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Abstract

Phasic dopamine release from mid-brain dopaminergic neurons is thought to signal errors

of reward prediction (RPE). If reward maximisation is to maintain homeostasis, then the

value of primary rewards should be coupled to the homeostatic errors they remediate. This

leads to the prediction that RPE signals should be configured as a function of homeostatic

state and thus diminish with the attenuation of homeostatic error. To test this hypothesis, we

collected a large volume of functional MRI data from five human volunteers on four separate

days. After fasting for 12 hours, subjects consumed preloads that differed in glucose con-

centration. Participants then underwent a Pavlovian cue-conditioning paradigm in which the

colour of a fixation-cross was stochastically associated with the delivery of water or glucose

via a gustometer. This design afforded computation of RPE separately for better- and

worse-than expected outcomes during ascending and descending trajectories of serum glu-

cose fluctuations. In the parabrachial nuclei, regional activity coding positive RPEs scaled

positively with serum glucose for both ascending and descending glucose levels. The ven-

tral tegmental area and substantia nigra became more sensitive to negative RPEs when

glucose levels were ascending. Together, the results suggest that RPE signals in key brain-

stem structures are modulated by homeostatic trajectories of naturally occurring glycaemic

flux, revealing a tight interplay between homeostatic state and the neural encoding of pri-

mary reward in the human brain.

Introduction

A basic assumption of many models of adaptive behavior, is that the value of primary rewards

are modulated by their capacity to rectify future homeostatic deficits [1, 2]. Compatible with

this notion, deprivation-induced hypoglycaemia increases willingness to work for food in rats

and humans [3], as well as the subjectively reported pleasure [2]. Dopamine is a neurotrans-

mitter that plays a key role in signalling reward [4] and is involved in behavioural reinforce-

ment, learning, and motivation [5, 6]. Via meso-cortical and mesolimbic dopaminergic

projections, synaptic dopamine release modulates the plasticity of cortico-striatal networks

and thereby sculpts behavioural policies according to their reward contingencies [4, 7].
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Patterns of phasic dopaminergic firing have been demonstrated to follow closely the principles

of reinforcement learning, encoding the errors in the prediction of reward [6, 8–10]. Reward

prediction error (RPE) signals appear commensurate with the economic construct of marginal

utility, defined as the additional utility obtained through additional units of consumption,

where utility is a subjective value inferred from choice [7, 11, 12].

Although animals are motivated by a homeostatic deficit of thirst or hunger, homeostatic

states are rarely considered as relevant modulators of dopaminergic signalling of reward pre-

diction errors. In typical paradigms involving cumulative consumption, the homeostatic defi-

cit gradually diminishes as the animal plays for consumption of water or sugar-containing

juice. Eventually, the animal rejects further play, presumably because the marginal utility of

consumption diminished to a point of indifference or even aversion. Interestingly, a recent

electrophysiology study in rats, demonstrated that oral consumption of sodium solution causes

phasic dopaminergic signals in the nucleus accumbens, that are modulated by sodium deple-

tion [13].

There is now growing evidence for a multifaceted interface between dopamine mediated

reward-signalling and the systems underpinning energy homeostasis. Firstly, dopamine neu-

rons in the ventral tegmental area (VTA) express a suite of receptors targeted by energy-

reporting hormones ghrelin, insulin, amylin, leptin and Glucagon Like Peptide 1 (GLP-1) [14,

15]. This provides numerous degrees of freedom for flexibly interfacing between homeostatic

state and reward signalling. Although hormonal modulations of phasic dopamine are yet to be

fully scrutinised, there is emerging evidence that circulating factors do indeed modulate its

magnitude. For instance, amylin, a hormone co-released with insulin, acts on the VTA to

reduce phasic dopamine release in its mesolimbic projection sites [16]. In terms of neuronal

input, there are many such opportunities for the appetitive control of dopamine mediated

signalling.

Appetitive control can be delineated into three interacting systems [17]. The first system

generates a negative valence signal which involves activity of the Agouti-related peptide

(AgRP) neurons of the arcuate nucleus of the hypothalamus (ARC). Activity of ARCAgRP neu-

rons reports on energy deficits, inhibits energy expenditure, and regulates glucose metabolism

[18–21]. ARC neurons that contain peptide products of pro-opiomelanocortin (POMC) form

an opponent code compared with ARCAgRP neurons. The balance between the two neuronal

ARC sub-populations putatively encodes the value of near-term energetic states, becoming

rapidly modulated just prior to food consumption [22]. The second system codes positive

valence signals and consists of circuits involving the lateral hypothalamus (LH). It is linked to

positively reinforcing consummatory behaviours via its GABAergic projections to VTA dopa-

mine neurons [23] assumed to trigger positive feedback to keep consumption going during

feeding bouts. The third valuation system involves calcitonin gene-related protein (CGRP)-

expressing neurons in the parabrachial nuclei (PBN) that potently suppress eating when acti-

vated, but do not increase food intake when inhibited. PBNCGRP neurons are activated by sig-

nals associated with food intake, and they provide a signal of satiety that has negative valence

when strongly activated [24]. The PBN has been characterised as a hedonic hotspot, the modu-

lation of which by either GABA or Benzodiazepines potently modulates experienced reward

[25]; ARCAgRP neurons GABA-ergically inhibit PBN neurons, thus stimuli predicting glucose

consumption should inhibit ARCAgRP, releasing the PBN from inhibition [26]. Further, hor-

mones related to hunger and feeding (GLP-1 & leptin) modulate PBN activity and subsequent

behaviour [27, 28]. Of note, these three valuation systems all project to and modulate the dopa-

minergic neurons in the ventral tegmental area (VTADA). The interface between these hypo-

thalamic-brainstem networks and the VTADA, is arguably the most important interface for

mediating the dialogue between energy homeostasis and value computation.
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While most evidence for encoding of RPEs is obtained under homeostatic deprivation, the

modulation of RPE signalling triggered by physiological fluctuations in glucose availability

(glycaemic flux) remains yet to be characterised in the human brain. This begs the questions,

how are RPE signals modulated by these subcortical circuits that integrate, evaluate, and pre-

dict energy-homeostatic states? We hypothesize that glucose fluctuations above and below

average levels of serum glucose, will down and up modulate RPE responses in these hypotha-

lamic-brainstem networks. To test these hypotheses, we acquired a large volume of fMRI data

in five participants during a simple Pavlovian cue-conditioning task, while their serum glucose

was systematically manipulated.

Methods

Subjects

Five healthy (3 male), normal-weight subjects in the age range 23 to 29, participated in the

study. Exclusion criteria were: 20 > BMI> 25; 18> Age> 32 yrs; any metabolic or endocrine

diseases or gastrointestinal disorder; any known medication that might interfere with the

study; claustrophobia; and any metal implants or devices that could not be removed. Informed

consent was obtained in writing from all subjects as approved by the Regional Ethics Commit-

tee of Region Hovedstaden (protocol H-4-2013-100) and in accordance with the declaration of

Helsinki.

Experimental procedure

The experimental design constituted a single-blinded, randomised control trial, with repeated

measures crossover-design. On four separate days, subjects fasted for a minimum of twelve

hours before testing. Compliance with the fasting instruction was based both on trust, and on

the understanding that we would be able to detect if participants had not fasted via blood tests.

Any participant that was not in the hypoglycemic range (defined here as<6mmol/L) at the

start of the experiment would be assumed to have not fasted, and the session would be aborted.

This was not necessary for any participant. At the beginning of an experimental session, sub-

jects ingested either a hi-glucose (75 g, 300 kcal) or lo-glucose preload (10 g, 40 kcal) diluted to

100 ml with a non-caloric lemon juice, used in order to mask the taste of the glucose. The lo-

glucose preload resulted in glucose ascending during the fMRI acquisition period, due to the

consumption of glucose, whereas during the same period after the hi-glucose preload, glucose

levels descended (Fig 1B). The preload conditions are thus referred to as ascending and

descending conditions. The temporal order of the conditions was randomised within subjects,

with each condition being performed twice. Both preloads were anecdotally reported by inde-

pendent samplers to be highly palatable. Each delivery of glucose reward was 0.4ml, corre-

sponding to 0.3 g of glucose (1.2 kcal) per delivery.

Experimental task

After consuming the preload, participants engaged in a simple Pavlovian cue-conditioning

task. The colour of the fixation cross cued both the onset of each trial (Cueonset), as well as sto-

chastically predicting glucose delivery (Fig 1A), with one colour signalling a high probability

of glucose delivery (Cuehigh), and another signalling a low probability (Cuelow). 10–15 seconds

after delivery of the liquid, a purple cross signalled that subjects were to swallow. The large

temporal distance between the swallowing and the reward onset, as well as the levels of tempo-

ral jitter, was designed to mitigate the contamination of the reward signals by swallowing

related artefacts. All probabilities and contingencies were implicitly revealed only through
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experience in the scanner, and all were stationary over all test days. The mapping between col-

our and outcome probabilities was counterbalanced across subjects, while the mapping was

stationary within and between sessions. Participants went through ~82 trials [82 ± 1.5 SEM]

each day giving ~328 trials per subject. Serum glucose measurements were attained immedi-

ately before and 20 minutes after ingestion, using a Contour1 Next glucose meter (Fig 1B). It

should be noted that whilst there is no jitter between the cue and the outcome, independent

estimation of each of the effects is achievable by virtue of their probabilistic transitions

(Fig 1A).

Scanning procedure

Task related changes in regional brain activity were mapped with blood oxygen dependent

(BOLD) MRI immediately after the second glucose measurement (t20). Functional MRI mea-

surements were performed with a 3T Philips Achieva and a 32 channel receive head coil using

a gradient echo T2� weighted echo-planar image (EPI) sequence with a repetition time of 2526

ms, and a flip-angle of 80˚. Each volume consisted of 40 axial slices of 3 mm thickness and 3

mm in-plane resolution (220 x 220 mm). The axial field-of-view was 120 mm covering the

whole brain, cutting off the medulla oblongata partially. This sequence was extensively piloted

and optimised specifically for reducing distortion and maximising resolution with the hypo-

thalamic and brainstem regions of interest. During each session, 800 EPI volumes were

Fig 1. Experimental design, glucose trajectories, and expected reward signals. a, participants were presented with the Cueonset (grey fixation

cross) for 1-3s after which either Cuehigh (blue cross) or Cuelow (brown cross) is presented with a probability of 0.5 each. Cuehigh signalled a high

probability (0.8) of glucose delivery and a low probability (0.2) of water delivery. Cuelow signalled a low probability of glucose (0.2) and a high

probability of water (0.8). The 0.4ml of the liquid were delivered over 2.5 seconds, followed by 10-15s wait period and a Cueswallow that cued the

subject to swallow (here, purple) which lasted for 5s. All jitters are uniformly distributed within the ranges specified. b, serum glucose trajectories

for the high and low glucose preload conditions. Grey shading indicates the period of fMRI acquisition for a single session. The different line plots

indicate different sessions for all subjects. Glucose levels ascend during the fMRI acquisition period in the lo-glucose condition, and descend in

the hi-glucose condition. c, graph depicts the objective reward expectations, expressed as the expected value in ml glucose, and the perturbation of

these expectations under the onset of the experimental cues and outcomes. Note that reward expectations are updated three times per trial: at the

onset of the Cueonset; at the onset of Cuehigh or Cuelow; at the onset of Outcomeglucose or Outcomewater. d, illustrates simulated BOLD responses to

RPE signals resulting from the updated reward expectations shown in c, generated by convolving the canonical hemodynamic response function

with the RPE stick functions evoked by changes to the reward expectations.

https://doi.org/10.1371/journal.pone.0243899.g001
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acquired, resulting in 3200 EPI volumes per subject. Further, an anatomical T1-weighted

image was recorded for each subject. Respiration and heart rate were measured to assess and

model possible artefacts. Liquid tastants were contained in two 50 ml syringes, one containing

water-only (water hence) the other containing glucose and water (glucose hence) solutions,

attached to two programmable syringe pumps (AL1000-220, World Precision Instruments

Ltd, Stevenage, UK), controlled by the stimulus paradigm script. The liquid was delivered

orally via two separate 5m long 3mm wide silicone tubes. Each tube was attached to a gustatory

manifold specifically built for the Philips head-coil (John B. Pierce Laboratory, Yale Univer-

sity). Visual stimuli were presented on a screen positioned ~30 cm away from the scanner.

Pre-processing

Pre-processing and image analysis were done using SPM12 software (Statistical Parametric

Mapping, Wellcome Department of Imaging Neuroscience, Institute of Neurology, London,

UK). To correct for motion, EPI scans were realigned to their mean using a two-step proce-

dure and co-registered to the T1 weighted anatomical image. The realigned images were spa-

tially normalised to the standard ICBM space template of European brains, with a resampled

voxel size of 3 mm.

fMRI analysis

After model specification, the ascending condition sessions were concatenated using the func-

tion spm_fmri_concatenation (SPM 12) for each subject. Equivalently, the same concatenation

was performed for the descending conditions sessions. A first-level fixed effects model was run

over all subjects. The concatenation was performed to avoid state-dependent effects being

expressed via the session-specific regression coefficients. All variables of interest were con-

volved with the canonical hemodynamic response function, along with their associated tempo-

ral and dispersion derivatives and fitted to the data using the specified GLM. The temporal

evolution of cues and outcomes were modelled as separate conditions, each with state as

parametric modulators. Regressors of no interest included a discrete cosine transform based 1/

128 Hz cut-off frequency high-pass filter, rigid body realignment parameters using a 24 param-

eter Volterra expansion [29] and physiological noise from heart rate and respiration using the

RETROICOR method [30]. We specified the striatum (caudate, putamen and nucleus accum-

bens), brainstem (pons, ventral tegmental area and substantia nigra) and hypothalamus as

regions of interest (ROI). These ROIs were determined on the basis of the literature describing

dopamine projections from midbrain to the striatum and its role in regulating behaviour as a

function of reward. The pons was selected to accommodate the literature described above,

which sets certain nuclei within the pons as important homeostatic modulators. All ROI were

defined with the WFU pick atlas [31, 32] and cross checked against the book Atlas of the
human brain [33]. All initial first-level analysis was performed as whole-brain uncorrected at

p< 0.001. Significant clusters in regions of interest (ROI) are all reported as small-volume cor-

rected with a family-wise threshold of p< 0.05 at cluster level (abbreviated SVC FWE), unless

otherwise stated.

Modelling RPEs

At the first level, a general linear model (GLM) was set up to model cue and outcome related

brain activity. We specified separate regressors which modelled the onset of cue events

(Cueonset, Cuehigh and Cuelow) and outcome events (Outcomegluc & Outcomewater). Since there

is no overt behavior in this task to which a temporal difference learning algorithm can be fit,

we used a different approach based on how RPEs converge to changes in the conditional
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expectation values of reward outcomes. As subjects learn the contingencies between the cues

and the outcomes, the RPEs evoked by these events converge toward the change in expected

value of the reward (here the volume of glucose), conditional on the events they have cumula-

tively experienced during the trial. This has been shown in single cell recordings, where the

RPE signals of dopaminergic cells in the VTA, signal errors whose magnitudes reflect the

change in expected value of juice volume, conditional on the events that have been experienced

at that time [11]. Fig 1C illustrates how the expectation value of glucose volume evolves over

time as a function of the cues observed. The conditional expectation value upon seeing the

Cueonset is the expectation value of glucose volume for each trial, conditional on the fact the

trial has started. This is shown in Fig 1C, since all lines begin from this starting point of 0.2ml.

Thus, Cueonset triggers a small positive RPE, seen as the first spike on the left in Fig 1D. From

there the expectation value of glucose increases or decreases depending on whether the Cuehigh

or Cuelow is experienced, as labelled in Fig 1C. This causes the second set of spikes seen in Fig

1D, where the green corresponds to the Cuehigh and the purple corresponds to Cuelow. Finally,

the outcomes arrive changing again the conditional expectational value of glucose to either

0.4ml or 0ml. This can be thought of as the expectation value of the glucose that the agent can

expect to metabolise having received the liquid in its mouth. This corresponds to the third set

of spikes in Fig 1D. To approximate the RPEs without behavior, we specified contrasts which

were formulated by linear combinations of these cue and outcome regressors, weighted as a

function of the RPE values that would be expected from the temporal-difference learning algo-

rithm, once converged [34]. In other words, the cue and outcome regressors were weighted by

the change in conditional expectation of glucose volume caused by the regressor’s event (either

the cue or the outcome). A contrast of positive RPE signals (RPEpos) was computed by assign-

ing the positive valence cue and outcome regressors (i.e. Cueonset, Cuehigh, and Outcomegluc)

contrast weights that were proportional to the change in expectation value of glucose volume

that these events caused. Equivalently negative RPEs (RPEneg) were computed equivalently as

contrasts to include only the negative valence events (i.e. Cuelow and Cuewater). It should be

noted here that in this approach to modelling RPEs, the model does not incorporate any effect

of learning, in effect modelling what signals are expected once learning has converged on the

expected reward values.

Modelling RPE modulation by glucose

The effect of serum glucose on RPE was modelled via first order parametric modulator of the

cue and outcome regressors, taking the interpolated serum glucose at each time point as the

covariate (demeaned). This resulted in five parametric modulator regressors, namely Cueonset�-

state, Cuehigh�state, Cuelow�state, Outcomegluc�state & Outcomewater�state. From these regressors,

contrasts can be specified to model the effect of serum glucose on RPEs. The effect of glucose

state on positive RPEs (RPEpos�state) was computed as a linear combination of Cueonset�state,

Cuehigh�state, and Outcomegluc�state regressors. Equivalently, the effect of glucose state on nega-

tive RPEs (RPEneg�state) was computed as a linear combination of (Cuelow�state, Outcomewater�-

state). All 1st-order parametric modulators are orthogonal to their associated onset regressors

by construction. No other orthogonalization of regressors was performed.

Results

Cueonset induced brain activity

An RPE signal should respond to the Cueonset, with an error signal that signals the expected

value of glucose reward for the whole trial [11]. Computing the main effect of this regressor,

this was found to evoke an increase in activity in VTA bilaterally (Fig 2A). Thus cue-induced

PLOS ONE Reward signalling in brainstem nuclei under fluctuating blood glucose

PLOS ONE | https://doi.org/10.1371/journal.pone.0243899 April 7, 2021 6 / 15

https://doi.org/10.1371/journal.pone.0243899


VTA activation is consistent with existing evidence of VTA signalling RPEs [35–37]. Cueonset

also led to the deactivation of the postcentral gyrus (primary somatosensory cortex), medio-

dorsal thalamus, and the striatum [whole brain, uncorrected p< 0.001] (not shown).

Positive and negative reward prediction error signals

In several brain regions, regional task-related activity changed in proportion with the magni-

tude of positive-going (i.e. better-than-expected) reward prediction errors (RPEpos) or nega-

tive-going (i.e. worse-than-expected) reward prediction errors (RPEneg). Task related activity

scaling with the RPEpos, formalized as an RPE-weighted linear combination of Cuetrial, Cuehigh,

and Outcomegluc, was found in left lateral caudate nucleus (Fig 2B). Conversely, task related

activity reflecting RPEneg, formalized as an RPE-weighted linear combination of Cuelow and

Outcomewater, was located in the caudate nucleus bilaterally Fig 2C), the medial dorsal tha-

lamic nucleus, and insula (not shown).

Modulation of task-related brain activity by glycaemic state

We were interested to identify changes in RPE signalling over time as serum glucose either

ascended or descended. A bilateral cluster, including the parabrachial nuclei (PBN), showed a

modulation of the regional neural responses to RPEs by the glycaemic state dynamics (Fig 4A).

Fig 2. Statistical parametric maps of main effects of trial onset, positive and negative RPEs. a, main effect of Cueonset, which reflects

an RPE following the mean reward expectation for the whole trial, revealed activity in VTA bilaterally (β = 2.77) (R: [4–17–20] and L: [–

8–17–20], FWE SVC). Further this revealed deactivation of precentral gyrus (primary somatosensory cortex), mediodorsal thalamus, and

striatum (FWE whole brain, not shown). Lower panel shows fitted response for the Cueonset event within the same region. b, main effect

of RPEpos revealed activity in left lateral caudate [β = 1.21; coordinates -8 4 7; FWE SVC]. Lower panel shows fitted response for the

RPEpos contrast within the region. The colours of time courses follow the same meaning as shown in Fig 1C and 1D. c, main effect of

RPEneg revealed bilateral activity in caudate (L: -11–2 13; R: 10 7 1; β = 12.2) medial dorsal thalamic nucleus [7, –2, 22], and lateral insula

[43, –2, –17] (all FWE). Lower panel shows fitted response for the RPEneg contrast within the region. All fitted responses were generated

by convolving the canonical hemodynamic response function with the RPE stick function multiplied by their respective beta-values

extracted from the local maxima of the ROI in units of percent signal change. Again, the time courses follow the same meaning as shown

in Fig 1C and 1D. Error bars show standard errors of the mean.

https://doi.org/10.1371/journal.pone.0243899.g002
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Higher levels of serum glucose amplified the response to RPEpos in the PBN region (Fig 3B).

The main effect of RPEneg�state, which models the interaction between RPEneg and state, did

not yield any significant results in any ROI, or in exploratory analyses using uncorrected

thresholds, in positive or negative contrasts. When considering both ascending and descend-

ing serum glucose fluctuations together, there was no detectable region where the RPEneg sig-

nal was either positively or negatively modulated by serum glucose. Brain responses to

Cueonset were also not altered by glycaemic state.

We also tested for state-dependent modulatory effects on RPE processing which depends

on whether serum glucose was ascending (Fig 1B, left) or descending (Fig 1B, right) over time.

This yields four different contrasts (ascending vs. descending and the converse, for RPEpos�state

and RPEneg�state) that are directly relevant to glucose state. Subtracting descending trajectories

from ascending and vice versa, revealed no significant activity changes for RPEpos�state [whole

brain, uncorrected]. The same comparisons for RPEneg�state did reveal significant effects in

VTA and substantia nigra for ascending trajectories relative to descending trajectories (Fig

4A). This result shows a relative amplification of the RPEneg�state signal as glucose state

increases. In instances where reward was lower-than-expected (thus yielding negative RPE),

Fig 3. Statistical parametric maps of RPEpos�state and fitted responses over varying glycaemic state. a, main effect of

RPEpos�state revealed bilateral activity in the PBN [-2–29–26; FWE SVC]. The colour bar indicates the t-value on a scale

of white to blue. b, fitted response (β = 1.66) of the local maxima of PBN cluster (7 voxels) to the possible trajectories

that RPEpos�state, yield (Fig 1D) modulated by serum glucose state. There are four possible trajectories of the positive

RPE, according to the four different possible trial types depicted in Fig 1C. These trajectories are modulated by serum

glucose and shown as different colours with 5 different equally spaced glycemic states. There are thus 4 sets of these

trajectories (the four closest to the viewer), each showing their modulation by glucose in the different colours. In order

of closeness to the viewer, the first set of trajectories is for the Cuehigh- Outcomegluc trial; the second set is for the

Cuehigh−Outcomewater trial; the third set is for Cuelow−Outcomegluc trial; the fourth set is for the Cuelow

−Outcomewater trial. The fifth set of trajectories (furthest from the viewer) superimpose together all possible trajectories

depicting the complexity of how the trajectories are patterned according to their modulation by glucose state. For

comparison, this presentation is analogous to the superimposed trajectories shown in Fig 1D. Note that the colour bar

for the graphs in (b) is serum glucose and is distinct from the colour bar in (a) used to indicate t-values.

https://doi.org/10.1371/journal.pone.0243899.g003
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the glucose state modulated the RPEneg signal in VTA and SN more so when glucose levels

were ascending than descending.

Discussion

Participants performed a simple cue-conditioning task involving the probabilistic delivery of

glucose or water, whilst their blood glucose fluctuated over the course of an hour. We had

hypothesized that low levels of serum glucose will positively modulate the scale of positive RPE

responses in hypothalamic-brainstem networks, reflecting the marginal utility of glucose as a

function of homeostatic needs. Contrary to this hypothesis, we did not observe any positive

RPE that increased its scaling with decreasing levels of serum glucose levels. In exploratory

analyses there were however several observations of a dependency between serum glucose and

RPE signals. Reward prediction error signalling in the parabrachial nuclei scaled positively

with serum glucose levels, and this was true whether glucose was ascending or descending

over time. We found that both the VTA and SN became more sensitive to negative RPEs for

ascending compared to descending glycaemic trajectories. We begin by discussing the inter-

pretation of these state modulated RPE effects, before considering other effects, and the limita-

tions inherent under this paradigm.

Fig 4. Statistical parametric maps of RPEneg�state subtracted for increasing minus decreasing. a, negative reward

prediction error RPEneg�state revealed glucose modulated activity in SN [±12, -22, -10] and VTA [0, –15, –9] when

subtracting the effect of descending from the ascending glucose state [FWE SVC]. b, fitted response (β = 0.34) of the

local maxima of cluster [7, -11, 8; 52 voxels] to the three possible trajectories that RPEneg�state yield modulated by serum

glucose state. Onsets are not at zero because the negative trajectories do not envelop the trial mean which has a positive

expectation. In order of closeness to the viewer, the first set of trajectories is for the Cuehigh- Outcomegluc trial; the

second set is for the Cuehigh−Outcomewater trial; the third set is for Cuelow−Outcomegluc trial; the fourth set is for the

Cuelow−Outcomewater trial. The fifth set of trajectories (furthest from the viewer) superimpose together all possible

trajectories depicting the complexity of how the trajectories are patterned according to their modulation by glucose

state. The set of trajectories furthest away from the viewer superimposes the trajectories from all trial types into one

plot.

https://doi.org/10.1371/journal.pone.0243899.g004
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In rodent models, the PBN acts as a 2nd order relay of inputs from the nucleus tractus soli-

tarius, and is critical in the control of energy homeostasis via its projections to amygdala [38,

39], VTA [40], hypothalamus [39, 41] and the nucleus accumbens [42]. Subnuclei of the PBN

are targeted by descending projections from several nuclei implicated in energy homeostasis,

including hypothalamus, amygdala, and the bed nucleus of the stria terminalis [39, 43]. The

PBN is known to be a potent site of reward modulation and subsequent behaviour in rodents.

Microinjection of benzodiazepines [44–46], endocannabinoids [47], opioids [48, 49] and mela-

nocortin agonists [50] into the PBN, all evoke hyperphagias. To our knowledge, the involve-

ment of PBN in context of hedonics and reward signalling in the human brain remains to be

charted. Here we provide tentative evidence that PBN activity generates a positive RPE-like

signal that is sensitive to blood glucose and is time-locked to both the sensory cues predicting

glucose, as well as glucose consumption.

We found no state modulation of RPEneg signalling (RPEneg�state), expressed during both

ascending and descending glycaemic trajectories. For the RPEneg signal, the modulatory effect

of the glycaemic trajectory depended on whether glucose trajectories were ascending or

descending. Regional activity scaling with RPEneg, the VTA and SN showed significantly

higher state modulation effects during ascending compared to the descending glycaemic

paths. In our experiment, the ascending glucose trajectory resulted from a low-glucose preload

with the subsequent increase over time likely occurring by virtue of the continual ingestion of

glucose throughout the paradigm (Fig 1B). In the ascending condition, the neural response to

RPEneg is attenuated at lower levels of serum glucose, while it becomes amplified by the transi-

tion to higher serum glucose. Given that there is some evidence that dopaminergic neurons of

the VTA and SN are directly inhibited by insulin [15], it is possible that the insulin release fol-

lowing hi-glucose preload was highest at the start of the paradigm, decreasing over time, and

thus resulting in a gradual decrease in inhibition. However, it should be noted insulin can have

a stimulatory effect on dopaminergic firing rates [51]. The difference in RPEneg in its state

modulation (RPEneg�state) between ascending and descending may therefore be attributed to

differential dynamics of insulin secretion [52], though other hormones such as ghrelin [52–54]

or leptin [55–58] may play a role. It is not presently known, why it would make sense that a

behaviorally reinforcing signal, such as phasic RPE, is expressed less as glucose levels are

decreasing in a situation where the body is moving towards a state of potential

dyshomeostasis.

Our finding that the VTA and SN responses are linked to RPEneg may appear counterintui-

tive, given that these midbrain regions are typically associated with BOLD responses signalling

positive-going RPEs. This is assumed to be by virtue of the fact that a greater range of firing

rates can be devoted to the better-than-expected range, signalled by above baseline firing. This

is contrasted to the worse-than-expected range, which can only be signalled by a decrease from

an already low baseline frequency. It is conceivable that what we are asserting as being RPEneg

is in fact a positive RPE resulting from the gradual avoidance of glucose, which increases in

magnitude with increasing levels of serum glucose as reported in humans [2] and rats [59].

Thus, as the experimental paradigm continues, especially under the conditions of glucose pre-

load, serum glucose increases, and this may change the valence of the outcome, switching the

affective connotation of glucose from palatable to aversive.

As detailed in the introduction, little is known about how the interface between dopaminer-

gic RPE signalling and energy homeostasis is implemented in the human brain. While there

are many means by which circulating factors can modulate activity in the VTA and SN, the

mechanisms by which this is mediated cannot be revealed without wider hormonal assays.

Contemporaneous hormonal sampling, as well as continuous glucose monitoring in the scan-

ner will prove an important step in revealing these latent factors.
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There are several technical limitations that should be noted in discussing this experiment.

Though relatively high volumes of functional data (150 minutes per subject) were acquired in

each subject, the total number of subjects was small. The reason for this was a focusing on

maximising experimental power within subjects, for finer scale inference on the longer time-

scale glucose dynamics. It was not known ahead of time how large the modulatory effects

would be, and thus we deployed a conservative strategy of testing fewer subjects for longer.

The long regressors that result from the concatenation of sessions may have meant that the

high pass filtering would have reduced the effects of ascending and descending glucose levels.

Inferring slow timescale dynamics is generally a problem for fMRI, however it is circumvented

to some degree here, insofar as we are inferring the modulatory effect of glucose on faster RPE

signalling dynamics which occur on a faster timescale than that which is filtered by the high-

pass filter. Due to the small number of subjects, we deployed a fixed effects analysis over all

subjects. It should be noted that this makes assumptions about the nature of the noise that

might not be compatible with the repeated measures design, since it is difficult to correct for

non-sphericity in this setting. Future work will expand this paradigm with a larger group of

subjects to afford random effects modelling, and thus generalisation to the population sampled

from. Contrary to our hypotheses, we found no modulatory effect of hypothalamic nuclei on

RPE signalling. We stress that the current imaging protocols and field-strength (3T) were not

optimal to dissociate neural activity in the hypothalamic nuclei. Due to the proximity of air

sinuses adjacent to the hypothalamus and the effective resolution available, the present study

most likely had insufficient sensitivity to capture activity in hypothalamic regions of interest.

Another issue is whether the hemodynamic modelling was appropriate for detected evoked

responses in subcortical regions which may deviate from the canonical hemodynamic

response functions typically used. The regression model we used deployed temporal and dis-

persion derivatives for all regressors of interest in order to account for idiosyncratic variance

in the timing and temporal spread of the hemodynamic response function. Finally, it should

be noted that the cue-conditioning employed in this study was passive. Hence, subjects pro-

duced no overt choice behaviour against which to fit learning rate parameters for the RPE

model, instead we relied on the asymptote values for the RPE signals. The problem of model-

ling RPEs in the absence of choice behaviour, motivates fitting learning rate parameters

directly to brain data, a computational imaging approach that future work will exploit [60].

Recent literature on the computational neuroscience of reinforcement Learning (RL) has

evidenced how decision-making in the mammalian brain is driven by optimizing the net value

of both primary and non-primary rewards. Such reward computations have been shown to

rest on a comparison between the expectation and outcome of external environmental cues,

integrating both the physical and cognitive effort costs of the agent [61–63]. The work pre-

sented here tentatively expands this perspective this by showing that reward and RPE signals

are dependent on internal homeostatic states, which may serve to modify the motivational val-

ues according to the personal and time varying homeostatic needs of the organism.

In conclusion, we exploited a simple paradigm, capable of eliciting RPEs under differential

glycaemic trajectories, to identify brain stem structures that show a modulation of RPE signal-

ling depending on the glycaemic state. We found that the PBN signals a positive-going reward

prediction that is subject to systematic modulation by serum glucose. In the VTA and SN, neg-

ative-going RPEs were modulated by serum glucose trajectories, but in a way that was specific

to an ascending glycaemic slope. Together the results show that RPE signals in key brainstem

structures can be modulated by homeostatic trajectories inherent in naturally occurring gly-

caemic flux, revealing a potentially tight interplay between homeostatic state and the signalling

of primary reward in the human brain.
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