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Abstract: Aluminum-doped zinc oxide film was deposited on a glass substrate by mist chemical
vapor deposition method. The influence of different aluminum doping ratios on the structural and
optical properties of zinc oxide film was investigated. The XRD results revealed that the diffraction
peak of (101) crystal plane was the dominant peak for the deposited AZO films with the Al doping
ratios increasing from 1 wt % to 3 wt %. It was found that the variation of AZO film structures
was strongly dependent on the Al/Zn ratios. The intertwined nanosheet structures were obtained
when Zn/O ratios were greater than Al/O ratios with the deposition temperature of 400 ◦C. The
optical transmittance of all AZO films was greater than 80% in the visible region. The AZO film
deposited with Al doping ratio of 2 wt % showed the highest photocatalytic efficiency between
the wavelength of 475 nm and 700 nm, with the high first-order reaction rate of 0.004 min−1 under
ultraviolet radiation. The mechanism of the AZO film influenced by aluminum doping ratio during
mist chemical vapor deposition process was revealed.

Keywords: aluminum doping ratio; zinc oxide film; photocatalytic property; mist chemical vapor deposition

1. Introduction

In the last decade, the photocatalytic process has been mainly involved in the degra-
dation of chemical pollutants and hazardous industrial waste [1,2]. In 1972, Fujishima et al.
observed the unique properties of semiconductor-based photocatalysts on photoelectro-
chemical water splitting, such as nontoxicity, photosensitivity, and high oxidizing effi-
ciency [3–7]. Since then, many popular metal oxides have been applied as semiconductor
photocatalysts, including magnesium oxide, titanium dioxide (TiO2), silver oxide, copper
(II) oxide and zinc oxide (ZnO), due to their excellent physical and chemical proper-
ties [8–13]. Among them, ZnO has also emerged as a potential semiconductor photocatalyst
due to its promising properties, such as a wide bandgap (3.37 eV) at room temperature, large
exciton binding energy (60 meV), super-hydrophilicity, high redox potential, higher surface
reactivity, durability, and low cost [14–16]. Moreover, it is well established that the main
factor in determining the photocatalytic efficiency of ZnO is the photo-excitation process,
which involves excitation, diffusion, and surface transfer of photogenerated charged carri-
ers [17–19]. However, the faster recombination rate of photogenerated electron-hole pairs
can reduce the photocatalytic efficiency of ZnO. It was reported that the recombination rate
of electron-hole pairs could be reduced by modifying the surface, introducing the defects or
doping with transition metals in ZnO [20–24]. Compared with other methods, aluminum
(Al) doping is expected to be a more efficient method of reducing the electron-hole pairs
recombination rate of ZnO [25–27]. The Al could be doped into ZnO films via different
methods, such as radio frequency magnetron sputtering, sol–gel method, chemical vapor
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deposition (CVD), atomic layer deposition and spray pyrolysis, et al. [28–30]. However,
there are still issues regarding the controlling of surface morphology, growth direction and
the cost [31–33]. It was reported that mist CVD had advantages on the film deposition such
as high uniformity, high reproducibility, simplicity, easy to control, and low cost [34–37].

In our previous research, we had successfully used the mist CVD method to fabricate
the TiO2 film [38,39]. In this research, we planned to apply the mist CVD method to
synthesize aluminum-doped ZnO (AZO) thin film. The effect of Al doping ratios on the
properties of films was investigated, and the photocatalytic activity of AZO films was
investigated as well.

2. Experiments
2.1. Deposition of AZO Films

AZO thin films (300 nm thick) were fabricated on the glass substrate by the mist
CVD method. A solution of mixed precursor was prepared by dissolving the zinc acetate
(0.04 mol/L) and aluminum acetylacetonate in water and methanol (90 mL:10 mL). The
mist droplets of precursor solution were generated from the solution chamber by ultrasonic
transducer at 2.4 MHz, and the droplets transferred to the reaction chamber by nitrogen gas
serving as both carrier gas (2.5 L/min) and dilution gas (4.5 L/min). The substrate was set
up in the fine channel of the reaction chamber, which was heated and kept at 400 ◦C during
the deposition process. In order to investigate the effect of Al doping ratios on structural
and optical properties of AZO films, the doping ratios of Al were set as 1 wt % to 5 wt %
for comparison. The deposition conditions are summarized in Table 1.

Table 1. Deposition conditions of AZO films by the mist CVD method.

Deposition Parameter Condition

Solute Zinc acetate, Aluminum acetylacetonate
Solvent Methanol, H2O

Concentration (mol/L) 0.04
Al doping ratio (wt %) 1, 2, 3, 4, 5

Deposition temperature (◦C) 400
Carrier gas, flow rate (L/min) 2.5

Dilution gas, flow rate (L/min) 4.5

2.2. Photodegradation Process

The photocatalytic measurements of AZO films were carried out in a glass beaker at
room temperature. The methyl red (MR) solution with concentration of 1 × 10−5 mol/L and
volume of 70 mL was prepared, and stirred by wrapping the aluminum foil to prevent the
light for 30 min prior to the irradiation. The deposited AZO films with different Al doping
ratios were submerged in the MR solution individually and irradiated under an ultraviolet
light with a wavelength of 254 nm for 5 h during the measurement process. In order to
analyze the degradation rate as the function of reaction time, the irradiated solution was
taken out at each 1 h interval.

2.3. Characterization

The thicknesses of AZO films were measured by spectroscopic ellipsometry (WVASE32,
J.A. Woollam, Co., Inc., Lincoln, CA, USA). The morphologies of AZO films were evaluated
by field emission scanning electron microscopy (FE-SEM, SU-8020, Hitachi, Tokyo, Japan)
and atomic force microscope (AFM, Nano-R2, Pacific Nanotechnology, Santa Clara, CA,
USA). The structural properties of AZO thin films were investigated by grazing incidence
X-ray diffraction (GIXRD, ATX-G, Rigaku, Tokyo, Japan). A UV-visible spectrophotometer
(U-4100, Hitachi, Tokyo, Japan was used to evaluate the optical properties of AZO films, as
well as the absorption spectra of MR solution. All of the measurements were carried out at
room temperature.
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3. Results and Discussion

The AFM images of AZO films deposited with different Al doping ratios by the mist
CVD method are shown in Figure 1. The scanning area was 5 × 5 (µm2). It was observed
that the root mean square (RMS) surface roughness of AZO films decreased from 6.4 nm to
3.7 nm as the Al doping ratio increased from 1 wt % to 2 wt %, then slightly increased from
4.6 nm to 9.7 nm as the Al ratios increased from 3 wt % to 5 wt %. The lowest RMS value of
AZO films was obtained at an Al doping ratio of 2 wt %. The RMS values of AZO films are
summarized in Table 2.
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Figure 1. AFM images of AZO films with different Al doping ratios by the mist CVD method:
(a) 1 wt % Al, (b) 2 wt % Al, (c) 3 wt % Al, (d) 4 wt % Al, and (e) 5 wt % Al.

Table 2. The RMS roughness of AZO films.

Al Doping Ratio (wt %) RMS Roughness (nm)

1 6.4
2 3.7
3 4.6
4 8.8
5 9.7

The GIXRD patterns of AZO films deposited with different Al doping ratios by the
mist CVD method are shown in Figure 2. The (101) peak was the dominant peak for the
AZO films deposited with Al doping ratios of 1 wt % to 3 wt %, which meant that the
growth of ZnO film exhibited the highly preferred orientation along the (101) crystal plane.
Three diffraction peaks of (100), (002) and (101) were observed in the AZO films deposited
with an Al doping ratio of 1 wt %. The (100) and (002) peaks became weaker when the
Al doping ratio was increased to 2 wt %, then disappeared when the Al doping ratios
were increased to 3 wt %. No diffraction peaks were observed on AZO films when the
Al doping ratios were increased to 4 wt % and 5 wt %, indicating that the obtained films
were amorphous.

The average crystallite size along the (101) crystal plane for AZO films was calculated
using Debye–Scherrer’s formula [40]. The crystallite size of AZO films was significantly reduced
from 31.82 nm to 13.56 nm when the Al doping ratio was increased from 1 wt % to 3 wt %.
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Figure 2. GIXRD patterns of AZO films with different Al ratios by the mist CVD method.

Using the texture coefficient (TC) (hkl) formula [41], the preferred orientation of the
(hkl) plane for AZO film could be determined. The TC values of AZO films calculated
based on the XRD data from Al ratios of 1 wt % to 3 wt % are shown in Table 3. From the
TC value results, it was confirmed that the TC value of (002) peak only existed at an Al
doping ratio of 1 wt %. The TC value of the (100) peak was significantly reduced when the
Al ratio was increased from 1 wt % to 3 wt %. Compared to the TC value of (002) and (100)
orientations, the TC value of (101) peak was the dominated orientation for all three kinds of
AZO films, which meant that the preferred growth of AZO films was (101) crystal plane.

Table 3. Texture coefficient values of AZO films deposited with different Al ratios.

Al Doping Ratio (wt %) TC (100) TC (002) TC (101)

1 2.785 1.542 3
2 0.126 - 0.732
3 0.117 - 0.654

Figure 3 shows the SEM images of AZO films deposited with different Al doping
ratios by the mist CVD method. It was clearly observed that the surface morphologies
were significantly changed with increased Al doping ratios. The intertwined nanosheet
structures were observed only at Al doping ratios of 1 wt % and 2 wt %. The length of
the nanosheets were significantly reduced, and the structures were changed into uniform
particles as Al doping ratios increased from 3 wt % to 5 wt %. The reason for the structure
change might be because of the corresponding variation in the lattice constants of ZnO
films influenced by the Al doping ratios. With the increase in Al doping ratios, there was
much Al3+ (ionic radius 0.53 Å) substituted into ZnO film instead of Zn2+ (ionic radius
0.74 Å), which can lead to the structure distortion due to the different ionic radius.
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Figure 3. SEM images of AZO films with different Al doping ratios by the mist CVD method. (a) 1 wt %
Al, (b) 2 wt % Al, (c) 3 wt % Al, (d) 4 wt % Al, and (e) 5 wt % Al: (1) top view, and (2) cross-section view).

EDX measurement was carried out in order to evaluate the elemental composition
of deposited AZO films with different Al doping ratios by the mist CVD method. The
variation of the atomic percentages of Al/Zn, Al/O, Zn/O, and (Al + Zn)/O are shown in
Figure 4. It was found that the atomic ratio of Al/Zn was significantly increased as the Al
ratios were increased from 1 wt % to 5 wt %, which meant that more Al ions were doped
into ZnO, the maximum value was at Al doping ratio of 3 wt %. The atomic ratios of Al/O
and (Al + Zn)/O slightly increased; in contrast, that of Zn/O gradually decreased as the Al
ratios were increased from 1 wt % to 5 wt %. The atomic ratios of Zn/O were greater than
Al/O when the Al doping ratios were at 1 wt % and 2 wt %, which meant that the Zn-O
bond was dominated to form ZnO. When the Al doping ratios increased to 3 wt % and
furthermore, the atomic ratio of Al/O was greater than that of Zn/O, which indicated that
the Al ions served as the oxidizing agent to replace the Zn ion sites incorporated to oxygen
ions to form AZO and Al1−xOx. However, the atomic ratio of (Al + Zn)/O increased and
reached a maximum at 2 wt %, then significantly decreased and stayed at nearly level from
3 wt % to 5 wt %, which might be due to the saturation of oxygen ions bonding.
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Figure 4. Variations of Al/Zn, Al/O, Zn/O, and (Al + Zn)/O atomic ratios calculated from EDX
analysis of AZO films deposited with different Al ratios by the mist CVD method.

The mechanism of growth direction of AZO films deposited with different Al ratios
by the mist CVD method are shown in schematic diagram (Figure 5). The growth of
AZO films mainly includes three stages: (a) mist droplets generation, (b) nucleation,
and (c) growth process. In the first stage, the mixed precursors of zinc acetate (ZA) and
aluminum acetylacetonate (AA) were prepared in the solution chamber and transformed
into mist droplets by the ultrasonic transducer.
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Figure 5. Growth model of AZO films deposited with different Al ratios by the mist CVD method:
(a) mist droplets generation, (b) nucleation, and (c) growth process.

In the second stage, the mist droplets including the ZA and AA were transported to
the reaction chamber, in which the fine channel substrate was preheated and kept at 400 ◦C.
During the nucleation process, the substrate was heated to 400 ◦C, which is greater than the
decomposition temperature of AA (193 ◦C) and ZA (237 ◦C). The decomposed Al ions were
much easier to generate than Zn ions to bond with the oxygen ions due to the fact that the
decomposition temperature of AA was lower than ZA. Moreover, it was already reported
that the bonding mode of AlO6 could be confirmed when the deposition temperature was
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greater than 350 ◦C during the mist deposition process [42]. Therefore, in this experiment,
the Al-O bonds were becoming dominant and forming Al1−xOx with the increase in Al
doping ratios at the growth temperature of 400 ◦C, resulting in the suppression of crystal
nucleation of ZnO.

In the final stage, ZnO was formed with the preferential growth in the (101) direction,
which might be due to its fastest growth compared to the other growth directions [43].
Therefore, the intertwined nanosheet structures were formed when the Al ratios increased
from 1 wt % to 3 wt %.

The optical transmittance of AZO films with different Al doping ratios by the mist
CVD method are shown in Figure 6a. The transmittance of all AZO films was more than
80% in the visible region. Moreover, the blue-shift of the absorption edge was observed,
which meant that the energy gaps slightly increased when the Al ratios were increased
from 1 wt % to 5 wt %.
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Figure 6. (a) Optical transmittance spectra, and (b) Variation of bandgap in AZO films deposited
with different Al ratios by the mist CVD method.

The optical bandgap variations of AZO film by plotting (αhv)2 versus energy of
photon (hv) with the different Al ratios are described in Figure 6b. The optical bandgaps of
AZO films were calculated by Tauc’s plot equation [44], as in the following;

(αhv)2 = A (hv − Eg) (1)

where A is the constant, h is Planck’s constant, v is the photon frequency and Eg is the
optical bandgap. The optical bandgaps increased from 3.58 eV to 3.87 eV when the Al
doping ratios were increased from 1 wt % to 5 wt %.

Figure 7a shows the absorption spectra of MR solution for AZO films deposited with
different Al doping ratios by the mist CVD method. It was observed that the intensities
of absorption spectra decreased between 475 nm and 700 nm when the Al ratios were
increased from 1 wt % to 4 wt %, as compared with the original MR solution (black line).
The obtained results indicate that photodegradation efficiency was achieved. The lowest
absorption intensity was obtained at Al doping ratio of 2 wt %. When the Al ratios increased
to 5 wt %, the absorption spectrum was slightly higher than the original solution, which
meant that there was no photodegradation efficiency.
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Figure 7. (a) The absorption spectra of MR solution for AZO films deposited with different Al doping
ratios; and (b) plot of ln (C/Co) versus the reaction time.

In order to calculate the degradation rate of obtained AZO films, the absorption band
at 520 nm was selected, which corresponds to the red color of MR solution. Based on the
variations in the intensity of absorption spectra, the rates of photocatalytic degradation are
presented in Figure 7b. Langmuir–Hinshelwood (L–H) mode [45] can be used to describe
the degradation kinetic of various organic dyes. The adsorption rate may be represented in
terms of the coverage ratio of adsorbed reactants on the photocatalyst surface. The rate of
reaction, R, can be described as Equation (2) [46].

R = −dC/dt = krθ, (2)

where C is the concentration of the reactant, t is the reaction time, kr is the reaction rate
constant, and θ is the coverage ratio of reactants.

According to the adsorption theory, the adsorption capacity and concentration of reac-
tant correspond to the coverage ratio of the reactant. In order to determine the adsorption
capacity, the adsorption coefficient of reactant was defined as K. Therefore, the θ can be
expressed as Equation (3) [45].

θ = KC/(1 + KC) (3)

Then, Equation (3) can be substituted to Equation (2); the reaction rate, R can be
expressed as Equation (4).

R = −dC/dt = kr KC/(1 + KC) (4)

For pseudo first-order reaction, KC, is smaller than 1 [47], then Equation (4) can be
expressed as,

R = −dC/dt = kr KC (5)

Equation (5) can be described as per the Integration Law, as follows;

ln (C) − ln (Co) = kt, (6)

ln (C/Co) = kt

where k is the first-order reaction rate constant.
Figure 7b shows the plot of ln (C/Co) as a function of UV irradiation time for photo-

catalytic degradation of MR solution for AZO films with different Al doping ratios. The
value of Co was determined as the original absorbance of MR solution and the value of
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C was determined as the absorbance of each AZO film with different Al doping ratios.
According to the Langmuir–Hinshelwood (L–H) mode, the higher value of first-order rate
corresponds to the higher photocatalytic efficiency [48].

In order to calculate the first-order reaction rate constant k, the following equation can
be rewritten from Equation (6).

k = ln (C/Co)/t (7)

According to Equation (7), the calculated first-order reaction rate increased from
0.003 min−1 to 0.004 min−1 when the Al ratios was increased from 1 wt % to 2 wt %, then
decreased from 0.0005 min−1 to 0.0003 min−1 when the Al ratios were increased from
3 wt % to 4 wt %. The highest reaction rate was observed from the AZO film with Al
doping ratio of 2 wt %.

4. Conclusions

The Al was successfully doped into ZnO film with controllable ratios by the mist CVD
method. It was confirmed that the properties of AZO films were significantly influenced
by the Al ratios. The highly preferred orientation of AZO films was along the (101) crystal
plane when the Al doping ratios were increased from 1 wt % to 3 wt %. The best crystallinity
and the lowest surface roughness were obtained at an Al doping ratio of 2 wt %. The crystal
structures of AZO were transformed from intertwined nanosheets to uniform particles as
the Al doping ratios increased. The growth mechanism revealed that Al-O bonds were
enhanced and greater than the Zn-O bond when the Al doping ratios increased at the
deposition temperature of 400 ◦C during the mist CVD process. The transmittance of all
AZO films was higher than the 80% in the visible region. The AZO film with Al doping
ratio of 2 wt % showed the highest photodegradation efficiency and the highest value of
first-order reaction rate of 0.004 min−1. The obtained AZO films can be expected to have
applications in environmental purification processes.
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