
mean value of functional connectivity in different ranges. Hence,
the six matrices of different frequency ranges were computed and
plotted in Figure 3.

After calculating the adjacent matrix of each Hps and Lps,
a brain network can be established (Figures 2C,D). The brain
networks were built based on the matrices of PDC or DTF, which
were not symmetrical, and the brain networks were directed. The
vertices of the brain networks were electrodes. There were at
most two edges to link two vertices, one of which is red and the
other is blue. Red and blue edges indicate different directions,
and the width of the directed edge is proportional to the value
of the element in the matrix. In order to make the brain networks
look simpler and clearer, only the edges where the PDC or DTF
value is higher than the threshold (0.3) were drawn. Weak links
and non-significant links (below 0.3) may represent spurious
connections, and these links tend to obscure the topology of
strong and significant connections, so they are often discarded.
Therefore, there was no edge if the PDC or DTF value of a
combination was below 0.3.

After drawing the graph, the terms mean degree (D), global
clustering coefficient (C), and average characteristic shortest
path length (L) (Sporns, 2013) were proposed to quantitatively
measure density, connectivity, and even complexity of the
networks. The D of a graph is equal to the sum of the connectivity
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FIGURE 3 | The computation of the adjacent matrices from the PDC/DTF in the different frequency bands. The matrices of PDC or DTF we calculated were 3D [πij

(f ) and vij (f ) were the elements of the 3D PDC and the DTF matrix, respectively]. The two Ds of PDC or DTF matrix were channels [i and j: FP1 (Ch1), FP2 (Ch2), F7
(Ch3), F8 (Ch4), F3 (Ch5), F4 (Ch6), O1 (Ch7), and O2 (Ch8)], and the third D was f: frequency (0–64 Hz). We divided the third D into the following ranges: Delta (δ):
0.5–4.0 Hz, Theta (θ): 4.0–8.0 Hz, Alpha (α): 8.0–14 Hz, Beta (β): 15.0–30.0 Hz, Low gamma (γ): 30.5–50 Hz, All: 0–50 Hz, and then computed the mean value of
functional connectivity in different ranges. Hence, the six matrices of different frequency ranges were computed and plotted in the right of the figure. Due to the
different values between the two channels, eight channels were represented twice, as row and column headings.

of all the edges. The C is a measure of local structure. The L
measures the efficiency of the information transmission in the
network. The degree of a node is equal to the number of edges
linked to this node and represents centrality, which will help us
to find the key node in a graph and will be computed by function
(Sporns, 2013):

ki =
∑

j∈N,j6=i

wi,j (6)

where wi,j is the weight of edge from node i to node j, and N is
the set of all nodes in the graph. D is computed according to the
following equation (Sporns, 2013):

D =
∑

i∈N ki

n
(7)

where the n is the total number of the nodes. In a weighted
network, the C of the graph is computed according to the
following equations (Sporns, 2013):

ti =
1
2

∑
j,h∈N

(wi,jwi,hwj,h)
1/3 (8)

Ci =
2ti

ki(ki − 1)
(9)

C =
∑

i∈N ci

n
(10)

where ci is the clustering coefficient of node i. We consider the
inverse of the weight of edges as the distance of the edges:

du,v =
1

wu,v
(11)

The characteristic shortest path length from the node i to the
node j is computed according to the following equation (Sporns,
2013):

lij =
∑

auv∈gi→j

du,v (12)

where the gi→j is the set of edges that belong to the shortest path
from node i to node j. L is computed according to the following
equation (Sporns, 2013):

L =
1
n

∑
i/∈N

∑
j∈N,j 6=i li,j
n− 1

(13)

In this study, we applied D, C, and L as the characteristic values
for the FBNs based on the two methods, PDC and DTF. There
were 36 features in total, because there were six frequency bands
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and each frequency band has six features. Then, a series of
classifiers were used in classification analysis.

There were many classifiers involved to verify the property
of the features. To find the best classifier, in our research,
the typical classifiers based on various categories including
the approach based on distance K Nearest Neighbors classifier
(KNN), the approach based on statistical learning theory support
vector machines (SVM) with various kernels, and the functional
approaches logistic regression (LR) and decision trees (DT) were
adopted. Please refer to Chen et al. (2018) for more details about
these classifiers. Specifically, we use the Classification Learner
toolbox of Matlab R2017b to detect proficiency because it is easy
to operate and stable. The inputs of the classifiers were the feature
vectors (36 features for one segment) of 3,343 EEG segments, and
the targets were the proficiency of the operators (Hps and Lps).
The 10-fold cross-validation was used to verify the performance
of the classifications. We calculated the accuracy, precision, recall
rate, F1-score, and AUC (Kiymik et al., 2004) with the 10-fold
cross-validation.

RESULTS

Functional Brain Networks
Figures 4, 5 are the FBNs constructed in different frequency
bands by the PDC and DTF methods based on average adjacent
matrices of all EEG segments from two groups, respectively.
The method used to draw these graphs was described above.
Through the brain network, the flow direction and flow
rate of information is visible. It can be seen that the brain

FIGURE 4 | The average FBNs of the two groups and six frequency bands
based on the PDC method.

FIGURE 5 | The average FBNs of the two groups and six frequency bands
based on the DTF method.

connections of Hps are more than those of Lps for the FBNs
based on PDC, and the brain connections of the Hps were
stronger than those of Lps for the FBNs based on DTF. The
similarity between the two groups is that the connection of
the left hemisphere is stronger and more than the connection
of the right hemisphere, which is the same as the results
obtained by the PDC and DTF methods. Although the graph
is easy to observe, it is not convenient for further analysis.
Therefore, we introduced graph theory analysis to calculate the
D, C, and L of FBN.

Graph Theory Analysis
Figure 6 shows the boxplots of all graph-theoretic indexes of
the operators in the Hps and Lps. For DTF features (especially
L), the distribution of values was dispersive, which caused such
many abnormal values and such many overlapped values, which
means that each feature generated by PDC/DTF and graph theory
methods may not be suitable for classification on its own. The
comparison of the theoretical indicators of the same graph of
different groups generated by PDC and DTF on all the frequency
bands follows the same rules: L of the Hps was shorter than Lps,
and C of the Hps was higher than Lps. Generally, D of the Hps
was higher than Lps (p < 0.01, t-test, for α and γ with PDC, and
for γ with DTF).

Table 1 shows the correlation coefficients between all the
features and the target. The calculation of the correlation
coefficient is based on the Pearson correlation coefficient, and the
targets are the ground truth of Hps and Lps, respectively. The
correlation between the feature generated by the PDC method
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FIGURE 6 | The boxplot of the features (L, C, D) of the different frequency bands and different groups.

TABLE 1 | The correlation coefficient (r) and the significance (p) between the features and the target.

δ θ α β γ All

PDC L r −0.31 −0.35 −0.36 −0.41 −0.37 −0.39

p 6.58e-76 2.96e-98 2.68e-103 1.40e-133 1.62e-110 5.25e-124

C r 0.32 0.32 0.32 0.34 0.33 0.34

p 3.41e-79 1.63e-82 1.06e-81 1.36e-93 1.02e-83 3.93e-90

D r 0.26 0.26 0.27 0.31 0.28 0.30

p 5.95e-54 1.14e-52 6.58e-56 6.12e-76 1.80e-62 1.59e-69

DTF L r 0.04 0.06 0.05 0.05 0.03 0.04

p 1.21e-2 1.23e-3 6.2e-3 4.42e-3 8.09e-2 2.80e-2

C r 0.28 0.28 0.26 0.27 0.36 0.36

p 4.91e-61 4.35e-59 1.50e-53 1.31e-56 2.61e-105 4.01e-103

D r 0.29 0.28 0.28 0.31 0.36 0.36

p 2.00e-64 4.75e-60 8.49e-61 8.66e-76 1.80e-103 3.25e-101

Bold values indicate the best.

and the target is stronger than the correlation between the
feature generated by the DTF method and the target, and the
correlations of the L of the PDC were stronger than most other
features, while the correlations between the L of the DTF and
the target were weak. The correlation coefficient between the
features of the high-frequency band (β and γ) and the target
is stronger than that of the low-frequency band (δ, θ, and α)
(p < 0.05, t-test). The most target-related features were the L in
the β bands.

Figure 7 shows the scatters of all samples based on the
top three features. These three features were the L in β, all,
and γ frequency bands. All the three features were created
through the PDC method. The red points stand for the feature

values of EEG segments in Lps, while the blue points stand
for Hps, which means that the values of three indicators of
Hps are not always low, and the three indicators of Lps are
not always high. There are several points from the two groups
that are mixed together, which are difficult to recognize. All 36
features were involved in the feature vectors. The feature vectors
corresponding to the EEG segments from two groups are used for
classification analysis.

Classification
Table 2 shows the results of the classification. It can be found
that the highest accuracy of the test dataset was up to 94.2%
with the KNN classifier. As it can be observed in Table 2,
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FIGURE 7 | The scatters of all the sample vectors based on the top three features.

Fine KNN achieves a highest accuracy of 94.2%, a precision
of 94.4%, a recall of 94.2%, a highest F-score of 94.3%, and
an AUC of 0.94, indicating that it has the best classification
performance. Although the lowest accuracy of the test dataset was
63.4% with the Quadratic Discriminant classifier, most classifiers
could provide a good accuracy above 80%, which means that
the features generated by the combination of the PDC/DTF and
the graph-theoretic methods were effective and could be used as
indexes of the proficiency.

DISCUSSION

In order to recover the brain executive process of operators
with tacit knowledge, a method that combines brain cognition
process with industrial controlling process was proposed and
used to detect the proficiency of operators. The graph theory
analysis was used to measure the brain networks of the operators
based on EEG. The feature set containing D, C, and L of the
two methods in all the frequency bands was applied to the
classification analysis. The highest accuracy among all classifiers
is up to 94.2% (see Table 2).

Compared with our study, all previous studies in FBNs focused
on mental diseases, cognitive tasks, and different mental state.
As in most industrial processes, operators also play a vital
role in the mineral grinding process, but few people study
the mental state of industrial operators based on EEG signals.
In this study, FBN was applied to the industrial process to
detect the proficiency of operators. Because the operation of
mineral grinding was a complex process containing various
kinds of cognitive process instead of a simple singular cognitive
task, it was possible and reasonable that the results, which
are the indicators of brain networks based on PDC/DTF of
Hps, are higher than Lps. The results are in conflict with

the results of Deeny et al. (2009). They applied the EEG
coherence method to the analysis of the functional couples in
the visuo-motor tasks, and the result of their study is that
compared with novices, experts usually show lower coherence.

TABLE 2 | The performance of the different classifiers.

Classifiers Accuracy
(%)

Precision
(%)

Recall
(%)

F-score
(%)

AUC

Fine tree 80.7 83.5 79.5 81.5 0.85

Medium tree 76.3 81.4 74.5 77.8 0.82

Coarse tree 72.5 78.3 70.8 74.4 0.76

Linear discriminant 78.7 75.8 81.1 78.3 0.87

Quadratic discriminant 63.4 98.4 58.3 73.2 0.89

Logistic regression 80.5 80.3 81.1 80.7 0.88

Linear SVM 80.0 79.2 81.1 80.1 0.88

Quadratic SVM 89.1 87.1 91.0 89.0 0.96

Cubic SVM 93.9 93.8 94.2 94.0 0.97

Fine Gaussian SVM 93.5 94.6 92.7 93.7 0.98

Medium Gaussian SVM 84.3 80.9 87.3 84.0 0.92

Coarse Gaussian SVM 75.5 77.7 75.0 76.3 0.84

Fine KNN 94.2 94.4 94.2 94.3 0.94

Medium KNN 87.8 89.7 86.9 88.2 0.95

Coarse KNN 77.5 75.9 79.1 77.4 0.85

Cosine KNN 87.2 86.5 88.1 87.3 0.95

Cubic KNN 87.0 88.7 86.1 87.4 0.94

Weighted KNN 92.6 91.8 93.6 92.7 0.98

Boosted trees 82.9 82.8 83.4 83.1 0.92

Bagged trees 90.8 91.9 90.2 91.0 0.97

Subspace discriminant 77.1 75.1 78.9 77.0 0.86

Subspace KNN 93.7 93.7 94.0 93.8 0.98

RUSBoosted trees 77.2 82.6 75.1 78.7 0.85

Bold values indicate the best.

Frontiers in Neuroscience | www.frontiersin.org 8 July 2021 | Volume 15 | Article 690633

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-690633 July 8, 2021 Time: 20:1 # 9

Zhang et al. Study of Human Tacit Knowledge

In this study, the global indicators D, L, and C based on
graph theory were used to reveal the difference in brain networks
between Hps and Lps, which was different from other research
(Barry et al., 2002; Babiloni, 2011; Del Percio, 2011). They used
the coherence method to analyze the difference of functional
cortical connections between two groups of different states, and
paid attention to analyze specific connections of cortical regions
within each of the δ, θ, α, and β bands, to reveal details of the
activities of the specific cortical region. Their method was helpful
to reveal the function of specific brain regions, but compared with
such research focusing on specific connections, the global feature
was more stable. Because different subjects have differences in the
location of neural activity and brain function areas, particularly
based on the EEG method, the local features of the brain networks
(such as the PDC and DTF value between the signals collected
from two specific regions) are instable. Our results suggested
that the global clustering coefficient (C) and average of the brain
networks of Hps were higher than those of Lps, while the average
characteristic shortest path length (L) was opposite. These
parameters indicate that the network of Hps is a small-world
network, in which the speed of information transmission is faster.

There are some limitations in this study. The PDC/DTF
methods are linear methods and can be extended to assess but
not reveal the non-linear characteristic of the cortical activations.
Due to the intrinsic non-linearity of neuronal activity (Stam,
2005; Adeli et al., 2008; Vejmelka et al., 2010), the non-linear
method like non-linear Granger causality (He et al., 2014) will be
used in our study in the future. Moreover, although some cross-
validation and performance analysis have been provided, the
sample size of 20 participants still needs to be increased. Another
limitation of the study is that no evaluation of the connectivity
before the experiment was performed. Moreover, the reported
results were valid only as far as the EEG was recorded during
the sessions at the simulator. Based on the limitations discussed
above, the presumed equivalence of the neural features in the two
groups will be evaluated before training and whether different
hallmarks of connectivity between the two groups can be found
also in the EEG recordings during other tasks will be explored in
our future study directions.

According to the current result of this study, the FBN method
based on PDC/DTF could assist the analysis of proficiency of
the operators. Based on the analysis of the operator’s brain
network characteristics, we established the relationship between
the operational control proficiency and the EEG characteristics,
so the industrial control process information is linked to the
human brain cognitive characteristics. Additionally, we will apply
this detective system to the real-time grinding process and send
the proficiency of the operator as the prompt message to the
monitor in front of the operator in the future.

CONCLUSION

In this study, we applied PDC and DTF to build the FBN method
to extract the features for the detection of proficiency of operators
in the mineral grinding process. Furthermore, we revealed the
effect of tacit knowledge on the structure of functional neural
system during the task. The results suggested that the mean
degree (D), global clustering coefficient (C), and average of the
brain networks of Hps were higher than those of Lps, while the
average characteristic shortest path length (L) was the opposite
(p < 0.01, t-test). The feature vectors calculated based on the
brain networks built via the PDC and DTF method can be used
as the input of the classifiers to indirectly detect the proficiency
of operators, and the accuracy of the classification in the paper
was up to 94.2%.
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