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Objectives: Incorporation of genetic factors in psychosocial/perioperative models for
predicting chronic postsurgical pain (CPSP) is key for personalization of analgesia.
However, single variant associations with CPSP have small effect sizes, making
polygenic risk assessment important. Unfortunately, pediatric CPSP studies are not
sufficiently powered for unbiased genome wide association (GWAS). We previously
leveraged systems biology to identify candidate genes associated with CPSP. The
goal of this study was to use systems biology prioritized gene enrichment to generate
polygenic risk scores (PRS) for improved prediction of CPSP in a prospectively enrolled
clinical cohort.

Methods: In a prospectively recruited cohort of 171 adolescents (14.5 ± 1.8 years,
75.4% female) undergoing spine fusion, we collected data about anesthesia/surgical
factors, childhood anxiety sensitivity (CASI), acute pain/opioid use, pain outcomes 6–
12 months post-surgery and blood (for DNA extraction/genotyping). We previously
prioritized candidate genes using computational approaches based on similarity for
functional annotations with a literature-derived “training set.” In this study, we tested
ranked deciles of 1336 prioritized genes for increased representation of variants
associated with CPSP, compared to 10,000 randomly selected control sets. Penalized
regression (LASSO) was used to select final variants from enriched variant sets for
calculation of PRS. PRS incorporated regression models were compared with previously
published non-genetic models for predictive accuracy.

Results: Incidence of CPSP in the prospective cohort was 40.4%. 33,104 case and
252,590 control variants were included for association analyses. The smallest gene set
enriched for CPSP had 80/1010 variants associated with CPSP (p < 0.05), significantly
higher than in 10,000 randomly selected control sets (p = 0.0004). LASSO selected
20 variants for calculating weighted PRS. Model adjusted for covariates including PRS
had AUROC of 0.96 (95% CI: 0.92–0.99) for CPSP prediction, compared to 0.70
(95% CI: 0.59–0.82) for non-genetic model (p < 0.001). Odds ratios and positive
regression coefficients for the final model were internally validated using bootstrapping:
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PRS [OR 1.98 (95% CI: 1.21–3.22); β 0.68 (95% CI: 0.19–0.74)] and CASI [OR 1.33
(95% CI: 1.03–1.72); β 0.29 (0.03–0.38)].

Discussion: Systems biology guided PRS improved predictive accuracy of CPSP risk in
a pediatric cohort. They have potential to serve as biomarkers to guide risk stratification
and tailored prevention. Findings highlight systems biology approaches for deriving PRS
for phenotypes in cohorts less amenable to large scale GWAS.

Keywords: systems biology, genetics, polygenic risk score, chronic post-surgical pain, gene enrichment

INTRODUCTION

Chronic post-surgical pain (CPSP) is an underrecognized and
undertreated problem with an incidence of 14.5–38% in children
after major surgery, that significantly contributes to prolonged
opioid use (Kain et al., 1996; Kehlet et al., 2006; Macrae,
2008; Rabbitts et al., 2017; Harbaugh et al., 2018). CPSP is
defined as chronic pain that develops or increases intensity after
a surgical procedure and persists beyond healing—at least 3
months after surgery (Werner and Kongsgaard, 2014). It has been
recognized as a unique pain state recently in the International
Classification of Diseases (ICD-11) (Schug et al., 2019). Chronic
pain in adolescents leads to chronic pain in adults, imposes
extraordinary annual costs on the health care system (Walker
et al., 2010; Parsons et al., 2013), and negatively impacts physical
and psychological health, leading to disability and depression
(Hunfeld et al., 2001; Kashikar-Zuck et al., 2001; Fletcher et al.,
2011). Hence, targeted, individualized preventive and therapeutic
measures are needed to decrease CPSP occurrence. Development
of such measures is impeded by the inability to accurately predict
individual risk for CPSP.

Our previous studies investigating psychological and
perioperative factors influencing pediatric CPSP showed that
acute postoperative pain, surgical duration and psychological
factors, such as those measured by the Childhood anxiety
sensitivity index (CASI), are associated with CPSP risk in
adolescents undergoing spine surgery (Chidambaran et al.,
2017). However, these factors only explain 16% of variability in
predicting CPSP, with medium accuracy (C-statistic 0.77). Thus,
more accurate and objective biomarkers are needed to guide
CPSP prevention and management.

Pain has a heritable component of up to 60%, suggesting
incorporation of genetic factors may improve CPSP risk
prediction. Our recent systematic literature review of genetic
associations with CPSP (Chidambaran et al., 2019) showed that
variants of several genes are associated with CPSP. However,
any single variant had only a small effect size (Hoofwijk et al.,
2016; Chidambaran et al., 2019). Since small effect sizes of
single variants explain only a low percentage of the phenotypic
variance, any one variant will not be useful at predicting
risk. However, as individuals may harbor many variants each
contributing modestly to risk, creating a risk score which
accounts for the cumulative effect polygenic risk score (PRS) of
many variants may better explain risk. PRS profiling has been
shown to have translational potential as predictive, prognostic
biomarkers (Muranen et al., 2016; Torkamani et al., 2018).

Typically, the PRS builds off of the results of genome wide
association studies (GWAS), whereby an individual’s genetic
risk is the sum of all their risk alleles weighted by significance
of the corresponding allele (Andersen et al., 2017; Escott-Price
et al., 2017). Accurate, generalizable PRS have shown potential
to inform clinical practice in several fields (Torkamani et al.,
2018; Sugrue and Desikan, 2019). In fact, US Preventive Services
Task Force recommended use of PRS for risk prediction and
screening prioritization in prostate cancer (Grossman et al.,
2018). There is also a push to incorporate PRS in risk assessment
for decision-making in cardiovascular disease, breast cancer and
Alzheimer’s disease (Maas et al., 2016; Knowles and Ashley, 2018;
Tan et al., 2018). Richardson et al. (2019) used using UK Biobank
data to analyze 162 GWAS-derived PRS for 551 heritable traits,
and created an easily accessible web application—“An atlas of
polygenic burden associations across the human phenome.” Pain
was not identified as a phenotype in this atlas.

While CPSP is an important clinical problem the lack of
GWAS studies related to pediatric CPSP to inform PRS is a
major barrier. The problem is there are no pediatric biobanks
to our knowledge with this phenotype. Additionally, pediatric
clinical cohorts with well characterized CPSP phenotypes that
are adequately powered to achieve GWAS statistical significance
are difficult to recruit as they must have surgery and long-
term follow-up. Given the lack of GWAS based data and the
likelihood of small effect sizes, additional approaches to deriving
PRS are required for pediatric CPSP. We recently described
a systems-biology approach to identify genes and genetic
pathways involved in CPSP (Chidambaran et al., 2020). This
approach allows prioritization of functionally associated genes,
hence substantially decreases the burden of statistical power for
gene association testing and overcomes sample size limitations.
We hypothesized that combining systems biology with gene
enrichment for associated variants will allow derivation of PRS,
which will improve prediction of CPSP risk in conjunction with
known psychosocial factors. Our research is unique and novel,
and lays the foundation for further research of PRS as predictive
biomarkers of chronic pain conditions and less accessible cohorts
(Tracey et al., 2019).

MATERIALS AND METHODS

This genomics study has two components: the first being
a bioinformatics-driven, systems-biology approach to identify,
rank and prioritize new “candidate genes” associated with CPSP,
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followed by a gene enrichment and association study in a
prospectively recruited surgical cohort with penalized regression
for PRS generation and evaluation.

Systems Biology Gene Prioritization
We previously conducted a literature-based systematic review
of human clinical studies of genetic associations with CPSP. We
conducted a search using electronic databases (including
PubMed and MEDLINE) of full-text articles of human
clinical studies (limited to English language—clinical trials,
multicenter studies, observational studies, and twin studies
reported between 01/2002 and 12/2017) evaluating genetic
associations with CPSP (Chidambaran et al., 2019). We
used the following search terms: (“postoperative pain” OR
“postsurgical pain” OR “postoperative pain” OR “postsurgical
pain” OR “postoperative analgesia” OR “postoperative opioid”
OR “CPSP” OR “chronic postsurgical pain”) AND (genetic
association OR polymorphism OR variant OR “genotype”
OR “Genome wide association” OR “SNP”). We included
21 full-text articles evaluating associations of 69 unique
variants/haplotype with CPSP. Of these, variants of 31 genes
involved in neurotransmission, pain signaling, immune
responses and neuroactive ligand–receptor interaction, were
found to be associated with CPSP (Supplementary Table 1).
The results of the literature review including description of
studies, genes, variants and outcomes are detailed elsewhere
(Chidambaran et al., 2019). Using the literature derived genes
(N = 31) as “training genes,” we previously identified novel
candidate genes based on their similarity scores (“guilt by
association”) to the curated training genes using ToppFun
application of the Transcriptome Ontology Pathway PubMed
based prioritization of genes (ToppGene) Suite, a one-stop portal
of computational software tools for gene enrichment (Chen
et al., 2009). Pathways based on training and top 10% candidate
genes associated with CPSP are described in detail elsewhere
(Chidambaran et al., 2020).

Here, as the next step, we used the curated training set (N = 31)
and prioritized candidate genes (N = 1305) (henceforth referred
to as the “case set” of genes) for association with and gene
enrichment for CPSP in a prospective clinical cohort (Figure 1).

Prospective Clinical Study
An observational prospective cohort study was conducted
in adolescents with idiopathic scoliosis undergoing posterior
spine fusion using standard surgical techniques, anesthetic and
pain protocols. Studies are registered with ClinicalTrials.gov
(Identifier: NCT01839461, NCT01731873), and approved by
the Institutional Review Board. Written informed consent was
obtained from parents and assent was obtained from children
before enrollment.

Inclusion Criteria
Healthy children, age 10–18 years, American Society of
Anesthesiologists (ASA) Physical Status ≤ 2 (mild systemic
disease), diagnosis of idiopathic scoliosis and/or kyphosis,
scheduled to undergo elective spinal fusion.

Exclusion Criteria
Pregnant or breastfeeding females, obesity, diagnosis of chronic
pain or opioid use in the past 6 months, hepatic/renal disease
and/or developmental delays.

Data Collection
Following preoperative data were obtained: demographics
(sex, age, race), weight, pain scores (numerical rating
scale/0–10 NRS) (von Baeyer, 2009) and home medications.
Questionnaires were administered preoperatively to assess
functional disability (FDI) (Walker and Greene, 1991) and
anxiety sensitivity (CASI) (Silverman et al., 1991). All patients
received total intravenous anesthesia (propofol and remifentanil)
and midazolam in the intraoperative period, followed by
standardized doses of patient controlled analgesia (morphine
or hydromorphone) in the postoperative period. Pertinent
surgical details (duration and number of vertebral levels
fused) and anesthetic data (propofol and remifentanil doses)
were collected. Postoperatively, pain scores (every 4 h), doses
of morphine equivalents administered [postoperative days
(POD) 1 and 2] were recorded. Of note, CASI, surgical
duration and acute postoperative pain were associated
with CPSP in a sub set of this cohort (Chidambaran et al.,
2017). After hospital discharge, at 6–12 months, patients
were asked to rate their average pain score (NRS) over the
previous week and to answer open-ended questions about
nature and site of pain, use of medications/alternative
therapies/physician consults for pain, and functional
disability (FDI).

CPSP Outcome
CPSP outcome was evaluated as a continuous variable for
systems biology prioritization and predictive model development
(to maximize power) and dichotomous outcome was used for
comparison of predictive models. CPSP continuous outcome:
Actual NRS pain scores at 6–12 months after surgery. CPSP
dichotomous outcome, determined by pain score > 3/10 on
a 11-point NRS (range 0–10) at 6–12 months after surgery
(CPSP = yes) was used for final comparison of non-genetic versus
PRS incorporated regression model to evaluate improvement
in prediction characteristics. NRS for pain intensity has been
validated as a pain measure in children aged 7–17 years (von
Baeyer, 2009). NRS pain score > 3 (moderate/severe pain) at
3 months has been described as a predictor for persistence
of pain and has been associated with functional disability
(Gerbershagen et al., 2011).

DNA Collection and Genotyping
Blood was drawn for genotyping upon intravenous line
placement. DNA was isolated on the same day, and frozen
at −20◦C. Genotyping was done using the Illumina Human
Omni5 v41-0 array (85 patients), Human Omni5Exome v41-
1 (33 patients) and Infinium Omni5-4-v1 (53 patients).
Arrays were changed due to availability of new arrays which
had more overall and more functional single nucleotide
polymorphisms (SNPs).
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FIGURE 1 | Study flow showing steps involved with gene prioritization using systems biology followed by genetic association analyses in the clinical cohort to derive
polygenic risk score based prediction model for chronic post-surgical pain.

Selection of Variants for Comparison of Case/Control
Gene Sets
Only SNPs from autosomes were selected for analysis and
were annotated using ANNOVAR software (Wang et al., 2010).
All samples passed 95% threshold for call rates at genotype
and individual levels. Genetic data was assessed for Hardy–
Weinberg equilibrium (HWE) by means of goodness of fit χ2-
test with threshold for p-values 0.0001 (Wang et al., 2010).
SNPs that were not associated with a specific gene according to
ANNOVAR annotation were excluded prior to analysis. Low-
frequency variants (minor allele frequency less than 10%) were
also excluded (Supplementary Figure 1). There were 4,186,587
variants on the exome chip initially and 542,313 variants
remained after exclusion. SNPs in high linkage disequilibrium
(LD) (80%) were pruned out in PLINK (Purcell et al., 2007) using
the command –indep-pairwise 50 5 0.8.

Procedure for SNP Selection for PRS
The first step to identify SNPs associated with CPSP was genetic
association analyses. The next step was to narrow down the
number of significant SNPs by enrichment analysis. The last
step for identifying SNPs included in PRS calculation was Least
Absolute Shrinkage and Selection Operator (LASSO) regressions.
SNPs with non-zero coefficients were selected for PRS.

Genetic Association Analyses
Analyses were conducted using SAS 9.4 (SAS, Cary, NC) and R1.
Prior to genetic analyses, cryptic relatedness was checked using
Graphical Representation of Relationship (GRR) (Abecasis et al.,
2001). Principal component analysis was employed to confirm
European and African continental ancestry using 482 validated

1http://www.R-project.org
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ancestry informative markers (Tandon et al., 2011). Concordance
with self-reported race was > 95%. Given the concordance, race
was used as a covariate in all the models and not principal
components. To identify significant SNPs, we used linear models
for association of each SNP with CPSP continuous outcome. In
all association tests, we used an additive genetic model in which
major homozygotes were coded as 0, heterozygotes as 1, and
minor homozygotes as 2. Univariate analyses were conducted
for CPSP outcomes with initial covariates (demographics,
surgical duration, CASI, anesthetic doses, preoperative pain
score), as suggested by non-genetic covariates based on our
previous findings in a similar cohort (Chidambaran et al., 2017).
Covariates significant in univariate analyses (p < 0.1) were
included for genetic association analyses. PLINK v.07 was used
for genetic association tests. Since the association results are only
relevant for comparing the significant variants within the ranked
case gene sets and those within the control sets for enrichment,
they are not reported separately.

Gene Enrichment Analyses
Case gene variants were analyzed as sequence of cumulative sums
of ranked variant sets with 10% increment, as has been done in
a prior study (Kurowski et al., 2019). The first addend in each
sequence was the training gene variant set. For each cumulative
sum, we compared the number of associations in our case sets
that met the p < 0.05 threshold to the number of associations
meeting the same criteria in 10,000 matched runs of our control
set of genes. SNPs from the control set were selected in the same
ratio for minor allele frequency (MAF) as it was observed in
the case set. Specifically, we used MAF bands as follows: 10–
15%:15–20%:20–30%:30–50%. Empirical p-values of resampling
tests were computed as follows: we calculated how many samples
out of 10,000 had the number of significant SNPs equal to or
greater than the number of significant SNPs from the case set and
divided this number by 10,000. SNPs in case genes that formed
the earliest cumulative group (where the number of significant
SNPs were greater than in the matched control group) were
considered as a minimal set of variants enriched for associations
with corresponding outcomes.

LASSO Regression
To minimize risk of overfitting, we used penalized regression
with LASSO in R software (package glmnet) after enrichment
analyses (Friedman et al., 2010) with CPSP continuous and
categorical outcome. SNPs in the genes identified in enrichment
analysis were considered for penalized regression. Since penalized
regression can be performed only on data without missing
values we imputed missing genotypes using Michigan Imputation
Server2. We imputed chromosomes where SNPs with missing
genotypes were located. For each chromosome we submitted
two VCF (Variant Call Format) files for subset of white patients
and for subset of blacks and with admixture patients. VCF files
were obtained from PLINK files using PLINK v1.9. Submitted
to the server SNPs had 100% call rate. Both QC and imputation
modes were used at the server. Genotypes for subset of white
patients were imputed against the 1000G Phase 3 reference

2https://imputationserver.sph.umich.edu

panel and the second subset of patients was imputed against the
CAAPA African American reference panel. SNPs of interest were
extracted from the files with imputed genotypes received from the
server. Since SNPs with imputed genotypes overlapped with non-
missing genotypes of original data these two types of genotypes
(original and imputed) were used for evaluation of imputation
accuracy. A controlling penalty parameter lambda for penalized
regression was selected via cross-validation approach.

PRS Calculation
SNPs with non-zero coefficients in LASSO model were selected
for PRS calculation. PRS was calculated as a weighted sum of
products between number of risk alleles and their corresponding
regression coefficients. The mathematical formula used for PRS
calculation was given by the following equation

PRSn =
m∑
i=1

(|bi| ∗ Ri,n)

Where i is a number of SNPs, m is an upper range of SNPs
participating in PRS calculation, n is a number of patients, PRSn
is a polygenic risk score for n-th patient, bi is an absolute value
of regression coefficient for each out of m SNPs from linear
regression models for association of CPSP with a given SNP, Ri,n
is number of risk alleles for i-th SNP for n-th patient.

Regression Models
We built logistic regression models using stepwise approach
including significant non-genetic predictors associated with
CPSP (p < 0.05 selection criteria), followed by inclusion of PRS.
For model performances, we used the area under the receiver
operating characteristics (ROC) curve (AUC). AUCs with 95%
confidence intervals for clinical and genetic models were used for
model comparison in SAS 9.4 (SAS., Cary, NC).

Bootstrapping
While the optimal design for validation is to use an independent
sample for validation, given the challenges in collecting such
samples, we used the bootstrap method to internally validate
the prediction. In this method, new bootstrap samples are
generated from the original sample by random drawing with
replacement multiple times (Efron, 1979). By bootstrapping
across many iterations, the accuracy of parameter estimates can
be determined. In this study, we empirically evaluate bias in the
regression coefficients from the original model. Bootstrapping
bias is a difference between the value obtained by using the
original sample and the mean value obtained using bootstrap
samples. At each iteration (n = 1,000), a random bootstrap
sample (the same size as the original sample) was drawn with
replacement from the original sample. Logistic models were
generated for each bootstrap sample and bootstrapping results
were compared with results from the original model. Regression
coefficients and bootstrap confidence intervals are reported as
linear terms and equivalent odds ratios. Bootstrapping was
performed in R software (R Core Team, 2018) with the package
boot (Davison and Hinkley, 1997; Freeman, 1998).
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Power Analysis
For the gene set enrichment analyses, our goal was to determine
if a set of selected genes/variants were more likely to show
association (p ≤ 0.05) than for a set of variants selected by
chance. Out of 33,104 variants, we created deciles of variants,
and the rates of associated variants compared each decile to
10,000 randomly selected gene sets of equal size. Based on the
one sided proportion test, if we assumed that the background
rate for association in the random set was 0.05, in the first
decile containing 3310 SNPs, we would have 80% power to
detect a difference between the SNPs in the selected genes if they
were associated at a rate of 0.064 (OR = 1.3) at alpha = 0.05.
Notably, the power calculation for gene enrichment was based
on the number of SNPs rather than the number of individuals
in the sample because we are comparing the rates of SNPs
nominally associated between selected genes and random genes.
For individual variants, we would have 80% power to detect
an odds ratio as small as 2.1 at alpha = 0.05 and minor allele
frequency 0.4. To evaluate the PRS risk score, we evaluated the
score in 52 individuals with CPSP and 79 individuals without

CPSP. With these numbers we would have 80% power to detect a
PRS score difference as small as 2 at alpha = 0.05.

RESULTS

Prospective Cohort Characteristics
Demographics and summary of the variables examined for the
prospective cohort are listed in Table 1. CPSP outcome was
determined for 131 of the 171 patients (∼23% loss to follow-up).
The flow diagram for recruitment is presented in Supplementary
Figure 2. We examined the characteristics of both cohort of
subjects lost to follow-up and the cohort of subjects followed
for 6–12 months for all pertinent measures included in the
models and did not find significant differences in terms of age
(p = 0.390), sex (p = 0.361), race (0.906), CASI (p = 0.364),
surgical duration (p = 0.322) and preoperative pain (p = 0.879).
We found a 40.4% (53/131) incidence of CPSP. CPSP cases had
significantly higher preoperative pain scores (p = 0.037) and CASI
(p = 0.003) on univariate analyses and these factors were included

TABLE 1 | Baseline and pain follow-up characteristics of the surgical cohort, based on chronic post-surgical outcomes and univariate analyses of
perioperative/psychological covariates.

Variable Entire cohort (N = 171) CPSP (dichotomous
outcome)

p-value Pain score at 6–12 months
(continuous outcome)

CPSP Yes (N = 53) CPSP No (N = 78)

Demographics Median (IQR) p-value*

Sex F% 75.4% 81.0% 74.4% 0.365 2 (0–4) 0.331

Sex M% 24.6% 19.0% 25.6% 0 (0–4)

Race (White %) 81.8% 77.4% 84.6% 0.292 1 (0–4) 0.844

Race (Non-white %) 18.2% 22.6% 15.4% 3 (0–4)

Mean SD Mean (SD) Mean (SD) p-value Coefficient (SE) p-value**

Weight (Kg) 57.446 15.256 56.3 (14.2) 57.0 (14.5) 0.781 −0.055 (0.018) 0.323

Age (years) 14.488 1.840 14.7 (1.8) 14.5 (1.8) 0.462 0.184 (0.139) 0.189

Preoperative characteristics

Preoperative pain score 0.596 1.282 0.3 (0.5) 0.1 (0.3) 0.037 1.210 (0.648) 0.065

CASI 28.552 5.531 30.6 (5.6) 26.8 (4.9) 0.003 0.147 (0.048) 0.003

Surgical/anesthesia characteristics

Surgical duration 4.816 1.232 5.0 (1.4) 4.8 (1.2) 0.376 0.360 (0.214) 0.095

No. vertebral levels fused 11.506 1.969 11.0 (2.3) 11.6 (1.9) 0.115 0.006 (0.130) 0.963

Propofol dose mg/kg 71.791 27.186 79.5 (27.0) 73.7 (28.7) 0.238 0.014 (0.008) 0.091

Remifentanil dose mcg/kg 113.911 40.891 118.6 (41.5) 115.2 (44.2) 0.563 0.008 (0.006) 0.225

Acute postoperative pain characteristics

AUC POD1–2 200.327 73.490 222.7 (75.9) 196.7 (66.8) 0.053 0.004 (0.003) 0.697

Morphine meq POD1–2 mg/kg 1.626 0.747 1.6 (0.7) 0.8 (0.1) 0.065 0.646 (0.349) 0.067

Pain follow-up at 6–12 months

CPSP Y/No % 53/78 (40.5%)

FDI score 4.485 5.321 6.7 (5.9) 2.3 (4.0) 0.002

Pain score (NRS) 2.240 2.457 4.6 (2.0) 0.6 (1.0) <0.001

* Wilcoxon test.
** Simple linear regression.
CASI, Childhood anxiety sensitivity index; AUC, Area under curve of pain scores over postoperative days (POD) 1 and 2; CPSP, Chronic post-surgical pain; FDI, Functional
disability index.
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as predictors in the regression model, and covariates for genetic
association analyses.

Genetic Enrichment
After quality control and pruning as described under methods,
33,104 case variants and 252,590 control variants were included
for covariate adjusted association analyses. Compared to the
control set, there was enrichment of SNP associations in the
training set for CPSP (Figure 2) but not for the other deciles
of candidate gene variant sets. Of 1010 variants included in
the training set, the number of variants (N = 80) associated
with CPSP (p < 0.05) was significantly higher than in 10,000
randomly selected control sets (p = 0.0004). These 80 variants
were annotated to the following 12 genes:ATXN1 (29); CACNG2
(2); CTSG (2); DRD2 (1); HLA-DQB1 (3); IL10 (1); KCNA1 (1);
KCND2 (5); KCNJ3 (3); KCNJ6 (9); KCNK3 (2); PRKCA (22).

LASSO
Before LASSO, we imputed 45 genotypes in all (16 individual
SNPs over 26 patients, where missing genotypes ranged from

1 to 10 at an individual level). One SNP rs17843723 form
the HLA-DQB1 gene failed imputation and was excluded from
consequent analysis. Imputation accuracy was 100% when we
compared genotypes detected by chips with imputed genotypes.
Number of genotypes for imputation accuracy evaluation was
2,051 (131 patients ∗ 16 SNPs – 45 genotypes with missing
values = 2,051 genotypes for accuracy evaluation). After
LASSO, when CPSP was a continuous variable, the prediction
set was comprised of 53 variants. LASSO regression with
CPSP as a categorical variable resulted in 24 variants. We
identified 20 variants that had non-zero coefficients in both
linear and logistic penalized regression models. Chromosomal
location, genetic annotation, function, MAF, odds ratios for
CPSP and beta for NRS at 6–12 months with p-values
for the LASSO selected variants are provided in Table 2.
These 20 variants were annotated to nine genes: ATXN1 (7);
CACNG2 (1); DRD2 (1); KCNJ3 (2); KCNJ6 (1); KCNK3 (1);
PRKCA (7). Of these variants, rs7220480 was imputed for one
individual, and rs2891519 and rs200369418 were imputed for
three individuals.

FIGURE 2 | Gene enrichment analyses for pain score at 6–12 months as outcome. Centiles represent the portion of case genes used in the genetic assocaition
analysis. 0% includes the training set of gene variants, 10th percentile includes the training list plus the top 10% highest ranked genes, and so forth, vertical axis
represents the number of variants. Box plots represent the cumulative number of SNPs with signficant association with pain score at 6–12 months after surgery
[chronic post-surgical pain (CPSP) continuous outcome] (p < 0.05) in 10,000 runs of control gene variants. The dot indicates the cumulative number of nominal
associations (p < 0.05) identified for case genes. Enrichment is indicated when a greater number of genetic associations are present in case versus control genes,
that is, when the number of associations in case genes (red dot) (80 variants/1010 variants) exceeded the upper 95th percentile threshold in the 10,000 runs of the
control set. For CPSP continuous outcome, we see enrichment in the training set of variants (p < 0.001). The training set incudes 80 variants showing association
with CPSP (p < 0.05).
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TABLE 2 | Genetic variants and risk alleles with regression coefficients included in the determination of polygenic risk score for prediction of chronic post-surgical pain.

SNP Observed
major
allele

Observed
minor
allele

Gene #Linear
regression

weight

p-value
linear

regression

Reference
allele

Alternative
allele

Function Chr Location
(GRCh37)

Minor
allele

frequency

rs62069959 G* A PRKCA 2.299 0.001 C T Intronic 17 64318923 0.196

rs7125415 G A* DRD2 1.657 0.034 C T Intronic 11 113000000 0.126

rs61131185 A G* ATXN1 1.524 0.011 A G Intronic 6 16623387 0.322

rs12665284 G* A ATXN1 1.481 0.041 G A Intronic 6 16626066 0.146

rs202146909 A* G KCNJ3 1.414 0.042 T C Intronic 2 156000000 0.193

rs493352 G* A ATXN1 1.242 0.031 T C Intronic 6 16744169 0.488

rs9754467 A* G CACNG2 1.166 0.032 G A Intronic 22 37019059 0.222

rs12198202 A* G ATXN1 1.064 0.005 T C Intronic 6 16679771 0.424

rs11079653 T* A PRKCA 0.98 0.011 A T Intronic 17 64352329 0.202

rs2850125 G* A KCNJ6 0.936 0.046 C T Intronic 21 39130114 0.456

rs9914723 G A* PRKCA 0.917 0.004 G A Intronic 17 64716397 0.196

rs7220480 1 A G* PRKCA 0.857 0.048 A G Intronic 17 64686679 0.406

rs2891519 2 G A* KCNK3 0.835 0.008 G A Downstream 2 26954991 0.220

rs200369418 2 A* C PRKCA 0.816 0.028 C A Intronic 17 64762496 0.500

rs3812204 G A* ATXN1 0.789 0.038 G A Intronic 6 16698022 0.345

rs4716060 C A* ATXN1 0.772 0.038 C A Intronic 6 16310456 0.345

rs6459476 A C* ATXN1 0.736 0.048 A C Intronic 6 16618187 0.348

rs227912 A* G PRKCA 0.678 0.049 G A Intronic 17 64610729 0.246

rs744214 G* A PRKCA 0.634 0.017 G A Intronic 17 64334856 0.316

rs1992701 G A* KCNJ3 0.584 0.047 C T Intronic 2 156000000 0.453

PRKCA (protein kinase C alpha); DRD2 (dopamine receptor D2); ATXN1 (ataxin 1); KCNJ3 (potassium voltage-gated channel subfamily J member 3); CACNG2 (calcium
voltage-gated channel auxiliary subunit gamma 2); KCNJ6 (potassium voltage-gated channel subfamily J member 6); KCNK3 (potassium two pore domain channel
subfamily K member 3).
#Linear regression coefficients were used to calculate weighted polygenic risk scores; Beta > 0 is the selection criteria per LASSO.
*Risk allele; 1—imputed for one patient; 2—imputed for 3 patients.

Polygenic Risk Scores
Weighted genetic risk was calculated from the 20 SNPs selected
by LASSO regression models. PRS ranged from 10.1 to 30.6
(mean: 21.1; SD 4.0) and were normally distributed. The
predicted probability (with 95% CI) of CPSP for a subject having
a median (for the cohort) CASI = 28.3 using the regression model
is plotted as a function of the PRS in Figure 3. The probability of
CPSP is higher than 50% at a PRS > 23.06.

Regression Models
The non-genetic full and reduced model are presented in
Table 3. The genetic model incorporating PRS in the non-
genetic reduced model is also presented in Table 3. In
the final model, both CASI and PRS remained significant
predictors with Odds ratio (OR) of 1.37 (95% CI: 1.15–1.65)
and 2.16 (95% CI: 1.53–3.05), respectively, for CPSP. In the
final model, regression coefficients for CASI and PRS have
means and standard errors for linear terms 0.32 ± 0.09 and
0.77 ± 0.18, respectively. Comparison of performance of the
predictive model with clinical predictor (CASI) and performance
of the predictive model with PRS (PRS and CASI) showed
statistically significant higher performance of genetic model.
Receiver operating characteristic curve was plotted showing
that AUC for genetic model was 0.96 (95% CI: 0.92–0.99)
compared to 0.70 (95% CI: 0.59–0.82) for non-genetic model
(p = 0.0001) (Figure 4).

Bootstrapping
The final predictive model was evaluated by bootstrapping.
Bootstrapping bias for means of linear terms were positive values
for both CASI (0.03) and PRS (0.09) with standard errors 0.13 and
0.25 for means 0.29 and 0.68, respectively. Thus, bootstrap means
for linear terms for CASI were 0.29 (0.32 minus 0.03) with 95%
confidence interval 0.03–0.38 and for PRS 0.68 (0.77 minus 0.09)
with 95% confidence interval 0.19–0.74. Confidence intervals for
each regression coefficient obtained using bootstrapping serve
as assessments for the model prediction accuracy. OR and 95%
CI for CASI and PRS after bootstrapping remained similar to
initial model results at 1.33 (95% CI: 1.03–1.72) and 1.98 (1.21–
3.22), respectively. Bootstrapping bias means of linear terms,
corresponding ORs with 95% CIs for regression coefficients are
given in Table 3.

DISCUSSION

For phenotypes affected by difficulties in recruiting well powered
and well characterized cohorts, novel methodologies are needed
to address gaps in objective and accurate predictors. This
is especially true for pediatric CPSP as it impedes targeted
preventive efforts. By leveraging systems-biology and genetic
testing approaches, we conducted enrichment analyses to derive
PRS. They were calculated as weighted sum of products between
number of risk alleles at 20 variants selected by LASSO
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FIGURE 3 | Plot of predicted probability of developing chronic postsurgical
pain (CPSP) after spine surgery is presented as a function of polygenic risk
score (PRS), at a childhood anxiety sensitivity index (CASI) score of 28.3
(median CASI in the model). The blue line denotes predicted probabilities from
the final regression model, and dashed lines the 95% confidence interval, and
circles represent observed cases (or outcomes). We see a sigmoid shaped
curve with increasing probability of CPSP at PRS > 16, 50% probability at
PRS = 23.06 and high probability beyond PRS = 30. Thus, higher the
weighted PRS, higher the probability of CPSP.

regression, and their corresponding regression coefficients. We
used bootstrapping to validate our final model’s performance.
Two factors—PRS and CASI—remained in the final risk
model which predicted CPSP with higher accuracy compared
to base non-genetic model (p = 0.0001). Since CPSP is a
biopsychosocial phenomenon, it is not surprising that CASI, a
psychological construct that measures interpretation of anxiety-
related symptoms, remained a major risk predictor along with
PRS. Higher anxiety sensitivity is associated with fear of pain,
pain interference, which then leads to increased avoidance,
disability (Martin et al., 2007) and maladaptive coping styles
(Asmundson and Taylor, 1996), thus leading to the persistence
of pain. Preoperative assessment of CASI will allow interventions
such as education for improved coping, behavioral therapy and
possibly use of anti-anxiolytics to temper the pain experience.

Scarcity of available genomic datasets for our phenotype of
interest, namely, CPSP, makes GWAS daunting. Systems-biology
approaches have been used successfully for identifying gene
pathways implicated in other phenotypes (Kurowski et al., 2012;
Jegga, 2014; Kurowski et al., 2019) as they allow leveraging
known genomic data sources to prioritize functional genes for
association, thereby decreasing the statistical burden. In our
study, literature derived training sets showed enrichment for
CPSP, with genes previously known to play an important role
in pain. This either suggests that all relevant genes have been
captured by the studies so far or that there are additional genes

TABLE 3 | Multiple regression models evaluated for prediction of chronic
post-surgical pain (CPSP) and results of bootstrapping.

Independent variable OR Lower
95% CI

Upper
95% CI

P-values

Full clinical model (AUC = 0.71)

CASI 1.15 1.04 1.25 0.0038

Preoperative Pain 1.40 0.45 4.33 0.5559

Reduced clinical model (AUC = 0.70)

CASI 1.15 1.04 1.26 0.0035

Genetic model (AUC = 0.96)

Independent variable OR Lower
95% CI

Upper
95% CI

P-values

CASI 1.37 1.15 1.65 0.0006

Weighted PRS 2.16 1.53 3.05 <0.0001

Bootstrapping results

OR (β) Lower
95%CI,
OR (β)

Upper
95%CI OR

(β)

Bias β

CASI 1.33 (0.29) 1.03 (0.03) 1.72 (0.38) 0.03

Weighted PRS 1.98 (0.68) 1.21 (0.19) 3.22 (0.74) 0.09

CASI, Childhood anxiety sensitivity index; OR, Odds ratio; β, regression coefficients;
AUC, Area under curve; PRS, Polygenic risk score; CI, confidence interval.

FIGURE 4 | Receiver operating characteristic curve showing the
sensitivity/1-specificity for prediction of chronic post-surgical pain using the
non-genetic model [including childhood anxiety sensitivity index (CASI) –
dashed lines] compared with the prediction using the polygenic risk score final
model (PRS and CASI – solid black lines). The area under curve for genetic
model is 0.96 (95% CI: 0.92–0.99) compared to 0.70 (95% CI: 0.59–0.82) for
non-genetic model (p = 0.0001).

in very different pathways which need additional larger studies.
Importantly, systems biology helped us identify control gene
sets which allowed us to refine the optimal variants for PRS
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determination by enrichment. Our findings are an important
first step in the development of accurate and reliable gene-based
biomarkers to predict susceptibility for CPSP. However, these
findings will need external validation in unrelated similar and
dissimilar surgical cohorts and diverse population structures. In
addition, analytic validation of the panel in a CLIA-certified
laboratory by re-sequencing and confirmation of the variants is
necessary. Nevertheless, there is promising potential for future
automated risk decision support based on preemptive genotyping
and patient characteristics (CASI). This will allow preemptive
preventive strategies to be employed cost-effectively, directed at
those with higher risk.

The derived PRS is composed of weighted risk coefficients
from 20 variants annotated to 7 genes which (not surprisingly)
played a role in CPSP in previous studies: Ataxin-1 (ATXN1),
Protein Kinase C Alpha (PRKCA), calcium channel genes
(codes for the G subunit: CACNG2), Dopamine receptor gene
(DRD2) and potassium channel genes (KCNJ3, KCNJ6, KCNK3).
Potassium and calcium channel genes form the majority of
genes involved. This is consistent with knowledge that these
channels contribute to activation thresholds and spontaneous
or exaggerated neuronal firing in response to noxious stimuli
(Cohen and Mao, 2014). CPSP risk 6 months after breast
cancer surgery has previously been reported for haplotype A2
rs3111020-rs11895478 G-A of KCNJ3 and rs2835925 of KCNJ6
(Langford et al., 2015). Similarly, in another cohort, several
variants of the CACNG2 gene were found to be associated
with CPSP at a nominal level after breast cancer surgery
(Nissenbaum et al., 2010). PRKCA is involved in long-term
potentiation, an important process for memory and chronic
pain development (Kawasaki et al., 2004; Price and Inyang,
2015). A meta-analysis showed that a recessive model of
allele A in rs887797 in PRKCA was strongly associated with
neuropathic CPSP in adults undergoing joint replacement
surgery (Warner et al., 2017). DRD2 variants were nominally
associated with CPSP 4 months after different surgeries (Montes
et al., 2015), as well as in chronic pain conditions (migraine)
and substance abuse/addiction (Xu et al., 2004; Connor et al.,
2007; Todt et al., 2009). Ataxin1 (ATXN1) is a gene that
may play a role in transcription. Although its role in pain
is not known, a study of a multiple surgery cohort found
that the A allele at rs179997 of ATXN1was associated with
CPSP at 4 months (Montes et al., 2015). Although variants
selected for PRS in our study are mostly intronic, a functional
assessment of the variants informing the PRS is not pertinent for
establishing predictive biomarkers. However, intronic sequence
alterations could influence gene function via altering binding sites
for splicing co-factors or transcriptional enhancer/suppressor
elements or may be in linkage with other variants with
functional roles.

Since different surgeries are associated with variable pain
modalities with different incidences of CPSP, the homogeneity
of the surgical cohort in our study is a strength. The well
characterized CPSP phenotypes, systematic approaches and
bootstrapping add to the robustness of the results. Recent
articles discuss clinical implementation of PRS may soon be a
reality in cohorts with a higher prior probability of disease, to

assist in risk/diagnosis or to inform treatment choices (Lewis
and Vassos, 2020). We acknowledge that there are ethical
and scientific challenges surrounding clinical implementation
of PRS (Martin et al., 2019). Cost-benefit analyses for use
of PRS in CPSP will need to consider (a) the prevalence
of cohort at risk (In the US alone, 25 million adult and
5 million pediatric major surgeries are conducted per year
(specifically, for spine surgery— according to the national
scoliosis foundation, about 38,000 spine fusions are conducted
in idiopathic scoliosis every year in the United States) (Sieberg
et al., 2013) (b) the relative risk of phenotype predicted by
PRS (in this study, RR∼2.2), (c) the proportion of surgical
population at risk (in this study, ∼40%; the incidence of severe
CPSP after major surgery is 2.2%—at a conservative estimate,
this translates to 660,000 new cases of CPSP every year in
the United States) (Fletcher et al., 2011), (d) the therapeutic
response rate (CPSP is potentially preventable), and (e) the
cost/impact of the condition being prevented (Gibson, 2019).
Recent estimates suggest that CPSP incurs annual direct and
indirect costs of US$11,846 and US$29,617, respectively, per
patient (Parsons et al., 2013) and negatively impacts quality of
life (Hunfeld et al., 2001; Kashikar-Zuck et al., 2001; Fletcher
et al., 2011). Furthermore, the decreasing costs of genetic
testing indicate that use of PRS will have benefits that outweigh
risks/costs. Recent studies investigating preventive strategies like
pregabalin have conflicting results (Mishriky et al., 2015; Thapa
and Euasobhon, 2018)—this is not necessarily a function of
therapeutic inefficacy—but could potentially be due to bias from
inclusion of low risk subjects; hence, PRS could potentially
improve evaluation of interventional strategies allowing a priori
assessment of risk.

CONCLUSION

In conclusion, systems biology approaches combined with
genetic association testing methodology are useful methods to
develop PRS when GWAS approaches are not feasible. PRS
holds future potential as a biomarker (simple blood test) that
can predict CPSP risk. Given the morbidity associated with
CPSP—including the risk for opioid abuse (Brummett et al.,
2017), significant rates of chronic opioid dependence after
surgery (Lee et al., 2017), the economic burden of CPSP—
and decreasing genetic testing costs, we envision PRS to be
cost-effective adjunct for risk stratification and clinical decision-
making so preventive strategies can be targeted at those with
high-risk. Future studies are needed to validate our findings.
Our results may also have extended potential in predicting
other chronic musculoskeletal pain conditions with similar
pathophysiology.
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