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A B S T R A C T   

Given that the usual process of developing a new vaccine or drug for COVID-19 demands significant time and 
funds, drug repositioning has emerged as a promising therapeutic strategy. We propose a method named 
DRPADC to predict novel drug-disease associations effectively from the original sparse drug-disease association 
adjacency matrix. Specifically, DRPADC processes the original association matrix with the WKNKN algorithm to 
reduce its sparsity. Furthermore, multiple types of similarity information are fused by a CKA-MKL algorithm. 
Finally, a compressed sensing algorithm is used to predict the potential drug-disease (virus) association scores. 
Experimental results show that DRPADC has superior performance than several competitive methods in terms of 
AUC values and case studies. DRPADC achieved the AUC value of 0.941, 0.955 and 0.876 in Fdataset, Cdataset 
and HDVD dataset, respectively. In addition, the conducted case studies of COVID-19 show that DRPADC can 
predict drug candidates accurately.   

1. Introduction 

COVID-19, a type of pneumonia discovered in 2019, is caused by a 
novel coronavirus. As shown in Fig. 1, the pathogenic virus causing 
COVID-19 was named "novel coronavirus SARS-CoV-2" because of its 
resemblance to previously identified coronaviruses (Abd El-Aziz Tarek 
and Stockand James, 2020; Catrin et al., 2020; Elisabetta et al., 2004). 
This is the seventh coronavirus to be discovered and studied in humans; 
the previous six were HCoV-OC43, 229E (HCoV-229E), HCoV-HKU1, 
HCoVNL63, Middle East respiratory syndrome-associated coronavirus 
(MERS-Cov), and severe acute respiratory syndrome-associated coro-
navirus (SARS-Cov) (Cha et al., 2018). There is a dearth of commercially 
available drugs for the treatment of COVID-19 (Wei-jie et al., 2020), and 
more therapeutic drugs are still in clinical trials stage. More seriously, 
the genetic material of the SARS-CoV-2 is single-stranded RNA (Imran 
and Gwanggil, 2021), which is susceptible to mutation during the 
transcriptional replication phase. Such mutation may alter the in vitro 
characteristics of SARS-CoV-2, potentially threatening the effectiveness 
of existing COVID-19 vaccines. Researchers have now identified various 
mutated strains of SARS-CoV-2 (including the Delta strain), so 

developing effective drugs to treat COVID-19 is an urgent task. 
Drug discovery and development present several challenges, 

including high attrition rates, long development times, and substantial 
costs (Yosef et al., 2020; Han et al., 2019; Sudeep et al., 2019; Huimin 
et al., 2020; Muhammad et al., 2014). Now there is an increasing interest 
in drug-repositioning techniques using computer algorithmic models 
(Hurle et al., 2013). Compared with traditional drug clinical trials, 
drug-repositioning techniques can effectively reduce the financial and 
time costs of the drug development process. In recent years, various 
drug-repositioning methods using computer algorithm models have 
been proposed as auxiliary tools (Qi et al., 2019) and validated by bio-
logical data. Because most diseases are caused by corresponding path-
ogens, drugs that inhibit or kill that pathogen in the organism are 
generally the effective ones for that disease. Therefore, it is feasible to 
use drug repositioning techniques to screen for therapeutic agents 
adapted to SARS-CoV-2. 

Current drug-repositioning methods can be divided into three cate-
gories: machine learning methods, network propagation-based methods 
and matrix completion or factorization-based methods (Xing et al., 
2016; Jawad et al., 2021). These methods are based on assumption that 
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similar drugs are associated with similar diseases and vice versa. Ma-
chine learning methods include a method proposed by Yongcui et al. 
(2013) to determine the similarity between drug-disease pairs using a 
kernel function and train the classification kernel of a support vector 
machine to discover new drug-disease interactions. Machine learning 
methods rely heavily on known sample labels in the dataset. However, 
stable negative sample data are difficult to obtain in practice, which 
limits the generalizability of these prediction methods. Xing et al. (2016) 
developed a network-based plastic regularized least squares collabora-
tive drug combination prediction method, which can overcome the 
problem of lack of stable negative samples data. However, their per-
formance is not stable because of the lack of negative samples in 
training, which limits their applications. 

Many network-based drug-repositioning methods use an association 
matrix of drugs and indications to build a network, and use wandering or 
diffusion to propagate the association resources from the drug side to the 
indication side to infer the missing edges within the network. Wenhui 
et al. (2013) proposed a heterogeneous graph-based inference (HGBI) 
technique for drug-target association prediction by combining known 
drug-target interactions and drug-target similarity information; this 
model was successfully applied to predict drug-disease associations 
(Wenhui et al., 2014; Mengyun et al., 2020). Victor et al. (2015) 
established a three-layer heterogeneous network containing different 
types of elements and interactions, called DrugNet. Their study showed 
that DrugNet was effective for discovering new drug candidates. Hui-
min et al. (2016) developed a comprehensive similarity measures and 
Bi-Random walk (MBIRW) algorithm, which used available drug-disease 
associations information to enhance drug similarity and disease simi-
larity. However, in the process of network propagation, information 
resources are biased to select the edges with larger weights, meaning 
that nodes lacking associated information are not allocated resources for 
propagation for a long time (i.e., the cold start problem); this can affect 
the accuracy of the prediction results. 

When a matrix contains partially known information, matrix 
completion is required. A number of methodological models for matrix 
factorization and complementation have been proposed in recent years. 
For instance, Huimin et al. (2018) constructed a drug-disease hetero-
geneous network based on the similarity information of drugs and dis-
eases and designed a Drug Repositioning Recommendation System 
(DRRS), which achieved the prediction of unknown drug-disease effects. 
Mengyun et al. (2019) proposed a scheme for preprocessing the 
drug-disease association matrix using a bounded kernel norm regulari-
zation (BNNR) model. Under the assumption of low rank, the model 
eliminated the effect of noisy data on the accuracy of model prediction 
by introducing a regularization term. Mengyun et al. (2020) proposed a 
method based on matrix-completion heterogeneous graphical inference 
(HGIMC) that could predict the potential adaptation of a drug to a dis-
ease. Yajie et al. (2021) proposed a similarity-constrained probability 
matrix factorization (SCPMF) model based on the similarity information 
of drugs and diseases to identify unknown association targets of drugs. 
Poleksic (2021) augmented the set of relationships between different 
biomedical entities based on the concept of meta-paths to enrich the 

associated information of paths, and predicted the association between 
different biomedical entities using a compressed sensing matrix 
completion algorithm. 

Compressed sensing, a class of matrix-completion methods, has an 
inherent advantage over supervised methods of machine learning for 
drug repositioning because it uses a "submatrix simulation" technique to 
predict potential drug-disease interactions without treating all missing 
data as negative data. However, networks or graphs based methods rely 
on association data as a resource propagation path for bipartite graphs 
and tend to suffer from cold-start problems that affect the prediction 
performance because of sparse association information. By contrast, 
compressed sensing starts with the existing matrix information, uses 
submatrices to capture the original matrix information, and generates a 
low-rank simulation matrix to complete the missing parts of the original 
association matrix. This reduces the redundancy of the model to a 
certain extent compared with that of network- or graph-based methods. 

Inspired by the compressed-sensing-based matrix completion model 
proposed by Poleksic (2021), we use a compressed-sensing-based 
method in this work to find potential adaptive drugs for COVID-19. 
We introduce the Weight K nearest known neighbors (WKNKN) algo-
rithm (Ali et al., 2016) to preprocess the original matrix and increase its 
rank, which can complete more information. In addition, compressed 
sensing allows us to affiliate drug and disease similarity features to aid in 
the correction of the decomposed submatrices. To better integrate 
different types of similarity information, we fuse multiple drug and 
disease similarity matrices using a central kernel alignment multiple 
kernel learning model (CKA-MKL) based on the study of Yijie et al. 
(2019). After the processing of CKA-MKL, we obtain the weights of each 
similarity matrix (the kernel) and choose the best matrix combination, 
thereby improving the complementarity of various types of similarity 
information. In summary, we propose a compressed-sensing-based pre-
diction method combining a multiple kernel learning model with central 
kernel alignment to predict the probability of potential drug-disease 
associations, and we validate the feasibility of this method as a 
drug-discovery aid for finding drugs that can interact with SARS-CoV-2. 

2. Materials and methods 

2.1. Materials 

2.1.1. Drug-disease datasets 
In this work, we used Fdataset and Cdataset as gold-standard datasets 

to test the performance of our proposed model. Fdataset is a collection of 
593 drugs, 313 diseases, and 1933 validated drug-disease associations 
from different data sources compiled by Assaf et al. (2011). Cdataset was 
compiled by Huimin et al. (2016) and includes 409 diseases, 663 drugs 
and 2532 disease and drug associations. Each dataset contains three 
information matrices, as follows: 

Drug-disease association adjacency matrix Y ∈ RnD×nd (nD denotes 
the number of drugs and nd denotes the number of diseases). The value 
of element Y(Di, dj) is 1 if the drug Di is associated with the disease dj; 
otherwise, it is 0; 

Fig. 1. Viral structure of SARS-CoV and SARS-CoV-2. (a) Electron microscopy image of a thin section of SARS-CoV-2 found in the cytoplasm of an infected cell by 
Catrin et al. (2020), showing the spherical particles and cross-sections of the nucleocapsid of the virus. (b) Schematic diagram of SARS-CoV-2 virus particles. (c) 
Electron microscopy image of SARS-CoV virus cultured in Vero cells by Elisabetta et al. (2004). (d) Model diagram of SARS-CoV virus particles. 
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Drug chemical structure similarity matrix DSchem ∈ RnD×nD . The ma-
trix consists of the chemical structure information of the corresponding 
drug derived from a chemical development kit (Christoph et al., 2003), 
where the drug-drug pair DSchem(i, j) is represented by the 
two-dimensional chemical fingerprint scores of drugs Di and Dj; 

Diseases semantic similarity matrix dSsem ∈ Rnd×nd . We obtain the 
similarity information for corresponding disease pairs using MimMiner 
(Van Driel et al., 2006). The semantic similarity matrix dSsem of diseases 
is obtained by computing the semantic similarity between diseases 
through text mining (Fleuren Wilco and Wynand, 2015). 

2.1.2. Drug-virus dataset 
Yajie et al. (2021) used text mining techniques to collect a large 

number of experimentally validated drug-virus interaction terms to 
construct an experimentally supported human drug-virus association 
database, HDVD. We used the HDVD as a dataset for finding therapeutic 
drugs for COVID-19. The HDVD contains 219 drugs, 34 viruses, and 455 
confirmed human drug-virus interactions. Analogous to the 
gold-standard datasets described above, HDVD contains the following 
three information matrices: 

Drug-virus association adjacency matrix A ∈ RmD×mv (mD denotes the 
number of drugs and mv denotes the number of diseases). The value of 
element A(Di,Vj) is 1 if drug Di is associated with the virus Vj; otherwise, 
it is 0; 

Drug chemical structure similarity matrix DSchem ∈ RmD×mD . SMILES 
(simplified molecular input line entry system) is an information format 
that describes molecular structures as a one-dimensional representation 
(Hakime et al., 2016). We used the SMILES format to download the 
chemical structure information of the corresponding drugs from the 
DrugBank database, calculating the Molecular Access System (MACCS) 
fingerprint of each drug with Open Babel v2.3.1 (O’Boyle et al., 2011), 
and use the Tanimoto coefficient to measure the absolute similarity 
(Bajusz et al., 2015) to construct a drug chemical structure similarity 
matrix DSchem; 

Viral gene sequence similarity matrix VSgen ∈ Rmv×mv . MAFFT is a 
similarity-based multiple sequence comparison method (Katoh and 
Standley, 2013). We downloaded the genomic nucleotide sequences of 
viruses in Homo sapiens from the National Center for Biotechnology 
Information, and use MAFFT version 7 to calculate sequence similarity 
between viruses to construct a viral gene sequence similarity matrix 
VSgen. 

2.2. Method 

Suppose the number of drugs and diseases are nD and nd, respec-
tively, and YnD×nd denotes the association matrix. Yij = 1 if the associa-
tion between drug i and disease j is known, otherwise Yij = 0. An 
algorithm predicting Drug-disease associations requires Y and corre-
sponding feature matrix X as input, then outputs a score for each pair of 
drug and disease. pn+1 denotes the score matrix, pn+1

ij ∈ [0, 1], i.e the 
prediction result. 

2.2.1. Calculating Jaccard similarity of drugs and diseases 
Jaccard similarity is a normalized form of the common neighborhood 

measure between vectors (Pang-Ning et al., 2016). For drugs Dx and Dy, 
Jaccard similarity gives the probability that a random node pair from the 
set of disease associations between the Dx and Dy is one of the co-acting 
diseases of Dx and Dy. If the number of mutual diseases of Dx and Dy 

nodes is higher, this metric is larger, which means that Dx and Dy are 
more similar. The formula is as follows: 

DSjac
(
Dx,Dy

)
=

|Γ(x) ∩ Γ(y)|
|Γ(x) ∪ Γ(y)|

(1)  

where, Γ(x) is the set of diseases associated with the drug Dx. 

We can calculate the Jaccard similarity matrix dSjac of diseases in a 
similar manner. 

2.2.2. Calculating Gaussian kernel similarity matrix of drugs and diseases 
Gaussian kernel similarity is a method commonly used to calculate 

the similarity between different types of nodes. By projecting the data in 
a high dimension through a radial basis, the distance between different 
node vectors can be calculated to obtain the similarity weights between 
nodes; therefore, Gaussian kernel similarity is also called radial basis 
function kernel similarity. In the adjacency matrix YF, row i indicates 
whether drug Di is associated with each disease, and column j indicates 
whether disease dj is associated with each drug. The vectors Q(Di) and 
Q(dj) represent the ith row vector and the jth column vector as the ei-
genvectors of the Gaussian kernel, respectively. Therefore, we denote 
the Gaussian kernel similarity between diseases di and dj as dSGaus, and 
the Gaussian kernel similarity between drugs Di and Dj as DSGaus, 
calculated as follows: 

dSGaus
(
di, dj

)
= exp

(
− αd‖ Q(di) − Q

(
dj
)
‖2
)

(2)  

DSGaus
(
Di,Dj

)
= exp

(
− αD‖ Q(Di) − Q

(
Dj
)
‖2
)

(3)  

where, the kernel bandwidths αd and αD are defined as: 

αd = α′

d(
1
nd

∑nd

i=1
‖ Q(di) ‖

2) (4)  

αD = α′

D(
1
nD

∑nD

i=1
‖ Q(Di) ‖

2) (5)  

where, the initial kernel bandwidth coefficients α′

d and α′

D are both set to 
1 (Xiujuan and Cheng, 2020). 

2.2.3. DRPADC 
In this study, we propose a compressed sensing prediction method 

incorporating a multicore learning model with central kernel symmetry. 
First, the WKNKN algorithm (Ali et al., 2016) is introduced to reduce the 
sparsity of the drug-disease association adjacency matrix. According to 
the work of Yijie et al. (2019), processing multiple similarity matrices 
using CKA-MKL allows us to obtain the weights of each similarity matrix 
(kernel) and thus select the best matrix combination. We use the 
CKA-MKL to fuse the different similarity information matrices to obtain 
the integrated similarity matrix. Finally, the drug-disease association 
prediction scores are calculated using the compressed sensing algorithm. 
A general flow chart for the algorithm is shown in Fig. 2. The details of 
the principle and flow of each module in the algorithm are described 
below. 

2.2.3.1. Reducing sparseness by WKNKN. The compressed sensing al-
gorithm uses the decomposed submatrix to sample the information of 
the original association matrix and generate a simulated approximation 
matrix. The sparsity of the target matrix affects the descriptiveness of the 
elements in the submatrices, which in turn affects the recovery accuracy 
of the approximation matrix. Previous studies (Huimin et al., 2018) have 
shown that the drug-disease association matrix Y in both Cdataset and 
Fdataset is sparse (the same is true for HDVD); this is because there are 
still many drug-disease associations that have not been confirmed. 
Therefore, we reduce the sparsity of Y by using WKNKN (Ali et al., 2016) 
to mine the likelihood scores of potential interactions. That is, the 
WKNKN algorithm is used to estimate the likelihood value of the in-
teractions between drug-disease pairs in the adjacency matrix Y. This is 
performed using the following three steps: 

Step1. The interaction likelihood score for each drug Di is estimated 
using the chemical similarity matrix DSchem of the K known drugs closest 
to it and their corresponding association effects. The derived equation is 

G. Xie et al.                                                                                                                                                                                                                                      
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as follows: 

YD(Di, : ) =
1

QD

∑K

kD=1
ωkD YD(DkD , : ) (6) 

where, D1 to DkD denote the K-nearest drugs of Di in descending 
order; QD =

∑K
kD=1DSchem(Di,DkD ) is the regularization term; ωkD =

TkD − 1DSchem(Di,DkD ) is the weighting factor, where T is the decay term 
and satisfies T ≤ 1. 

Step2. Similarly, for each disease dj, the semantic similarity of its 
closest K known diseases and their corresponding interactions are used 
to estimate the interaction likelihood score of dj. The derived formula is 
as follows: 

Yd
(
:, dj
)
=

1
Qd

∑K

kd=1
ωkd Yd

(
:, dkd

)
(7)  

where, d1 to dkd denote the K-nearest neighbor diseases of disease di in 
descending order; Qd =

∑K
kd=1dSsem(dkd , dj) is the regularization term; 

ωkd = Tkd − 1dSsem(dkd , dj)is the weighting factor, where T is the decay 
term and satisfies T ≤ 1. 

Step3. Finally, if Yi,j = 0, we replace it by taking the average of YD 

and Yd, as follows: 

YF(i, j) = max
(

YD + Yd

2
, Y(i, j)

)

. (8) 

According to the introduction of the above model, the procedure of 
WKNKN is summarized in Algorithm 1. There are 99%, 99.1% and 
93.9% of 0 elements in the association matrix of Fdataset, Cdataset and 
HDVD respectively, which indicates that the elements in the original 
matrix are too sparse. Therefore, we use WKNKN algorithm to prepro-
cess the original matrix, so that the 0 elements in the matrix can be 
replaced by likelihood scores between 0 and 1 to mine more potential 
interactions between drugs and diseases or viruses. The proportion of 
element 0 in the association matrix of Fdataset, Cdataset and HDVD 
before and after performing WKNKN algorithm are shown in Table 1. 

Algorithm 1. WKNKN  
Inputs: Adjacent matrix Y ∈ RnD×nd , chemical similarity matrix DSchem ∈ RnD×nD , and 

disease semantic similarity matrix dSsem ∈ Rnd×nd ,neighborhood sizes K, decay term 
T. 
Output: Association probability matrix YF . 
Algorithm 
Compute association probability matrix YF by WKNKN: 
for i = 1 →nD do 
calculate YD by Eq. (6); 
end for 
for j = 1 →nd do 
calculate Yd by Eq. (7); 
end for 

YF = max
( YD + Yd

2
,Y
)
. 

Output: YF .  

2.2.3.2. Central kernel alignment algorithm multiple kernel learning 
alignment. A number of methods have been proposed to mine the simi-
larity of drugs and diseases (Esra and Buket, 2017) and excavate their 
similar characteristics from different perspectives. In drug-repositioning 
methods, the use of different similarity information has different effects 
on model prediction performance; therefore, most current methods use a 
combination of multiple similarity information. However, they gener-
ally lack a systematic method of combining this information and 
generally only consider the mean or complementarity, etc. In order to 
integrate multiple types of similarity information, based on previous 
work by Yijie et al. (2019), we process multiple similarity matrices and 
obtain the weights of each similarity matrix (kernel) by CKA-MKL, so as 
to select the best combination of similarity matrices and improve the 
complementarity of similarity information. Specifically, we obtain three 
similar kernel matrices for each of the similar kernel sets of drugs and 

Fig. 2. Flowchart of DRPADC. The red box shows the iterative process of the compressed sensing model (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.). 

Table 1 
The proportion of element 0 in the association matrix.  

Datasets Before WKNKN After WKNKN 

Fdataset 99.0% 89.2% 
Cdataset 99.1% 91.2% 
HDVD 93.9% 64.1%  
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diseases (DSchem,DSjac,DSGaus ∈ RnD×nD ; dSsem,dSjac,dSGaus ∈ Rnd×nd ). Then, 
we combine the three kernel matrices in two spaces separately using 
CKA-MKL. The optimal kernel is calculated as follows: 

K∗ =
∑k

i=1
ωiKi,Ki ∈ RN×N ,

∑k

i=1
ωi = 1 (9)  

where, k is the number of kernels, Kiis the value in the drug similar 
kernel set (DSchem,DSjac,DSGaus) and disease similar kernel set (dSsem,

dSjac,dSGaus), and ωi is the weight of kernel Ki. N is the number of nodes. 
According to Yijie et al. (2019), the kernel alignment score can be 

described by calculating the cosine correlation between two kernels. The 
larger the correlation between the kernels, the higher the alignment 
between the kernels. Therefore the value of kernel alignment is defined 
as follows: 

A(P,Q) =
〈P,Q〉F

‖ P ‖F‖ Q ‖F
(10)  

where, P,Q ∈ RN×N, N ∈ {nD,nd}, 〈P,Q〉F = Trace(PTQ) is the Frobenius 
inner product, and ‖ P ‖F =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
〈P,P〉F

√
is the Frobenius parametrization. 

In fact, the kernel alignment score can be viewed as a correlation be-
tween two kernels (the characteristic kernel K∗ and the ideal kernel 
matrix YFYT

F ). To obtain the optimal weights of the kernel, we should 
maximize the alignment score between K∗ and YFYT

F . Therefore, the 
objective function after central kernel alignment is as follow: 

max
ω≥0

CA
(
K∗, yFyT

F

)
= max

ω≥0

〈
UNK∗UN , yFyT

F

〉

F

‖ UNK∗UN ‖F‖ yFyT
F ‖F

subjecttoK∗ =
∑k

i=1
ωiKi,ωi ≥ 0, i = 1, 2, ..., k,

∑k

i=1
ωi = 1

(11)  

where, UN = IN − (1 /N)lNlTN(UN ∈ RN×N) denotes a central kernel ma-
trix. IN ∈ RN×N is a unitary matrix. IN is a unit vector. Eq. (11) can also be 
transformed into: 

max
ω≥0

ωT a
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ωTMω

√

subjecttoK∗ =
∑k

i=1
ωiKi,ωi ≥ 0, i = 1, 2, ..., k,

∑k

i=1
ωi = 1

(12)  

where, a ∈ Rk×1 and M ∈ Rk×k are calculated from Eqs. (13) and (14), 
respectively: 

a =
( 〈

UNK1UN , yFyT
F

〉

F , ...,
〈
UNKkUN , yFyT

F

〉

F

)T
∈ Rk×1 (13)  

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

M1,1 M1,2 ⋯ M1,k

M2,1 M2,2 ⋯ M2,k

⋮ ⋮ Me,f ⋮

Mk,1 Mk,2 ⋯ Mk,k

⎤

⎥
⎥
⎥
⎥
⎥
⎦

k×k

Me,f =
〈
UNKeUN ,UNKf UN

〉

F , e, f = 1, 2, ..., k

. (14) 

The final objective function can also be expressed as: 

max
ω≥0

ωTMω − 2ωT a

subjecttoK∗ =
∑k

i=1
ωiKi,ωi ≥ 0, i = 1, 2, ..., k,

∑k

i=1
ωi = 1

. (15) 

To obtain the reconfiguration weights for each similar kernel, we use 
standard quadratic programming to solve Eq. (15). Therefore, we obtain 
the weights of drugs and diseases (ωD,ωd ∈ R3×1) and combine them 
with the drug (DSchem,DSjac,DSGaus ∈ RnD×nD ) and disease (dSsem, dSjac,

dSGaus ∈ Rnd×nd ) similarity kernels, respectively, according to the 
following equations: 

K∗
d =

∑k

i=1
ωi

dKi
d,K

i
d ∈ Rnd×nd (16)  

K∗
D =

∑k

j=1
ωj

DKj
D,K

j
D ∈ RnD×nD . (17)  

where, ωi
d = {ω1

d , ω2
d ,…,ωk

d} and ωi
D = {ω1

D, ω2
D,…ωk

D} are the optimal 
weights of the disease kernel and the drug kernel, respectively. 

According to the above alignment model, the procedure of CKA-MKL 
is summarized in Algorithm 2. CKA-MKL combines three similar kernel 
matrices of drugs and diseases in two spaces respectively, and obtains 
optimal combination similarity matrices of drugs and diseases, thereby 
improving the complementarity of various types of similarity informa-
tion.  

Algorithm 2. CKA-MKL 
Inputs: Association probability matrix YF, chemical similarity matrix DSchem ∈ RnD×nD , 

disease semantic similarity matrix dSsem ∈ Rnd×nd , Jaccard similarity matrices DSjac 

and dSjacof drugs and diseases, and Gaussian-based similarity matrix DSGaus and 
dSGaus of drugs and diseases. 
Output: Optimal combination similarity matrices K∗

D and K∗
d of drugs and diseases. 

Algorithm 
Define the objective function Eqs. (11) and (12) of CKD-MKL according to Eqs. (9) 
and (10); 
Change the objective function Eq. (12) to Eq. (15) according to Eqs. (13) and (14); 
Calculate the optimal combination similarity matrix weights ωD and ωd for drugs 
and diseases by minimizing Eq. (15); 
Calculate the optimal combination similarity matrices of drugs and diseases 
according to Eqs. (16) and (17), respectively. 
Output: K∗

D, K∗
d.  

2.2.3.3. Compressed sensing model. Compressed sensing is a matrix 
completion class method based on the principle that the simulation 
matrix obtained by the inner product of sub-matrices can approximate 
the target matrix. The elements in the simulation matrix are used as 
estimates of the elements of the unobservable part of the target matrix. 
In other words, given a matrix Y ∈ RnD×nd with missing interaction in-
formation, where nD represents the number of drugs and nd represents 
the number of diseases. YF is obtained based on the WKNKN algorithm 
by simulating the inner product of two low-dimensional sub-matrices 

F ∈ RnD×r and G ∈ Rnd×r 
(

F, G ∼ N
(

0, 1̅̅
r

√

))
, which correspond to the 

potential features of drugs and diseases, respectively. The probabilities 
of drug-disease interactions are approximated by mapping the associa-
tion information of drugs and diseases to a low-dimensional common 
potential space. Optimization of the sub-matrices is achieved by 
reducing the gap between the simulation matrix and the target matrix 
during the complementation process. To avoid over-optimization of the 
model, the complexity of the sub-matrix is calculated as a penalty term 
for sub-matrix optimization when calculating the difference between the 
simulation matrix and the target matrix. In addition, during optimiza-
tion, the compressed sensing model allows the introduction of drug and 
disease similarity information in order to continuously adjust the sub- 
matrix model. 

Therefore, given a drug Di and disease dj, the probability of their 
interaction events can be calculated by the following equation: 

pi,j = p
(

yF
i,j = 1

⃒
⃒
⃒fi, gj

)
= 1
/(

1+ exp
(

figT
j

)− 1
)

(18)  

or in matrix form: 

p(YF |F,G) =
∏

i,j

(
pyF

i,j
i,j

(
1 − pi,j

)1− yF
i,j
)wi,j

(19)  

where, pi,j is the interaction probability of drug Di and disease dj, fi is the 
ith row of the drug sub-matrix F, gj is the jth row of the disease sub- 
matrix G, and wi,j is the initial weight of drug Di and disease dj 
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(Hansaim et al., 2016). By Bayesian inference, we can derive the prob-
ability of p(YF |F,G) as follow: 

p(F,G|YF)∝p(YF|F,G)p(F)p(G). (20) 

As described by Steck (2010), we obtain the loss function of the 
model: 

LOSS =
∑

i,j
wi,j

{
ln
(

1+ exp
(

figT
j

))
− yF

i,jfig
T
j

}
+ λF‖ F ‖

2
2 + λG‖ G ‖

2
2.

(21) 

To improve the accuracy of the method’s predictions, we further 
extend the loss function based on the assumption that similar drugs may 
interact with similar diseases. Specifically, let DS ∈ RnD×nD be the drug 
similarity matrix, where each entry DSi,j denotes the similarity between 
drugs Di and Dj, and let dS ∈ Rnd×nd be the disease similarity matrix. The 
combination of similar diseases with similar drugs is explained by 
minimizing the distance between the properties of the drugs: 

tr
(
FT(DDS − DS)F

)
=

1
2
∑nD

i=1

∑nD

j=1
DS(i, j)‖ F(i, : ) − F(j, : ) ‖2

2. (22) 

Similarly, similarities between diseases are minimized: 

tr
(
GT(ddS − dS)G

)
=

1
2
∑nd

i=1

∑nd

j=1
dS(i, j)‖ G(i, : ) − G(j, : ) ‖2

2 (23) 

Combining the regularization terms (22) and (23) into (21) and 
introducing two additional adjustable parameters λM and λN, our loss 
function can be transformed into: 

LOSS =
∑

i,j
wi,j

{
ln
(

1 + exp
(

figT
j

))
− yF

i,jfig
T
j

}
+ λF‖ F ‖

2
2 + λG‖ G ‖

2
2

+λMtr
(
FT(DDS − DS)F

)
+ λNtr

(
GT(ddS − dS)G

)

(24) 

According to Liu et al. (2016), compressed sensing can be used to 
optimize the model using an iterative gradient descent method (Ada-
Grad) (John et al., 2011). During the iterative process, the partial de-
rivative of the loss function can be written as: 

BF =
∂LOSS

∂F
= {W∘[P − YF]}G + 2λrF + 2λM(DDS − DS)F (25)  

BG =
∂LOSS

∂G
=
{

WT ∘
[
P − YT

F

]}
F + 2λrG + 2λN(ddS − dS)G (26)  

where, ∘ represents the Hadamard product. The submatrices F and G are 
updated according to the following equations: 

Fn+1 = Fn − k
(

BFn

‖ BFn ‖F

)

(27)  

Gn+1 = Gn − k
(

BGn

‖ BGn ‖F

)

(28)  

ΔF = ‖ Fn+1 ‖F − ‖ Fn ‖F (29)  

ΔG = ‖ Gn+1 ‖F − ‖ Gn ‖F (30)  

where, k is the learning rate of the iterative process; the superscript n is 
the current number of iterations; the end condition for the update of sub- 
matrices F and G is max(ΔF,ΔG) < 10− 5; ‖ BF ‖F is the Frobenius para-
digm of BF, and ‖ BG ‖F is defined similarly as: 

‖ BF ‖F =

(
∑nD

i=1

∑r

j=1

⃒
⃒BFi,j

⃒
⃒2
)1

2

(31)  

‖ BG ‖F =

(
∑nd

i=1

∑r

j=1

⃒
⃒BGi,j

⃒
⃒2
)1

2

(32) 

According to the above description, the procedure of compressed 
sensing model is summarized in Algorithm 3. By combining two optimal 
combination similarity matrices derived from CKA-MKL algorithm, we 
use compressed sensing model to predict the potential drug-disease 
(virus) association scores.  

Algorithm 3. Compressed sensing model 
Inputs: Association probability matrix YF , optimal combination similarity matrices K∗

D 
and K∗

d of drugs and diseases, learning rate k, Frobenius parametric term coefficients 
λr of the submatrices F and G, and the regularized term coefficients λM and λN of the 
submatrices F and G. 
Output: Association prediction matrix Pn+1. 
Algorithm 

Construct the initial component matrices F0 ∈ RnD×r and G0 ∈ Rnd×r; 
Calculate the initial probability matrix P0 according to Eq. (19); 
Construct loss function Eq. (21); 
Rewrite Eq. (21) as Eq. (24) according to Eqs. (22) and (23); 
Do 
Calculate the partial derivatives of F and G from Eqs. (25) and (26), respectively by 
solving Eq. (24); 
Update the matrices F and G according to Eqs. (27) and (28), respectively; 
Until max(ΔF,ΔG) < 10− 5. 
Calculate the probability matrix Pn+1 with matrices Fn+1 and Gn+1 according to Eq. 
(19). 
Output: Pn+1.  

3. Result 

Under the running environment of win10 Professional Edition and 
i5-9300H CPU, we used MATLAB 2018b software to run the code which 
can be downloaded from https://github.com/kk-2010000/drpadc1. The 
purpose of this study was to construct a drug-repositioning computa-
tional method with excellent performance and reliable results for drug 
development against COVID-19. Therefore, we used Fdataset and Cda-
taset, which are used in drug-repositioning research and available from 
DrugBank, OMIM and Mesh public database, as gold-standard datasets 
and compared DRPADC with those proposed by other researchers in 
recent years to validate the performance of DRPADC. Then, we 
compared DRPADC with methods of the same type on the HDVD dataset 
to further validate its performance. 

3.1. Performance comparison of methods on the gold standard datasets 

To test the performance of DRPADC, we perform 10 times 10-fold 
cross-validation (CV) on two gold-standard datasets, Fdataset and Cda-
taset, for comparison with other classical drug-repositioning methods. 
Here, we randomly divide all the known drug-disease associations into 
10 equal parts. We take turns to select one part to form the test sample 
set and the rest the training sample set. The 10-fold cross-validation is 
repeated 10 times for each method, and the average of all the 10 results 
is regarded as the final score. After testing all interactions, we calculate 
the true positive rate (TPR, the proportion of positive samples that are 
correctly identified among positive samples) and the false positive rate 
(FPR, the proportion of incorrectly identified negative samples to all 
negative samples) using the following equations: 

TPR(orRecall) =
TP

TP + FN
(33)  

where, TP indicates the number of correctly identified positive samples 
and FN indicates the number of incorrectly identified negative samples; 
and 

FPR =
FP

TN + FP
(34)  

where, FP is the number of correctly identified positive samples and TN 
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is the number of correctly identified negative samples. 
Since the precision measure is the percentage of correctly identified 

positive samples out of all retrieved samples, the higher the precision 
value, the better the prediction of the model. Therefore, we calculate the 
precision of each method on the various datasets. Precision is calculated 
as follows: 

Precision =
TP

TP + FN
(35) 

We constructed receiver operating characteristic (ROC) curves and 
calculated the area under the curve (AUC), which is widely used to 
describe overall predictive performance (Zou et al., 2015). An AUC 
value closer to 1 indicates better performance, while an AUC value 
closer to 0.5 indicates performance closer to random (Peng et al., 2020). 
Since the area under the Precision-recall curve (AUPR) is more suitable 
than AUC for evaluating highly unbalanced or skewed datasets, we also 
added AUPR to assess the performance of various methods. We calcu-
lated the TPR, FPR and Precision by changing the preset ranking 
thresholds for plotting the respective ROC and PR (Precision-recall) 
curves. As shown in Fig. 3 and Table 2, we obtained better results with 
DRPADC compared with the other methods. DRPADC achieved an AUC 
value of 0.955 in Cdataset, which is 0.5% higher than that of the second 
highest-achieving method, BNNR (AUC = 0.950). DRPADC had the 
highest AUC value of 0.941 in Fdataset, 0.8% higher than that obtained 
with BNNR (AUC = 0.933). DrugNet achieved the lowest AUC values in 
both datasets, 16.3% (Fdataset) and 15.1% (Cdataset) lower than those 
of DRPADC, respectively. In addition, as the AUPR row shown in 
Table 2, DRPADC achieves the highest AUPR value in different datasets. 
In summary, DRPADC outperformed the other methods shown in Fig. 3 
on the gold-standard datasets. 

3.2. Performance comparison of methods in HDVD dataset 

To further verify the performance of DRPADC, we validated the 
proposed method and other recent prediction methods of the same type 
(Mengyun et al., 2020, 2019; Yajie et al., 2021; Feng et al., 2020; 
Chengqian et al., 2019, 2018) on HDVD with 10 times 10-fold-CV, 
constructed ROC plots for each comparison method, and calculated 
the corresponding AUC values. As shown in Fig. 4a and the AUC column 
of Table 3, DRPADC achieved AUC = 0.876 in the 10 times 10-fold-CV. 
The other methods tested were BNNR (AUC = 0.876), SCPMF (AUC =
0.860), CMFMTL (AUC = 0.850), HGIMC (AUC = 0.785), GMCLDA 
(AUC = 0.735) and SIMCLDA (AUC = 0.705). The AUC value of 
DRPADC was the same as that of BNNR and better than those of the other 

methods. 
To further evaluate the performance of DRPADC compared with 

other matrix completion methods on the HDVD dataset, we computed 
precision metrics using the same validation framework, plotted PR 
curves, and calculated the corresponding AUPR values. As shown in 
Fig. 4b and the AUPR column of Table 3, DRPADC had the highest AUPR 
value of 0.507, which is higher than the other methods, namely BNNR 
(AUPR = 0.489), SCPMF (AUPR = 0.486), CMFMTL (AUPR = 0.440), 
HGIMC (AUPR = 0.417), GMCLDA (AUPR = 0.177) and SIMCLDA 
(AUPR = 0.152). In summary, DRPADC outperforms the other methods 
in Fig. 4 on the HDVD dataset. 

4. Discussion 

4.1. Ablation experiments 

To verify the validity of each part of the method proposed in this 
paper, ablation experiments were conducted in two gold-standard 
datasets, Fdataset and Cdataset. The comparisons made are shown in 
Table 4, where DRPADC is the one proposed in this paper (i.e., 
WKNKN + CKA-MKL + compressed sensing); model 1 is a combination 
of the WKNKN algorithm, similarity mean fusion, and compressed 
sensing; model 2 is a combination of CKA-MKL and compressed sensing; 
model 3 is a combination of similarity mean fusion and compressed 
sensing; model 4 is a combination of WKNKN, single similarity (with no 
introduction of Jaccard similarity or Gaussian kernel similarity for drugs 
and diseases), and compressed sensing; and model 5 uses single simi-
larity (with no introduction of Jaccard similarity or Gaussian kernel 
similarity for drugs and diseases) and compressed sensing. As shown in 
Fig. 5, DRPADC showed a slight improvement in performance compared 
with model 1; this was because processing multiple similarity matrices 
using CKA-MKL enables the weights of each similarity matrix (kernel) to 
be obtained and the best matrix combination to be selected to improve 
the complementarity of the similarity information. All three sets of 
comparison models, DRPADC and model 2, model 1 and model 3, and 
model 4 and model 5, illustrate that introducing WKNKN to preprocess 
the drug-disease association matrix can improve the representativeness 
of the sampled features of the sub-matrices with respect to the original 
matrix data and improve the accuracy of association prediction. The 
comparison between model 2 and model 5 illustrates that the effec-
tiveness of drug repositioning can be improved to some extent by 
enrichment with multiple similarity information. 

Fig. 3. ROC plots of the proposed method and other methods on the Fdataset (a) and Cdataset (b).  
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4.2. Parameter analysis 

To verify the sensitivity of the performance of DRPADC to its pa-
rameters, we perform a parameter analysis on the Fdataset, Cdataset, 
and HDVD datasets, respectively. The parameters not involved in the 
conditioning experiments were set to fixed values for this analysis. When 
evaluating parameters Kand T, the other parameters were fixed, i.e., λr, 
λM and λN were fixed as 0.1, 1 and 0.1, respectively. In the subsequent 
parameter evaluation experiments, the optimal values of the corre-

sponding parameters were replaced in turn. As shown in Fig. 6, the 
values of the neighborhood parameter K and the attenuation parameter 
T in the WKNKN algorithm ranged from 1 to 10 and from 0.1 to 1, 
respectively. For Fdataset, the best performance was achieved with K =

7 and T = 0.6 (Fig. 6a). For Cdataset, the best performance was achieved 
with K = 6 and T = 0.7 (Fig. 6b). For HDVD, the best performance was 
located at K = 5 and T = 0.3 (Fig. 6c). 

Next, we parametrically analyzed the parameters λr, λM and λN in the 
loss function of the compressed sensing algorithm in different datasets. 
All three parameters were set in the range of [0.1, 1], incremented by 0.1 
each time. As shown in Fig. 7a, the performance of DRPADC in all three 
datasets tended to decrease as the value of λr increased, and DRPADC 
performed best when λr was 0.1. As shown in Fig. 7b, the value of λM 
tended to level off after 0.4 and the performance reached stability, so we 
took the optimal value of λM in each of the three datasets: HDVD (λM =

1), Fdataset (λM = 0.7) and Cdataset (λM = 0.5). As shown in Fig.7c, the 
performance of DRPADC in the Fdataset and HDVD datasets showed a 
decreasing trend with increasing λN values, whereas in Cdataset it 
showed a decreasing trend from a λN value of 0.2. Therefore, we took the 
optimal values of λN in each of the three datasets: HDVD (λN = 0.1), 

Table 2 
AUC values for 10 times 10-fold-CV of various methods on Fdataset and Cdataset.  

test Metrics DRPADC BNNR DRRS HGIMC MBiRW SCPMF HGBI CMFMTL DrugNet 

10-fold-CV of Fdataset AUC 0.941 
(0.001) 

0.933 
(0.002) 

0.930 
(0.001) 

0.919 
(0.001) 

0.917 
(0.001) 

0.895 
(0.001) 

0.829 
(0.012) 

0.819 
(0.001) 

0.778 
(0.001) 

AUPR 0.521 
(0.001) 

0.402 
(0.004) 

0.341 
(0.001) 

0.394 
(0.001) 

0.264 
(0.002) 

0.357 
(0.001) 

0.102 
(0.010) 

0.195 
(0.001) 

0.155 
(0.001) 

10-fold-CV of Cdataset AUC 0.955 
(0.001) 

0.950 
(0.001) 

0.947 
(0.002) 

0.942 
(0.002) 

0.933 
(0.003) 

0.915 
(0.001) 

0.858 
(0.014) 

0.840 
(0.001) 

0.804 
(0.001) 

AUPR 0.607 
(0.001) 

0.441 
(0.003) 

0.378 
(0.001) 

0.428 
(0.003) 

0.310 
(0.002) 

0.423 
(0.001) 

0.129 
(0.011) 

0.305 
(0.001) 

0.201 
(0.001)  

Fig. 4. ROC comparison graph (a) and PR comparison graph (b) for the proposed model and other matrix completion methods on the drug-virus dataset HDVD.  

Table 3 
AUC values and AUPR values for various matrix completion methods on HDVD.  

Methods AUC AUPR 

DRPADC 0.876 (0.001) 0.507 (0.001) 
BNNR 

SCPMF 
CMFMTL 

0.876 (0.005) 
0.860 (0.001) 
0.850 (0.001) 

0.489(0.013) 
0.486 (0.001) 
0.440 (0.001) 

HGIMC 0.785 (0.005) 0.417 (0.009) 
GMCLDA 0.735 (0.005) 0.177 (0.003) 
SIMCLDA 0.705 (0.007) 0.152 (0.008)  

Table 4 
Comparison of the combination used in various modules.  

Model\module WKNKN CKA-MKL similarity Mean similarity Single similarity Compressed sensing AUC of Fdataset AUC of Cdataset 

DRPADC √ √   √ 0.941 0.955 
Contrast Model 1 √  √  √ 0.937 0.952 
Contrast Model 2  √   √ 0.933 0.946 
Contrast Model 3   √  √ 0.929 0.945 
Contrast Model 4 √   √ √ 0.930 0.946 
Contrast Model 5    √ √ 0.925 0.940  
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Cdataset (λN = 0.2), Fdataset (λN = 0.1). 

4.3. Case study 

To validate the performance of DRPADC in practical applications, we 
performed a case study of COVID-19. The top 15 predicted drug can-
didates for COVID-19, as determined by their final scores of predicted 
association, are listed in Table 5. For each drug, the rank (predicted 
scores ranked in descending order), the registration number in the 
Drugbank library, the canonical name, and any relevant evidence re-
ported in the literature are shown. Of these top 15 drug candidates, 12 
drugs (80% success rate) have been validated by a variety of evidence. 
Chloroquine is an inexpensive, safe, and widely used anti-malarial drug 

which has been in use for over 70 years; it is highly effective in vitro 
control of SARS-CoV-2 infection and therefore may be clinically indi-
cated for COVID-19 (Choy et al., 2020). Touret and Xavier de (2020) 
suggest that combined treatment with Remdesivir and Emetine may 
provide better clinical benefits. Wang et al. (2020) found that Chloro-
quine and Remdesivir were very effective in controlling SARS-CoV-2 
infection in vitro. Ribavirin was originally suggested in clinical prac-
tice for use in the COVID-19 Pneumonia Diagnostic and Treatment 
Program (Revised 5th Edition) (Khalili et al., 2020). Therefore, Riba-
virin is the first drug candidate predicted for possible use in the treat-
ment of COVID-19. Camostat mesylate, one of the components of 
Camostat, blocks SARS-CoV-2 interaction in pulmonary cells and may be 
regarded for extra-label therapy of COVID-19 infection (Hoffmann et al., 

Fig. 5. ROC plots for the modules in the ablation experiments for the model proposed in this paper. (a) ROC plot for the experiment based on Fdataset; (b) ROC plot 
for the experiment based on Cdataset. 

Fig. 6. Parameter analysis of the proposed model by 10 times 10-fold-CV in various datasets. (a) Sensitivity analysis of parameters K and T of WKNKN algorithm on 
Fdataset; (b) sensitivity analysis of parameters K and T of WKNKN algorithm on Cdataset; (c) sensitivity analysis of parameters K and T of WKNKN algorithm 
on HDVD. 

Fig. 7. Effect of parameters λr , λM and λN on model performance on the HDVD, Fdataset and Cdataset datasets, respectively.  
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2020; Zhou et al., 2015). A combination of Nitazoxanide and Camostat 
may be proposed as early clinical treatment and evaluation of COVID-19 
based on its pathophysiological and pharmacological potential (Khatri 
and Mago, 2020). Niclosamide is an anthelmintic approved by the Food 
and Drug Administration that modulates a variety of functional 
signaling pathways and bioprocesses, and has been certified as a 
multi-purpose drug (Li et al., 2014, 2017). For instance, Niclosamide is 
effective against a diversity of viral infections, including ZIKV virus, 
MERS-CoV, SARS-CoV, hepatitis C virus, and human adenovirus 
(Andrews et al., 1982; Organization, 2019). Xu et al. (2020) envisage 
that Niclosamide may offer therapeutic potential against SARS-CoV-2. In 
addition, the E protein channel activity of SARS-CoV-2 was shown to be 
inhibited by memantine (Singh and Arkin., 2020). Remdesivir is a 
nucleotide analogue precursor drug with a broadly based spectrum of 
anti-viral activity, including activity against paramyxoviruses, pulmo-
nary viruses, filoviruses and coronaviruses (Lo et al., 2017; Sheahan 
et al., 2017). Remdesivir inhibits viral RNA polymerase and shows anti- 
SARS-CoV-2 activity in vitro (Al-Tawfiq et al., 2020; De Wit et al., 2020; 
Grein et al., 2020). Gemcitabine is an effective broad-spectrum antiviral 
agent against a variety of RNA viruses, including MERS-CoV and 
SARS-CoV (Dyall et al., 2014), and a recent bioassay study demonstrated 
that it inhibited the multiplication of SARS-CoV-2 (Ya-Nan et al., 2020). 
The 18-kDa cytoplasmic cyclophilin A is an important cellular molecule 
required for the replication of RNA viruses, including HIV (Jeremy et al., 
1993), HCV (Koichi et al., 2005) and coronaviruses (Almasi and 
Mohammadipanah, 2020). Recent studies have demonstrated that 
non-immunosuppressive analogs such as Alisporivir inhibit the activity 
of procyclins (Almasi and Mohammadipanah, 2020). Yajie et al. (2021) 
analyzed the effect of N4-Hydroxycytidine and Mycophenolic Acid on 
the functional receptor of SARS-CoV-2, ACE2 (cellular receptor for 
angiotensin-converting enzyme 2), using a molecular docking approach. 
Both drugs were shown to have several important binding sites for 
ACE2, suggesting a therapeutic effect of these drugs on COVID-19. A 
clinical trial of umifenovir alone was recently initiated in China (McKee 
et al., 2020); most of the 15 drug candidates for the treatment of 
COVID-19 predicted by our approach can be found in McKee et al. 
(2020). 

In addition, DRPADC predicted the drug candidates Mizoribine, 
Amodiaquine, and 6-Azauridine. The antimalarial Chloroquine 
analogue Amodiaquine was shown to have inhibitory effects against 
MERS-CoV in a previous study (Dyall et al., 2014), and 6-Azauridine is a 
pyrimidine analogue that can inhibit a variety of viruses by inhibiting 
viral RNA synthesis (Cao et al., 2015). Viruses inhibited by 6-Azauridine 

include another human coronavirus, HCoV-NL63 (Krzysztof et al., 
2006). Regarding Mizoribine, although there are no reports in the 
literature about its association with COVID-19, it has the potential to be 
a treatment for COVID-19. These predicted drug candidates provide 
promising directions for drug developers and will help to advance the 
drug development process. 

5. Conclusion 

COVID-19 is still spreading worldwide, and research in medicine and 
pharmacology is ongoing in the effort to develop therapeutic drugs and 
vaccines; however, the development progress remains slow owing to the 
various limitations of medical trials. In this study, to help advance the 
drug research process, we proposed a new compressed sensing algorithm 
combining a central kernel symmetry with a multicore learning algo-
rithm called DRPADC to pinpoint drug candidates with high confidence 
intervals for the potential treatment of COVID-19. In this model, we used 
the WKNKN algorithm to reduce the sparsity of the drug-disease asso-
ciation matrix, thereby expanding the information complement of the 
model and improving its predictive performance. In addition, we 
improved the complementarity of various types of similarity informa-
tion by fusing multiple drug and disease similarity matrices through 
CKA-MKL. Finally, we used a compressed sensing algorithm to calculate 
drug-disease association prediction scores. After validation of the 
experimental results, DRPADC achieved satisfactory results in the rapid 
discovery of COVID-19 drug candidates, outperforming drug- 
repositioning methods of similar type proposed in recent years. 

However, there are still some points that should be considered 
regarding our approach in the future. Although we introduce multiple 
similarity data for drugs and diseases (or viruses), there are many types 
of similarity data that are not currently considered. In addition, 
DRPADC does not completely circumvent the effects of association 
sparsity. For new diseases and drugs with sparse association data or 
feature data, existing methods, including DRPADC, have not been able 
to achieve good prediction results. In future work, we will further 
investigate drug-repositioning methods and continue to develop new 
algorithms to cope with these current problems. In addition, owing to 
ongoing research, more correlation data will be added to the existing 
datasets in the future, providing quality data resources for drug- 
repositioning methods. We expect that drug-repositioning technology 
will help to advance the drug development process. 
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Table 5 
Top 15 drug candidates for the therapy of COVID-19 identified by our approach.  

Rank Drugbank 
ID 

Drug name Evidences 

1 DB00608 Chloroquine (Choy et al., 2020) 
2 DB00811 Ribavirin (Khalili et al., 2020) 
3 DB15660 N4- 

Hydroxycytidine 
(Yajie et al., 2021) 

4 DB13729 Camostat (Hoffmann et al., 2020; Zhou et al., 
2015) 

5 DB00507 Nitazoxanide (Khatri and Mago, 2020) 
6 DB01024 Mycophenolic 

Acid 
(Yajie et al., 2021) 

7 DB12617 Mizoribine Unknow 
8 DB06803 Niclosamide (Xu et al., 2020) 
9 DB01043 Memantine (Singh and Arkin., 2020) 
10 DB00613 Amodiaquine Unknow 
11 DB00441 Gemcitabine (Ya-Nan et al., 2020) 
12 DB03718 6-Azauridine Unknow 
13 DB12139 Alisporivir (Almasi and Mohammadipanah, 

2020) 
14 DB14761 Remdesivir (Yajie et al., 2021; Al-Tawfiq et al., 

2020; Grein et al., 2020) 
15 DB13393 Emetine (Touret and Xavier de, 2020)  
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