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Social‑ecological filters drive 
the functional diversity of beetles 
in homegardens of campesinos 
and migrants in the southern Andes
José Tomás Ibarra1,2*, Julián Caviedes1, Tomás A. Altamirano1, Romina Urra1, 
Antonia Barreau1 & Francisca Santana1

Homegardens are coupled social‑ecological systems that act as biodiversity reservoirs while 
contributing to local food sovereignty. These systems are characterized by their structural complexity, 
while involving management practices according to gardener’s cultural origin. Social–ecological 
processes in homegardens may act as filters of species’ functional traits, and thus influence the 
species richness‑functional diversity relationship of critical agroecosystem components like beetles 
(Coleoptera). We tested the species richness‑functional diversity relationship of beetle communities 
and examined whether habitat structure across different levels, sociodemographic profiles, and 
management practices act as filters in homegardens in a Global Biodiversity Hotspot, Chile. For 
100 homegardens (50 campesino and 50 migrant), we sampled beetles and habitat attributes, 
and surveyed gardeners’ sociodemographic profiles and management practices. We recorded 85 
beetle species and found a positive relationship between species richness and functional richness 
that saturated when functionally similar species co‑occur more often than expected by chance, 
indicating functional redundancy in species‑rich homegardens. Gardener origin (campesino/migrant), 
homegarden area  (m2), structural complexity (index), and pest control strategy (natural, chemical, 
or none) were the most influential social–ecological filters that selectively remove beetle species 
according to their functional traits. We discuss opportunities in homegarden management for 
strengthening local functional diversity and resilience under social‑environmental changes.

Biological and cultural diversity have been recognized as inextricably linked, particularly in those nature-human 
coupled systems in which the interaction among multiple entities and actors allows their  synergy1,2. However, 
poverty, population growth, power inequalities, climate change, and latest emerging diseases have, in many places, 
led to question how possible it is to find and strengthen these  synergies3. Homegardens are peridomestic complex 
microenvironments in which useful plants are cultivated and are traditionally integrated within a larger coupled 
nature-human system known as agroforestry  system4. These social-ecological systems are sometimes cultivated 
for aesthetic reasons only, others include space for children to play, but most provide year-round resources for 
household needs such as nourishment, medicine, and income generation opportunities, while involving specific 
management  practices5,6.

Homegardens are composed of multiple farming components, which generate structurally complex habitats 
across vertical (e.g., multiple strata of roots, corms, bulbs and tubers, small annual and perennial plants, shrubs, 
and trees) and landscape levels (e.g., distance to a source of species)7–9. As such, structurally complex homegar-
dens have the potential to play an important role as biodiversity  reservoirs10,11. Scholars have paid great atten-
tion to the diversity of plants grown in homegardens in different countries, mainly in tropical social–ecological 
 systems7. The complex habitat structure of homegardens, the sociodemographic profiles of gardeners (e.g., cul-
tural origin), and their different management practices (e.g., use of agrochemical or organic pesticides), can act 
as social-ecological filters. These filters influence the taxonomic diversity (e.g., species richness) of small animals, 
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such as beetles (Arthropoda: Coleoptera), in many human biomes beyond the  tropics12–15. These social-ecological 
filters are defined as those coupled human-nature factors that selectively remove species according to their func-
tional  traits16–18. For example, homegarden area has been shown to filter arthropod species, and thus it structures 
community assembly in homegardens of  Indonesia19 and  India20. Furthermore, the diversification of management 
practices, including the use of pesticides, mediates the variation of beetle diversity in homegardens of  Mexico21.

Beyond the influence on species richness, social-ecological filters can also influence the functional roles 
played by beetles in agricultural systems such as pollination, nutrient cycling, and pest  control19,20,22,23. Thus, 
these filters determine the functional diversity of beetles, defined as the value, range, and relative abundance of 
beetle functional traits in a  community12,24. Theoretical and empirical studies have shown that species richness 
and functional richness (i.e., the volume of functional niche space filled by species in ecological communities), 
are expected to correlate from negligible to a one-to-one  relationship17,25. Species-rich communities are predicted 
to show a saturating “species richness-functional richness relationship” because of the presence of functional 
redundancy, which is the degree to which species resemble each other in their functional  traits26.

Homegarden social-ecological systems are places in constant adaptation to globalization and its correlated 
environmental changes (e.g., climate, water scarcity, arrival of new species and technologies, etc.)27–29. Globali-
zation has shifted the relationship between urban and rural shifting from unidirectional migration (rural exo-
dus) to bidirectional  circulation30. As a result, in many locations it is possible to find recently arrived migrants 
co-inhabiting the same territories with local indigenous and non-indigenous campesinos (i.e., peasant farmers 
who were born and have been living in the territory most of their lives; they work small plots, with the family 
constituting most or all of the labor). Lifestyle migrants are urban people who voluntarily relocate to rural areas 
pursuing a greater connection with nature and are rapidly settling in many rural locations  worldwide31. Many 
lifestyle migrants have incorporated homegardens into their livelihoods, but their socio-demographic profiles 
and management practices may influence contrasting patterns of both taxonomic and functional biodiversity 
in homegardens, in comparison to local  campesinos32,33.

Andean temperate ecosystems, a Biodiversity Hotspot in south-central  Chile34, are globally exceptional for 
their high rates of endemism of flora and fauna while supporting a relatively species-poor  fauna35. Here, studies 
on the relationship between species richness and functional diversity, only available for mammals and birds, 
have reported a low functional  redundancy36,37. In these largely modified landscapes, homegardens may play 
a significant role in helping to sustain local livelihoods while maintaining the resilience of beetle diversity 
and ecosystem functioning. Beetles are essential functional components of ecosystems as they provide critical 
human-derived  services38,39. However, this group is globally declining at an alarming  rate40,41 and information 
on species ecosystem functioning remains largely undocumented, especially in globally threatened ecoregions 
such as Andean temperate  ecosystems42–46.

In this study we (i) test the species richness-functional diversity (functional richness) relationship of beetle 
communities. We predicted that, because these temperate ecosystems are a species-poor system, homegardens 
will show an accelerating species richness-functional richness relationship and correlated low functional richness 
and low redundancy in beetle communities. We further (ii) examine whether habitat structure across different 
levels, sociodemographic profiles, and management practices act as social-ecological filters in homegardens in 
southern Andean temperate ecosystems. We predicted that habitat structure, sociodemographic profiles, and 
management practices act as social-ecological filters in homegardens, and thus selectively remove species accord-
ing to their functional traits in this Global Biodiversity Hotspot.

Results
In this study in southern Andean homegardens, as part of larger agroforestry systems, we found that campesinos 
were older (59 ± 13 vs. 49 ± 15 years) and more experienced gardeners (35 ± 20 vs. 10 ± 10 years of experience) 
than migrants. Homegardens tendered by campesinos were larger (394 ± 320  m2) than those from migrants 
(235 ± 227). Further, campesinos managed homegardens with higher values for the index of structural complexity 
(1.4 ± 0.4) than homegardens from migrants (0.9 ± 0.4).

Beetle species richness‑functional diversity relationship. We recorded 85 beetle species in homegar-
dens. Species richness (median with interquartile range in parenthesis) was 9 (5), with values ranging from 2 to 
20 across homegardens. According to their main foraging guild, 49 species (57.6%) were considered beneficial 
while 36 (42.4%) were classified as harmful to agricultural production. Beetle functional richness (FRic) was 
strongly correlated with species richness by a polynomial regression  (r2 = 0.64; p < 0.01; y = 0.20 + 0.85x −0.26x2; 
Fig. 1) that started to saturate at the highest species-rich homegardens.

Beetle species richness and social‑ecological filters. The models with highest support (Δ AIC ≤ 2) 
for species richness contained two to three social-ecological filters (i.e., homegarden area, gardener origin, 
homegarden structural complexity; Table 1a). Model selection showed that species richness was positively cor-
related with homegarden area  (m2; Fig. 2a; best supported model with estimated β = 0.007) and homegarden 
structural complexity (Fig. 2c; β = 1.372). Best models also supported an association between gardener origin 
and species richness (Table 1a); the latter were higher in campesino than in migrant homegardens (Fig. 2b). 

Beetle relative abundance and social‑ecological filters. Beetle relative abundance (60.8 ± 71.8) 
ranged between 2 and 421 individuals per homegarden. The models with highest support for relative abun-
dance contained area, origin, and pests as the most important social-ecological filters (Table 1b). Model selection 
showed that relative abundance was positively correlated with homegarden area  (m2; Fig. 2a; best supported 
model with estimated β = 0.065). Best models also supported an association between gardener origin and relative 
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Figure 1.  Estimated association between species richness and functional richness for 50 campesino (blue 
dots) and 50 migrants (yellow dots) homegardens for 85 species in beetle communities in Andean temperate 
ecosystems, southern Chile. Graphs were generated using R software version 4.0.4 (R Core Team, 2021. R: A 
language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 
https:// www. Rproj ect. org/).

Table 1.  Ranking of models for species richness, relative abundance, and functional richness as a function of 
social-ecological filters. Season and locality were random terms in all tested models. Model structure in bold 
indicates the best models with equivalent support. aNumber of parameters estimated; bDifference in AICc 
values between each model and the lowest AICc model; cAICc model weight; dLog likelihood.

Model structure Ka AICc ∆AICb Wi
c LLd

a) Species richness

Area + Complexity 6 514.2 0.00 0.291 − 250.632

Area + Origin + Complexity 7 516.2 1.99 0.108 − 250.466

Area + Origin 6 516.2 2.07 0.103 − 251.667

Area 5 516.3 2.10 0.102 − 252.818

Area + Complexity + Crop richness 7 516.4 2.21 0.096 − 250.578

Area + Complexity + Pests 8 516.9 2.76 0.073 − 249.669

Area + Origin + Complexity + Crop richness + Pests 8 518.5 4.28 0.034 − 250.430

b) Relative abundance

Area + Origin + Pests 7 1119.7 0.00 0.491 − 552.216

Area + Origin 5 1120.4 0.71 0.345 − 554.863

Area 5 1123.5 3.79 0.074 − 556.405

Origin + Pests 6 1124.5 4.88 0.043 − 555.816

Area + Pests 7 1124.8 5.19 0.037 − 554.809

Origin 4 1127.19 8.24 0.008 − 559.738

Pests 6 1130.9 11.20 0.002 − 558.977

c) Functional richness

Area + Origin 5 − 194.8 0,00 0.252 102.752

Area + Origin + Pests 7 − 194.8 0.03 0.248 105.052

Area + Origin + Complexity 6 − 193.9 0.95 0.156 103.419

Area + Origin + Complexity + Pests 8 − 193.7 1.07 0.148 105.730

Area + Complexity + Pests 7 − 193.2 1.60 0.113 104.266

Area + Pests 7 − 190.4 4.37 0.028 102.879

Area + Complexity 6 − 190.3 4.49 0.027 101.649

https://www.Rproject.org/


4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:12462  | https://doi.org/10.1038/s41598-021-91185-4

www.nature.com/scientificreports/

abundance (Table 1a); the latter was higher and positive in campesino homegardens (mean ± SD = 77.9 ± 78.6; 
β = 79.26) and smaller and negative in migrant homegardens (43.2 ± 60.1; β = − 38.32) (Fig. 2b). Beetle relative 
abundance was positively correlated with using a natural (mechanical by hand or using biopreparations) pest 
control strategy (β = 78.00) and negatively correlated with chemical control (β = − 44.63), while no control did 
not have an effect on beetle relative abundance. Structural complexity did not have an effect on beetle relative 
abundance (Fig. 2c).

Beetle functional richness and social‑ecological filters. Beetle functional richness (0.22 ± 0.09) 
estimates ranged between 0.01 and 0.35 per homegarden. The models with highest support for functional 
richness contained the following social-ecological filters: homegarden area, structural complexity, origin, 
and pests (Table  1c). Functional richness was positively correlated with homegarden area  (m2; Fig.  2a) and 
homegarden structural complexity (Fig. 2c; β = 0.024). Best models also supported an association between gar-
dener origin and functional richness (Table 1c); the latter was higher and positive in campesino homegardens 
(mean ± SD = 77.9 ± 78.6; β = 0.25) and smaller and negative in migrant homegardens (43.2 ± 60.1; β = − 0.07; 
Fig. 2b). Beetle functional richness was positively correlated with natural pest control (β = 0.20) and by none 
control strategy (β = 0.05). Chemical control did not show an effect on beetle functional richness.

Spatial projections of beetle diversity. The resulting projections of beetle diversity indicated, graphi-
cally, a zone of high values for beetle relative abundance to the east of the study area (Fig. 3b). The spatial projec-
tions for beetle species richness and functional richness did not reveal a clear pattern of areas with high values 
for these parameters. Anyhow, this analysis indicated a relative spatial mismatch between estimates of beetle 
species richness, relative abundance, and functional richness in the study area (Fig. 3).

Figure 2.  Response of beetle species richness (number of species per homegarden), relative abundance (total 
number of individuals per homegarden), and functional richness (FRic value) to the most influential social-
ecological filters in homegardens, including (a) homegarden area, (b) gardener origin, and (c) homegarden 
structural complexity in Andean temperate ecosystems, southern Chile. Graphs were generated using R software 
version 4.0.4 (R Core Team, 2021. R: A language and environment for statistical computing. R Foundation for 
Statistical Computing, Vienna, Austria. https:// www. Rproj ect. org/).

https://www.Rproject.org/
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Discussion
This study extends previous research on the relationship between biodiversity and ecosystem functioning, 
acknowledging that homegardens, as part of larger agroforests, are coupled social-ecological systems in which 
biodiversity has the potential to thrive. We found that several beetle species may be performing similar roles (i.e., 
are functionally redundant) in southern Andean homegardens with relatively high number of species. Thereby, 
if some go locally extinct (removed from a diverse homegarden) this will likely not produce substantial loss in 
agroecosystem  function47. This result associates with the observed steep relationship between beetle species 
richness and functional richness, in relation to a random expectation, that started to saturate with relatively 
high beetle  richness48,49. This finding suggests that homegardens with high functional redundancy will be more 
resilient to shifts in social-ecological  filters50–52.

Beetle species richness‑functional diversity relationship. Our recorded total number of species 
is only a subset of the total species recorded or likely to occur in nearby temperate forest  ecosystems42–45,53. 
However, remarkably, and contrary to our expectations, we found that beetle communities in southern Andean 
homegardens have a relatively high functional richness and functional redundancy. This result is not charac-
teristic of systems generally considered as “species-poor”36,37,54,55. Andean temperate ecosystems are relatively 
impoverished in terms of faunal species richness in comparison to other tropical, subtropical, Mediterranean, 
and temperate ecosystem  types43. During the Pleistocene (most recent period of repeated glaciations), immigra-
tion of species from tropical latitudes was not able to compensate for the extinction of local biota resulting from 

Figure 3.  (a) Land cover and location of studied homegardens (campesino = blue dots, migrant = yellow dots) 
in Andean temperate ecosystems, southern Chile. Projection of (b) beetle species richness (number of species 
per homegarden); (c) relative abundance (total number of individuals per homegarden), and (d) functional 
richness (FRic value) in the study area. In (b–d), red shows areas of higher estimated values while yellow depicts 
areas of lower estimated values. Maps were generated using R software version 4.0.4 (R Core Team, 2021. R: A 
language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 
https:// www. Rproj ect. org/).

https://www.Rproject.org/
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the contractions on the distribution of temperate  forests56. Climatic change and geographic barriers, such as the 
Andes mountain range and the Atacama Desert, resulted in a net loss of species during the Pleistocene, espe-
cially of faunal groups with tropical  lineage57. While little is known about biogeographic distribution of beetles in 
the southern temperate  ecoregion42,58–60, our study shows that small-scale patches of habitat, like homegardens, 
can be both taxonomically and functionally rich.

Our results support the idea that functional diversity is not only correlated with the pool of species occurring 
in beetle communities (first objective of our research: species richness–functional richness relationship). Beetle 
functional diversity is also influenced by social-ecological filters, which are coupled human-nature factors that 
selectively remove species according to their functional traits, likely through shifting the intensity and magni-
tude of competition in biological  communities23,61,62. In accordance with other studies, the observed relative 
spatial mismatch for diversity parameters in the study area (shown graphically in Fig. 3), challenge the use of 
any diversity component as a surrogate for other parameters in agroecology, land-use planning, and biodiversity 
 conservation37,63.

Gardener origin and beetle communities. We found that gardener cultural origin (indigenous and 
non-indigenous campesino vs. lifestyle migrant) might influence both the taxonomic and functional diversity of 
beetle communities in homegardens. Our result supports previous studies exploring the role of gardener origin 
on the composition, structure, and functioning of homegardens, as the latter usually reflect many aspects of the 
food system, tastes, and agricultural traditions of people co-occurring in an  area19,64. For instance, differences 
in both crop species and intensity of management practices are correlated with the gardener origin in Vietnam-
ese  homegardens64. Number of management practices and homegarden area are different among migrant and 
non-migrant homegardens and both social-ecological filters differentially influence beetle functional groups in 
Indonesian  homegardens19. While we acknowledge that homegarden attributes are likely influenced by several 
factors beyond gardener  origin7, our study sheds light on some of the underlying social-ecological filters explain-
ing variation in the taxonomic and functional diversity of beetles in campesino and migrant homegardens of the 
southern Andes.

Homegarden area, structural complexity, and management correlate with beetle taxonomic 
and functional diversity. We found support for our prediction that homegarden area leads to an increase 
in beetle species richness, relative abundance, and functional richness, a result in accordance with the few studies 
dealing with taxonomic and functional diversity of beetle communities in  homegardens20,21. The long-standing 
Island Biogeography  Theory65 provides a framework for examining the underlying forces shaping community 
assembly and species loss in homegardens. For example, beetle communities shaped in coupled social-ecological 
systems like homegardens may be chiefly determined by local extinctions, with smaller homegardens likely 
exhibiting the highest extinction rates of  species41,66.

Furthermore, the distribution of traits as a function of habitat area extends the Island Biogeography Theory 
beyond the traditional species–area  relationship67. Social-ecological filters may perform as non-random processes 
that act on beetle species traits including the influence of local habitat conditions on species’ fitness and ecological 
interactions, such as competition, mutualisms, and other trophic  associations23,38,39,68. For example, larger and 
heavier species that require relatively large territories or species with limited dispersal ability will have a higher 
likelihood of local extinction in response to a shrinking homegarden  area69,70. Therefore, only subgroups of spe-
cies sharing akin functional traits (i.e., appearing functionally clustered) will be able to persist or outcompete 
other species on small  habitats67,68. In our study, for example, relatively large species like Apterodorcus bacchus 
and Calosoma vagans were never recorded in homegardens with an area smaller than 150  m2. In the southern 
Andes, homegarden area is definitely a non-random process. While campesinos generally have properties that 
are still larger than migrant ones, historical and contemporary processes of encroachment into indigenous and 
non-indigenous campesino way of life and the land upon which they live has been correlated with changes in 
agricultural practices and a decreasing trend in the area of agroforestry systems, including  homegardens71.

As shown, larger homegardens likely provide more resource opportunities and they should tend towards being 
more representative of the regional pool of species or if there is high habitat structural  complexity4,72. Indeed, 
we found that homegarden structural complexity was positively correlated with both taxonomic and functional 
diversity parameters. Generally, homegardens are complex microenvironments composed of multiple strata that 
generate diversified niches for multiple species and, likely, functional traits to  coexist19. Interestingly, homegar-
den structural complexity was correlated with the homegarden age (Spearman > 0.6), the latter measured as the 
number of years that the homegarden has been in the same spatial location. Therefore, the oldest homegardens 
are located in the farms that have the longest history of settlement in the study area. Older homegardens, man-
aged by local campesinos who have lived longer in the area, will generally host more vegetation layers including 
annual crops and perennial trees than homegardens owned by migrants, and will thus resemble the complex 
surrounding forest  ecosystems7.

Structurally complex homegardens will not only increase the functional niche space filled by species in beetle 
communities and enhance beneficial organisms, such as pest-control predators, pollinators, and seed  dispersers13, 
they will also be more important carbon sinks than those that are structurally simplified and lack  trees73. In a 
complexity science context, this result suggests that these small-scale systems have a social-ecological memory 
in which older and structurally complex homegardens act as long-lived system entities whose presence continues 
to influence compositional, structural, and functional states of the system over  time51.

Using a natural (mechanical by hand or using biopreparations) pest control strategy positively influenced 
beetle functional richness and relative abundance, while chemical pesticides negatively correlated with functional 
richness. These results should be viewed with caution because it may be interpreted that controlling insects using 
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natural strategies can potentially increase phytophagous beetles. However, we have recorded that controlling 
beetles that damage crops by hand is a widespread strategy (mostly to control Epicauta pilme) which reduces 
damage while increasing the relative abundance of benefic beetles (pollinators like Cantharis variabilis and pest 
controllers like Eriopis connexa; J. T. Ibarra Unpublished Data). The systematic use of pesticides in agriculture 
over the past decades has negatively impacted insect  populations74, a pattern also reported for  homegardens20, 
with persistent negative effects on biodiversity and biological control  potential75. In our study area, campes-
inos report a higher use of pesticides than migrants because the former have been provided for decades with 
agro-chemicals (fertilizers, pesticides, herbicides, and hybrid seeds) by extension agents from governmental 
 programs33. However, campesinos and migrants are progressively dismissing the use of agro-chemicals as a result 
of an increasing adoption of agroecological practices not only limited to chemical-free agriculture but also as an 
alternative movement for the defense and re-signification of rural  areas32,33.

Recommendations for gardening while sustaining beetle diversity. Beetles are globally declin-
ing, principally, because of habitat loss and conversion to intensive agriculture. Paradoxically, beetles comprise 
many predator, pollinator, and saprophytic species of outstanding importance for agroecosystem functioning. 
Homegardens, usually multifaceted, can be oriented towards building synergies between local food sovereignty 
or income generation depending on the concerns of the family and biodiversity. Our results highlight the impor-
tance of increasing the size of homegardens as much as possible and promoting the cultivation of a multi-layered 
arrangement of crops (e.g., combination of roots and tubers, small annual and perennial plants, shrubs, and 
trees) that will increase habitat structural complexity across years, and thus resources for a diversity of bee-
tle species, that will resemble with surrounding forests. Agricultural and environmental governmental agen-
cies charged with supporting small-scale agriculture should discourage the use of pesticides to control beetles 
and other insects, as these chemicals likely have negative effects on ecosystem functioning and biological con-
trol potential. Furthermore, our results highlight the importance of incorporating campesino (indigenous and 
non-indigenous) agroecological knowledge on biodiversity friendly agroforestry management in homegardens. 
These measures may contribute to maintain ecosystem functioning, local livelihoods, and the resilience of beetle 
communities in times of rapid social-environmental changes.

Methods
Study area. The study was conducted in the Villarrica watershed in 30 different human settlements (locali-
ties) within the municipalities of Loncoche, Villarrica, Pucón, and Curarrehue in the Andean zone of the La 
Araucanía Region, a Global Biodiversity Hotspot in southern Chile (39.42° S 71.94° W). The area has a temperate 
climate with a short dry season (< 4 months) during the southern hemisphere summer (December to March). 
Over the last decade, the mean annual temperature has been 12° C with temperatures varying from 0.8 °C to 
28 °C and mean annual precipitations of 2143 mm (http:// explo rador. cr2. cl/). The area has volcanic and moun-
tainous topography with vegetation dominated by Nothofagus obliqua at lower elevations (200–1000 m) and 
mixed deciduous Nothofagus pumilio with the conifer Araucaria araucana at higher elevations (1000–1500 m). 
The landscape, dominated by native temperate forests, comprises a mosaic where small-scale agroecosystems 
(homegardens, orchards, and chacras/potato fields) mix with pasture lands, lakes, rivers, non-native tree mono-
cultures as well as volcanoes and  mountains72.

Study design. All methods were carried out in accordance with relevant guidelines and regulations. The 
study was approved by Scientific Ethics Committee of the Pontificia Universidad Católica de Chile (Resolu-
tion #160415004). We conducted homergarden surveys and interviews to gardeners after obtaining prior 
informed consent from each one of them. Fieldwork was conducted in two field seasons during the summer 
season between December and February of 2016–2017 and 2017–2018. In total, we studied 100 homegardens 
(50 homegardens from Mapuche indigenous and non-indigenous campesinos were surveyed the first field sea-
son and 50 homegardens from lifestyle migrants were surveyed the second field season). Mapuche indigenous 
and non-indigenous campesinos were grouped together because the latter are people who were born, live, and 
work in the territory, often in close relationship with Mapuche families; their agriculture resembles and inte-
grates the Mapuche traditional agricultural  system33. For their part, lifestyle migrants are people who migrated 
during adulthood from an urban setting to the study  area32. We used successive-referral sampling as our non-
probability recruiting  method76,77. The criteria for selecting a homegarden for study was that its main purpose 
was family consumption and that it was at least two years old.

Homegarden habitat, sociodemographic profiles, and management practices. We identi-
fied all the crop species intentionally cultivated in each of the 100 homegardens and visually estimated the 
ground cover (%) of each crop vertical stratum through guided walks with gardeners (Table 2;78). We measured 
homegarden area  (m2) and used a handheld GPS to record the homegarden spatial location (geographic coor-
dinates). We used Google Earth (Map data ©2021 Google, Maxar Technologies) images to measure the distance 
from the homegarden to the nearest native forest edge (normally seen as a clear-cut line between forest and a 
different land cover; e.g., pasture). We further conducted structured interviews with data on sociodemographic 
profiles and management practices, including gardener origin, age, gardening experience, homegarden age, and 
pest control strategies (Table 2; 19,77,79).

Beetle sampling. We quantified beetle species richness (number of species per homegarden) and relative 
abundance (number of individuals per homegarden) using pitfall traps and sweeping nets to maximize the rep-
resentation of the  assemblage19,42,80. To determine an adequate sampling effort of beetles at each homegarden, 

http://explorador.cr2.cl/
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we constructed sample-based rarefaction accumulation curves for both sampling methods. We considered an 
adequate sampling effort when there was no longer an increase in species as individuals  accumulated81.

We randomly deployed four pitfall traps every 25  m2 with a maximum of 16 traps (determined through 
accumulation curves) for three nights per  homegarden19. We deployed traps between 8:00–11:00 am and were 
collected at the same time the fourth day. Each trap was buried 12 cm, had a diameter of 7.3 cm and was placed 
at the soil surface. Traps were filled to a third of their capacity with an ethylene glycol solution and covered by a 
suspended lid. For sweep netting, we performed one 10 m transect of 1.5 min every  25m2 of homegarden with 
3 m between transects and a maximum of nine transects per homegarden (determined through accumulation 
curves; Lister and Garcia 2018). We performed sweep netting transects from 12:00 to 16:00 on clear days with 
temperatures ranging from 15 °C to 25 °C. In total, we deployed 1.410 pitfall traps over 371 nights and con-
ducted 371 sweep netting transects. We collected all beetle individuals and identified at the species level utilizing 
dichotomous keys in guides and the Coleoptera reference collection available at the Natural History Museum of 
Chile. Finally, we measured the length of a minimum of three individuals per species for functional trait analysis 
(below in section “Beetle traits and functional diversity”).

Beetle traits and functional diversity. We used three traits of beetle species, including two categorical 
(foraging guild and habitat-use guild) and one continuous (body weight) measures (Table 3). These traits are 
correlated with resource use by species and are mechanistically linked to ecosystem functioning (e.g., quantity, 
type, and strategies for obtaining resources by each species; Table 3). For example, foraging guild has been used 
for linking resource production and disruption to beetle  diversity82,83. Data on foraging guild and habitat-use 
guild were extracted from 34 bibliographic references  (including84–92, among others). For its part, body weight 
has been utilized to show how environmental change has indirectly precipitated a bottom-up trophic cascade 
and consequent collapse of the food-web  structures93. Body weight for each beetle species was calculated from 
measured body lengths using the function proposed by (Johnson and  Strong94: 

According to their foraging guild, we classified each species as mainly beneficial (predator, pollinivorous, 
saprophagous, mycetophagous) or harmful (phytophagous, xylophagous) for homegarden production. Finally, 
we quantified functional diversity using the metric functional richness (FRic)24. FRic was calculated using the 
beetle traits (Table 3) and the presence/absence of each species per homegarden. We calculated FRic using the 
program R-FD95.

Data analysis. We used Generalized Linear Mixed-Effect  models96, implemented in the packages  lmer97 
and AICcmodavg  packages98 in R software version 4.0.499 (R Development Core Team, 2021). We first tested the 
species richness-functional diversity relationship by regressing species richness against FRic. Then, we examine 
the association between a dependent variable and independent variables (fixed effects; social-ecological filters; 
Table 2) collected in grouped units at different levels (random effects; season and locality). We first assessed col-
linearity to reduce the number of independent social-ecological filters presented in Table 2. With strongly cor-
related social-ecological filters (Spearman’s r > 0.6), we kept for analysis either the one considered to be most eco-
logically influential for the studied taxa or the most feasible to implement in management practices (Table 2). We 
examined the fixed effect of homegarden area, crop richness, structural complexity, distance to forest, homegar-
den age, gardener origin, and pest control strategy on the following dependent variables: beetle species richness, 
relative abundance, and FRic. To find the best models for our dependent variables, we generated a candidate set 
of models based on model weights  (wi) and the precision of the estimated coefficients, using Akaike’s Informa-
tion Criterion (AIC;100. We considered models with a ΔAIC < 2 of the top model as the competitive set of best-
supported models. For easier interpretation of our results and for categorizing taxonomically and functionally 

ln
(

weight
)

= ln(b0)+ b1 ∗ ln
(

length
)

Table 2.  Social-ecological filters used to evaluate homegarden associations of beetles (Arthropoda: 
Coleoptera) in Andean temperate ecosystems, southern Chile. a Social-ecological filters retained for tests of 
homegarden associations of beetles after reducing collinearity.

Social-ecological filter Description

Homegarden area a Size of the homegarden in  m2

Crop richness a Number of crop species intentionally cultivated in the homegarden

Structural complexity a Index obtained from the sum of the coverage of each vegetation stratum (%) divided by 100. Strata: 0–0.3 m, 
0.31–1 m, 1.1–2 m, and above 2 m

Elevation Meters above sea level (masl)

Distance to forest a Linear distance in m to nearest native forest patch

Homegarden age Years that the homegarden has been in the same spatial location

Gardener origin a 1: Campesino; 2: Migrant

Gardener age Age of the gardener (years old)

Gardener experience Number of years the person has been gardening

Pest control strategy a 1: None; 2: Natural (mechanical by hand or using biopreparations); 3. Chemical pesticide
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Family Scientific name
Mean length 
(mm) ± SD Body weight (mg) a Main foraging guild Habitat-use guild

Anthicidae Anthicus sp. 3.14 ± 0.06 0.68 Predator Geophilous

Archeocrypticidae

Enneboeus sp. 3.56 ± 0.3 0.89 Saprophagous Geophilous

Archeocrypticus topali 3.93 ± 0.23 1.1 Saprophagous Geophilous

Enneboeus baeck-
stroemi 3.69 ± 0 0.96 Saprophagous Geophilous

Bruchidae

Lithraeus sp. 4.9 ± 0.18 1.78 Phytophagous Geophilous

Lithraeus egenus 1.78 ± 0.01 0.2 Phytophagous Geophilous

Acanthoscelides 
obtectus 3.87 ± 0 1.07 Phytophagous Geophilous

Buprestidae

Anthaxia concinna 5.22 ± 0.19 2.04 Phytophagous Arboreal/Flower

Conognatha sagittaria 16.61 ± 0 25.01 Xylophagous Arboreal/Flower

Anthaxia cupriceps 4.24 ± 0 1.3 Xylophagous Arboreal/Flower

Cantharidae Cantharis variabilis 5.62 ± 0.11 2.39 Pollinivorous Arboreal/Flower

Carabidae

Pterostichus aerea 14.76 ± 2.04 19.38 Predator Geophilous

Tetragonoderus viridis 5.41 ± 0.03 2.2 Predator Geophilous

Tetragonoderus sp. 5.71 ± 0.22 2.48 Predator Geophilous

Metius sp. 10.19 ± 0.52 8.68 Predator Geophilous

Bradycellus chilensis 4.29 ± 0.4 1.33 Predator Geophilous

Creobius sp. 6.44 ± 0 3.21 Predator Geophilous

Ceroglossus chilensis 23.24 ± 0.12 51.75 Predator Geophilous

Creobius eydouxii 17.98 ± 0 29.7 Predator Geophilous

Mimodromites 
nigrotestaceus 5.72 ± 0.62 2.48 Predator Geophilous

Trirammatus unis-
triatus 8.03 ± 0.95 5.18 Predator Geophilous

Paramecus laevigatus 8.23 ± 0.72 5.47 Predator Geophilous

Trirammatus sp. 15.62 ± 0.98 21.88 Predator Geophilous

Calosoma vagans 20.98 ± 0 41.49 Predator Geophilous

Parhypates bonelli 10.8 ± 1 9.85 Predator Geophilous

Trirammatus chalceus 14.02 ± 1.17 17.33 Predator Geophilous

Trirammatus aerea 19.6 ± 0 35.8 Predator Geophilous

Metius giga 9.7 ± 0 7.8 Predator Geophilous

Allendia chilensis 9.69 ± 0 7.78 Predator Geophilous

Chrysomelidae

Chaectonema sp. 2.45 ± 0 0.4 Phytophagous Arboreal

Kuschelina decorata 5.24 ± 0.09 2.05 Phytophagous Arboreal/
Geophilous

Aulondera darwini 2.24 ± 0 0.33 Phytophagous Arboreal

Lexiphanes variabilis 2.76 ± 0 0.51 Phytophagous Arboreal

Jansonius aeneus 3.07 ± 0.38 0.65 Phytophagous Arboreal

Clambidae Sphaerothorax 
andensis 1.09 ± 0 0.07 Mycetophagous Geophilous

Coccinellidae

Psyllobora picta 3.11 ± 0.13 0.66 Predator/ Mycetopha-
gous Foliage

Harmonia axyridis 7.15 ± 1.56 4.02 Predator Foliage

Eriopis connexa 5.56 ± 0.08 2.34 Predator Foliage

Hyperaspis nana 2.3 ± 0 0.35 Predator Foliage

Cercyon sp. 2.1 ± 0 0.28 Predator Foliage

Cryptophagidae Micrambina basalis 1.76 ± 0 0.19 Mycetophagous Geophilous

Continued
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Family Scientific name
Mean length 
(mm) ± SD Body weight (mg) a Main foraging guild Habitat-use guild

Curculionidae

Xyleborinus saxeseni 2.89 ± 0.48 0.57 Xylophagous Geophilous

Aramigus tessellatus 6.4 ± 0.28 3.16 Phytophagous Geophilous

Otiorhynchus sulcatus 9.69 ± 0.35 7.78 Phytophagous Geophilous

Rhopalomerus tenui-
rostris 3.9 ± 0 1.08 Phytophagous Geophilous

Polydrusus nothofagi 3.98 ± 0 1.13 Phytophagous Geophilous

Hybreoleptops tuber-
culifer 10.85 ± 0 9.95 Phytophagous Geophilous

Cylydrorhinus carini-
collis 8.69 ± 1.32 6.14 Phytophagous Geophilous

Listronotus bonariensis 2.93 ± 0 0.58 Phytophagous Geophilous

Otiorhynchus subglo-
bosus 6.52 ± 0 3.3 Phytophagous Geophilous

Smicronyx argentin-
ensis 1.98 ± 0 0.25 Phytophagous Geophilous

Otiorhynchus rugoso-
stratus 7.23 ± 0 4.13 Phytophagous Geophilous

Puranius fasciculiger 4.1 ± 0 1.21 Phytophagous Geophilous

Omoides flavipes 2.78 ± 0 0.52 Phytophagous Geophilous

Dermestidae Anthrenus chilensis 2.6 ± 0 0.45 Saprophagous/
Pollinivorous Arboreal

Elateridae
Mesembria adrasta 4.97 ± 0 1.83 Phytophagous/

Saprophagous
Arboreal/
Geophilous

Deromecus casta-
neipennis 12.6 ± 0 13.75 Phytophagous Geophilous

Histeridae Phelister chilicola 2.99 ± 0 0.61 Predator Geophilous

Hydrophilidae

Cercyon analis 2.7 ± 0.26 0.49 Phytophagous Geophilous

Tropisternus setiger 9.66 ± 0 7.73 Phytophagous Hydrophilous

Parasidis porteri 1.24 ± 0.02 0.09 Predator Foliage

Lampyridae
Pyractonema obscura 9.86 ± 0.91 8.08 Predator Arboreal/

Geophilous

Pyractonema sp. 12.1 ± 0 12.59 Predator Arboreal/
Geophilous

Latridiidae Corticaria ferruginea 1.84 ± 0 0.21 Mycetophagous Arboreal/
Geophilous

Leiodidae Anaballetus chilensis 2.6 ± 0 0.45 Mycetophagous Arboreal/
Geophilous

Lucanidae Apterodorcus bacchus 24.23 ± 0 56.67 Xylophagous Arboreal/
Geophilous

Meloidae Epicauta pilme 10.29 ± 0.35 8.87 Phytophagous Foliage

Mordellidae

Mordella luctuosa 8.88 ± 0 6.44 Pollinivorous/
Saprophagous Flower

Mordella solieri 5.92 ± 0 2.68 Pollinivorous/
Saprophagous Flower

Mordella abbreviata 3.45 ± 0.19 0.83 Pollinivorous/
Saprophagous Flower

Mordella vidua 4.49 ± 0.43 1.47 Pollinivorous/
Saprophagous Flower

Nitidulidae Epuraea sp. 1.96 ± 0 0.24 Saprophagous Flower/
Geophilous

Oedemiridae Platylytra vitticolle 13.04 ± 3.42 14.81 Pollinivorous Geophilous/
Flower

Ptiliidae Acrotrichis sp. 0.91 ± 0.08 0.05 Mycetophagous Geophilous

Scarabaeidae

Aphodius granarius 5.75 ± 0.23 2.51 Phytophagous Foliage/
Geophilous

Sericoides convexa 9.05 ± 0.54 6.72 Phytophagous Arboreal/
Geophilous

Sericoides delicatula 6.27 ± 0 3.03 Phytophagous Arboreal/
Geophilous

Hylamorpha elegans 12.27 ± 0 12.98 Phytophagous/
Saprophagous

Foliage/
Geophilous

Sericoides obesa 12.36 ± 0 13.19 Phytophagous Arboreal/
Geophilous

Arctodium sp. 6.5 ± 0 3.28 Phytophagous Foliage/
Geophilous

Continued
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important biodiversity areas, we projected the observed values for beetle species richness, relative abundance, 
and functional richness utilizing the spatial interpolation toolbar  Kriging101, implemented in ArcGIS 10.5. We 
present results for beetle species richness as median with data range (interquartile range). For relative abundance 
and FRic we present mean ± standard deviation (SD).
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