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Single cell RNA sequencing (scRNA-seq) allows quantitative measurement and
comparison of gene expression at the resolution of single cells. Ignoring the batch
effects and zero inflation of scRNA-seq data, many proposed differentially expressed
(DE) methods might generate bias. We propose a method, single cell mixed model
score tests (scMMSTs), to efficiently identify DE genes of scRNA-seq data with batch
effects using the generalized linear mixed model (GLMM). scMMSTs treat the batch
effect as a random effect. For zero inflation, scMMSTs use a weighting strategy
to calculate observational weights for counts independently under zero-inflated and
zero-truncated distributions. Counts data with calculated weights were subsequently
analyzed using weighted GLMMs. The theoretical null distributions of the score statistics
were constructed by mixed Chi-square distributions. Intensive simulations and two real
datasets were used to compare edgeR-zinbwave, DESeq2-zinbwave, and scMMSTs.
Our study demonstrates that scMMSTs, as supplement to standard methods, are
advantageous to define DE genes of zero-inflated scRNA-seq data with batch effects.

Keywords: score test, generalized linear mixed model, zero inflation, observational weights, differential
expression analyses, single cell RNA sequencing

INTRODUCTION

In modern biology, transcriptomics has been widely used to elucidate the molecular basis of
biological processes and diseases (Van den Berge et al., 2018). Previous transcriptome sequencing
techniques (bulk RNA-seq) (Wang et al., 2009) might obscure the cell type heterogeneity in different
samples. Because of the resolution, bulk RNA-seq hardly defines the rare cells, such as stem cells and
tumor cells. Single cell RNA sequencing (scRNA-seq) enables researchers to study characteristics of
gene expression in the resolution of individual cells (Kolodziejczyk et al., 2015). scRNA-seq has been
treated as an effective method to study cellular heterogeneity in complex biological systems, and is
being applied by more researchers in various biological processes, such as stem cell development
and differentiation, embryonic organ development, tumors, immunology, and neurology (Tang
et al., 2009; McEvoy et al., 2011; Zeisel et al., 2015; Chu et al., 2016; Papalexi and Satija, 2018; Sun
et al., 2019). Identifying differentially expressed (DE) genes is one of the most common analysis of
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both bulk RNA-seq and of scRNA-seq analysis (Robinson et al.,
2010; Van den Berge et al., 2017, 2018; Sun et al., 2018).

For bulk RNA-seq and scRNA-seq data, batch effects
conventionally were treated as the non-biological differences
that occurs when samples or cells are measured in distinct
batches. The measure of transcriptome can be influenced by
different environments for cells (Luecken and Theis, 2019).
Various methods to correct batch effects and preserve biological
variability have been presented. Some methods directly remove
or correct batch effects using linear models (Johnson et al.,
2007; Tung et al., 2017; Somekh et al., 2019). ComBat (Johnson
et al., 2007) is an empirical Bayes method which takes batch
effects into a linear regression model of gene expression. ComBat
was recommended for batch correction when groups or cell
types and state compositions between batches are consistent
(Luecken and Theis, 2019). Mutual nearest neighbors (MNNs)
(Haghverdi et al., 2018) and canonical correlation analysis (CCA)
(Butler et al., 2018) remove batch effects using nonlinear models.
A method comparison study showed ComBat was the best one
for both bulk RNA-seq and scRNA-seq data (Büttner et al., 2019).
For DE analysis, it was recommended that DE testing should be
conducted on measure data with covariates including the batch
information in the model design, not on batch corrected data
(Luecken and Theis, 2019).

Some studies directly used traditional bulk RNA-seq DE
methods (Krieg et al., 2018; Roerink et al., 2018; Li et al., 2019;
Mehtonen et al., 2020). Limma-voom (Ritchie et al., 2015) applies
weighted linear regression models for log-transformed count
data. edgeR (Robinson et al., 2010; McCarthy et al., 2012) and
DESeq2 (Love et al., 2014) model the gene expression count
data based on generalized linear models (GLMs) under negative
binomial (NB) distributions. It was demonstrated that NB models
overestimated the dispersion parameter with excess zero counts,
which influenced the power to DE analysis (Van den Berge
et al., 2018). Different to bulk RNA-seq data, dropout events
cause excess zeros for scRNA-seq read count data (Finak et al.,
2015; Hashimshony et al., 2016). Therefore, zero inflation or an
excess of zeros is a particular feature of scRNA-seq data, and
it is not considered for these methods. SCDE (Kharchenko and
Fan, 2019) and MAST (Finak et al., 2015; McDavid et al., 2019)
model the redundant zeros of scRNA-seq data by zero inflation
and hurdle models, respectively. Both zinbwave (Risso et al.,
2018; Van den Berge et al., 2018) and zingeR (Van den Berge
et al., 2017) estimates observational weights based on a zero-
inflated negative binomial (ZiNB) model and downweight excess
zeros followed by classical bulk RNA-seq DE tools (e.g., edgeR
and DESeq2). The performance of two combinations, edgeR-
zinbwave and DESeq2-zinbwave, outperform other DE methods
(Van den Berge et al., 2018).

Here, based on isoVCT (Yang et al., 2017) and SMMATs (Chen
et al., 2019), we implement a series of efficient methods, the single
cell mixed model score tests (scMMSTs), to identify DE genes for
defined cell types in scRNA-seq data considering batch effects and
zero inflation. isoVCT, a DE method for bulk RNA-seq, uses a
random effect to consider the heterogeneous isoform effects. In
large-scale whole-genome sequencing (WGS) studies, SMMATs
are powerful and computationally efficient variant set tests for

continuous and binary traits, which integrates the burden test and
SKAT (Wu et al., 2011) under the framework of generalized linear
mixed models (GLMMs).

METHODS

Generalized Linear Mixed Models
For a single gene, we consider the following:

g (µi) = α+giBiβ+ Bib,

where g (·) is a monotonic differentiable link function for GLMs,
µi = E

(
yi|gi,Bi, b

)
denotes the mean of phenotype or count

yi for subject or cell i for a given gene with sample size n to
the intercept α, gi is the group, cluster or cell type covariate
dummy variable binary value for subject i, Bi is the row vector
of dummy variables values of the batch or individual covariate
for subject i, β is the group effects associated with bathes and
b is the batch effects. In the above equation, the group effects
β are assumed to follow the normal distribution N(β01p, σ

2
βIp),

where 1p is the p× 1 dimensional vector whose elements are all
1, Ip is the p× p dimensional identity matrix, β0 and σ2

β are mean
and variance of the normal distribution and p is the number of
batches. If σ2

β > 0, group effects are associated with the batches.
We assume the batch random effects b ∼ N(0p, σ

2
bIp), where 0p

is the p× 1 dimensional vector whose elements are all 0 and
σ2

b is the variance. We consider the binomial, quasi-binomial,
Poisson, quasi-Poisson, and NB distributions to model yi. Binary
phenotypes are commonly modeled by binomial and quasi-
binomial distributions and counts are commonly modeled by
Poisson, quasi-Poisson, and NB distributions.

For single cell RNA-seq data of a given gene, yi is the count
for cell i. We identify DE genes for each defined cell type in
the form of one-against-others, so gi, the cell type covariate for
cell i, is binary. GLMMs under Poisson, quasi-Poisson and NB
distributions are appropriate in this scenario.

Single Cell Mixed Model Score Tests
Testing H0 : β = 0 is equivalent to testing H0 : β0 = 0
and σ2

β = 0. Under the null hypothesis, the reduced GLMM
is as follows.

g (µ0i) = α+ Bib,

where µ0i = E
(
yi|µ0, bi

)
.

We construct a variance component score test statistic T
derived by testing H′0 : σ

2
β = 0 under the assumption β0 = 0.

SMMAT-O was also derived in the same manner. Under H′0 with
the assumption β0 = 0, we have the same reduced null model as
that under H0 : β = 0. Therefore, our derived test statistic T is
applicable for testing H0. The test statistic T is shown as follows.

T =
(
y− µ̂0

)T
8̂GBGT

B8̂
(
y− µ̂0

)
τ̂

,

where y =
(
y1 y2 · · · yn

)T is an n× 1 vector of counts or
phenotypes, µ̂0 = g−1 (̂α+Bîb

)
is the estimated mean vector of
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the reduced null model under H0, α̂ and b̂ are estimates of the
α and b, 8 = diag

{
1/
(
1+

(
µ̂0i/̂θ

))}
for the NB distribution

with the estimated dispersion parameter θ̂ and 8̂ = In for
other distributions mentioned, B =

(
BT

1 BT
2 · · · BT

n
)T is an n×

p design matrix of group covariate dummy variables values,
GB =

(
g1BT

1 g2BT
2 · · · gnBT

n
)T is an n× p design matrix of

interactions of group and batch covariates with the multiplication
of corresponding dummy variables values and τ̂ is the estimate
of dispersion parameter τ for quasi distributions, which is 1 for
the binomial, Poisson and NB distributions and is estimated
by the residual deviance divided by the degree of freedom
of the reduced null model for quasi-binomial and quasi-
Poisson distributions.

The asymptotic distribution of the statistic T under H0 is
derived as follows. Following the theoretical results of mixed
models (Harville, 1977; Breslow and Clayton, 1993; Santos
Nobre and da Motta Singer, 2007; Chen et al., 2016), we
have ê = (y− µ̂0)/

√
τ̂ asymptotically following a n-dimensional

multivariate normal distribution MVNn(0, D̂−1V̂P̂6̂P̂V̂D̂−1)
under H0, where D̂ = diag

{
g′(µ̂0i)

}
, whose diagonal elements

are the first order derivative of the link function g (·)
evaluated at µ̂0i, P̂ is the n× n projection matrix of the

reduced null model P̂ = 6̂
−1
−6̂
−11n

(
1T

n 6̂
−11n

)−1
1T

n 6̂
−1 with

6̂ = V̂+σ̂2
bBBT, V̂ = diag

{(
g′(µ̂0i)

)2V̂ar(yi)
}

, the first order
derivative function of the link function g′(·) and the estimated
variance of yi, V̂ar(yi). For binomial and quasi-binomial
distributions,

(
g′ (µ̂0i)

)2V̂ar(yi) = 1/[µ̂0i (1− µ̂0i)]. For Poisson
and quasi-Poisson distributions,

(
g′ (µ̂0i)

)2V̂ar(yi) = 1/µ̂0i. For
NB distributions,

(
g′ (µ̂0i)

)2V̂ar
(
yi
)
= (1/µ̂0i)+

(
1/̂θ

)
. Since

P̂6̂P̂ = P̂ and 8̂ = V̂−1D̂, the asymptotic distribution can be
simplified as MVNn (0, 8̂−1P̂8̂

−1
). Therefore, under H0, T,

a quadratic form of ê, asymptotically follows a mixture Chi-
square distribution

∑p
i=1 ξiχ

2
1,i, where χ2

1,i are independent
Chi-square distributions with 1 degree of freedom, and ξi are
the eigenvalues of E = GT

BP̂GB. Notably, 6̂ in P̂ has a simple
structure which makes 6̂

−1 to be solved explicitly and E to be
calculated efficiently. The p-value of the test can be calculated
soon after the estimation of the reduced null model. More details
of the computational efficiency of scMMSTs are discussed in
section “Performance Evaluation”. The estimation procedure of
µ̂0i is the same for binomial and quasi-binomial distribution
pair and the Poisson and quasi-Poisson distribution pair. Thus,
we implement quasi distributions to allow flexibility. In the
followings, unless specified otherwise, “binomial” stands for both
binomial and quasi-binomial and “Poisson” stands for both
Poisson and quasi-Poisson.

There is zero inflation in scRNA-seq count data. Therefore,
following the idea of ZINB-WaVE, a weighting strategy
is implemented. Firstly, observational weights are calculated
for all counts independently with details shown in sections
“Zero-Inflated and Zero-Truncated Distributions for Counts”
and “Calculations of Observational Weights for scMMSTs.”
Afterward, counts data with calculated weights are analyzed
under the weighted GLMMs. Accordingly, a weighted version

test statistic Tw for scMMSTs is proposed as follows with
above notations.

Tw =

(
y− µ̂0

)T
8̂WGBGT

BW8̂
(
y− µ̂0

)
τ̂

,

where W = diag {wi} and wi is the given weights for count yi.
The estimation is based on the weighted GLLMs for the reduced
null model. We denote 1w,n =W

1
2 1n, Bw =W

1
2 B, V̂w =

W−
1
2 V̂W−

1
2 , 6̂w = V̂+σ̂2

bBwBT
w, ˜̂6w =W−

1
2 6̂wW−

1
2 and P̂w =

W
1
2 6̂
−1
w W

1
2−W

1
2 6̂
−1
w 1w,n

(
1T

w,n6̂
−1
w 1w,n

)−1
1T

w,n6̂
−1
w W

1
2 =

˜̂6−1
w −

˜̂6−1
w 1n

(
1T

n
˜̂6−1

w 1n

)−1
1T

n
˜̂6−1

w . Based on the theoretical

results of weighted GLMMs (Harville, 1977; Breslow and
Clayton, 1993; Santos Nobre and da Motta Singer, 2007;
Chen et al., 2016), if H0 and W are true, we have ê
asymptotically normally distributed as MVNn(0, D̂−1V̂wP̂w˜̂6wP̂wV̂wD̂−1). Since P̂w

˜̂6wP̂w = P̂w, 8̂ = V̂−1D̂ and
D̂−1V̂w = D̂−1W−

1
2 V̂W−

1
2 = 8̂

−1W−1, where W−
1
2 , D̂−1

,V̂
are diagonal matrices, the asymptotic distribution can be
simplified as MVNn(0, 8̂

−1W−1 P̂wW−18̂
−1
). If H0 and W

are true, Tw, a quadratic form of ê, asymptotically follows a
mixture Chi-square distribution

∑p
i=1 ξiχ

2
1,i, where χ2

1,i are
independent Chi-square distributions with 1 degree of freedom,
and ξi are the eigenvalues of Ew = GT

BP̂wGB. Note that 6̂w
in P̂w does not have the simple structure of 6̂, which makes
it hard to analytically and explicitly solve 6̂

−1
w . Therefore, we

propose E′w = GT
BWP̂WGB to approximate Ew for simplicity

and efficiency, where we treat ê as it is estimated by GLMMs
without weights. Calculated weights are 1 for nonzero counts
and between 0 and 1 for zero counts. Thus, this approximation
performs worse when there are more redundant zeros, which
might influence the performance of scMMSTs.

Zero-Inflated and Zero-Truncated
Distributions for Counts
Zero-Inflated Distributions for Counts
A zero-inflated distribution for counts is a mixture distribution
with two components, which are a point mass at zero and
a conventional random variable distribution for counts, e.g.,
Poisson and NB distributions. The probability mass function
(pmf) of a zero-inflated distribution for counts is as follows.

fZI
(
y; θ,π

)
= πδ0

(
y
)
+ (1− π) f

(
y; θ

)
, ∀y ∈ N,

where π ∈ [0, 1] indicates the probability of zero inflation, δ0 (·)
the Dirac function, f (·; θ) the pmf of a conventional distribution
with parameter vector θ. The observational weights of the counts
can be calculated under a zero-inflated distribution model as
the conditional probability that a given count y belongs to the
conventional distribution with parameter estimates θ̂, π̂:

w =
(1− π̂) f

(
y; θ̂

)
fZI
(
y; θ̂, π̂

) .

Note that w is 1 for nonzero counts and ∈ (0, 1) for zeros counts.
All the weights for counts under the conventional distribution
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are 1. Under a zero-inflated distribution, we take the weights
of nonzero counts remain 1 and downweight zero counts from
1 to the conditional probability that a given count y belongs
to the conventional distribution. Counts with observational
weights are subsequently analyzed under the weighted version of
models for the conventional distribution. In ZINB-WaVE, this
weighting strategy is applied and the above formula is applied
to calculate observational weights under the ZiNB distribution
(Van den Berge et al., 2018).

Zero-Truncated Distributions for Counts
A zero-truncated distribution for counts is a distribution for
counts with random variable values truncated at zero, i.e., only
counts larger than zero can be observed. In the followings, we
refer to zero-truncated distributions as truncated distributions
for short. The pmf of a truncated distribution for counts is as
follows.

fTr
(
y; θ

)
=

f
(
y; θ

)
Pf (t > 0; θ)

=
f
(
y; θ

)∑
+∞

t=1 f (t; θ)
, ∀y ∈ N+,

where f (·; θ) denotes the pmf of a conventional distribution
for counts with parameter vectorθ. The observational weights of
nonzero counts are 1 and weights of zero counts can be calculated
under a truncated distribution model as following:

w =
n1f

(
y = 0; θ̂

)
n0
∑
+∞

t=1 f
(
t; θ̂
) ,

where n1 is the number of nonzero counts, n0 is the number
of the zero counts in the whole sample and θ̂ is the parameter
vector estimate.

The derivation of the above formula is as follows. Nonzero
counts follow the truncated distribution with parameter θ

which is the also the parameter for the corresponding
conventional distribution. Therefore, the probability of zero
counts is estimated as f

(
y = 0; θ̂

)
. All the weights for

counts under the conventional distribution are 1. However,
since excess zeros are presented, the observational weights
of nonzero counts remain 1 and zero counts are reweighted
from 1 to w, so that w·n0

w·n0+1·n1
= f

(
y = 0; θ̂

)
. The resulting

formula for observational weights w is derived by solving
the equation. Counts are then analyzed with observational
weights calculated under the weighted version of models for the
conventional distribution.

Calculations of Observational Weights
for scMMSTs
In ZINB-WaVE, the weighting strategy shown in the previous
section is applied and observational weights are estimated
by the ZiNB regression (Van den Berge et al., 2018). For
our methods, the truncated Poisson (TrPois), zero-inflated
Poisson (ZiPois), truncated negative binomial (TrNB), and ZiNB
distributions are considered. Following the weighting strategy
mentioned and H0 : β = 0, we estimate parameters for counts
in each batch and calculate the weights accordingly using
the formulas in section “Zero-Inflated and Zero-Truncated

Distributions for Counts” for simplicity with the assumption of
no group effects.

For zero-inflated distributions, weights are the conditional
probabilities that a count y belongs to the corresponding
conventional distribution. We directly use ZINB-WaVE for the
ZiNB distribution, and implement the algorithm in Appendix A
of the paper (Böhning et al., 1999) for the ZiPois distribution.
In ZINB-WaVE, no mixed models are involved. Thus, we treat
batch effects as fixed effects in the ZiNB regression without group
effects to calculate weights using all counts data, when using
ZINB-WaVE. For TrPois distribution, since the pmf fTrPois

(
y
)
=

fPois(y)
1−e−λ =

λye−λ

y!1−e−λ , we can derive the method of moment estimate
and maximum likelihood estimate λ̂ and they are identical by
numerically solve the equation λ̂

1−e−λ̂
= y, where y is the sample

mean for the truncated sample. For each batch, the weights
are wi =

n1e−λ̂

n0

(
1−e−λ̂

) for a zero count and wi = 1 for nonzero

yi, where n1 is truncated sample size for the batch and n0 is
the number of the zero counts in the batch. TrPois and ZiPois
perform very close to each other. For TrNB distribution, we
implement the formulas in section “Results” of the paper (Rider,
1955) to estimate the mean parameter µ and the dispersion
parameter θ for each batch. The common dispersion parameter
θ is estimated by the harmonic mean of the estimated θ̂ for each
batch. However, this algorithm is not robust for small θ (θ < 2,

based on simulations). The weights are wi =
n1
(̂
θ/
(̂
θ+µ̂

))̂θ
n0

(
1−
(̂
θ/
(̂
θ+µ̂

))̂θ)
for zero counts in each batch, where θ̂ and µ̂ are respectively
the estimated dispersion and mean parameters for the NB
distribution using counts in the batch, and wi = 1 for nonzero
yi for each corresponding batch.

After weights are calculated, counts data with weights are
analyzed under weighted GLMMs shown in section “Single Cell
Mixed Model Score Tests.” Note that weights are calculated
independently of GLMMs. Theoretically, the weights are 1 under
conventional distributions. The calculated observational weights
for nonzero counts remain 1. If there are calculated weights of
zero counts far from 1 and closer to 0, it indicates that there
are excess zeros. If calculated weights of zero counts are close
to 1, the results for conventional distributions are similar to
those considering zero inflation. In ZiNB-Wave, weights are
calculated through the ZiNB regressions on all counts. However,
the weights for TrPois, ZiPois, and TrNB are calculated using
counts for each batch with smaller sample sizes. Therefore,
although the calculation of weights for TrPois, ZiPois and TrNB
is easier to implement and time saving, it is less accurate and
less reliable than that for ZiNB-Wave and the performances of
scMMSTs are affected.

Performance Evaluation
Performances of DE methods considered are assessed in terms
of the per-comparison error rate (PCER), which refers to type I
error rate (i.e., the proportion of false positives), line plots of the
true positive rate (TPR) vs. the false discovery proportion (FDP)
and the areas under the receiver operating characteristic (ROC)
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curves [i.e., the TPR vs. the false positive rate (FPR) curves]
(AUCs) with definitions as follows.

TPR =
TP
P
, FPR =

FP
N
, FDP =

FP
max(1, FP + TP)′

where we use the following abbreviations for empirical quantities:
FP (the number of false positives), TP (the number of true
positives), N (the number of negative samples), P (the number
of positive samples). FDP-TPR curves for adjusted p-values
are plotted by iCOBRA Bioconductor R package (version
1.12.1) (Soneson and Robinson, 2016) and AUCs for adjusted
p-values are calculated by pROC R package (version 1.16.2)
(Robin et al., 2011). Unless otherwise stated, the adjusted
p-values for all DE methods considered are calculated by the
Benjamini and Hochberg method (Benjamini and Hochberg,
1995) for FDR control.

Comparison Methods
The 12 methods considered for comparisons are Poisson, TrPois,
ZiPois, NB, TrNB, NB-zinb, DESeq2, DESeq2-zinb, edgeR,
edgeR-zinb, limma-voom, and MAST. The first six methods
are our implemented methods of scMMSTs s under GLMMs
assumptions and the last six methods are the state-of-the-art DE
methods, where Tr, Zi, Pois, NB, and zinb are abbreviations of
truncated, zero-inflated, Poisson, ZINB-WaVE, respectively. We
follow the implementations of the last six DE methods above
in the zinbwave paper (Van den Berge et al., 2018) and the
R packages used are edgeR (version 3.28.1), DESeq2 (version
1.26.0), limma (version 3.42.2), MAST (version 1.12.0), and
zinbwave (version 1.8.0), which was developed to deal with zero
inflation for scRNA-seq data by a weighting strategy and was
used in edgeR-zinb, DESeq2-zinb, and NB-zinb. The binomial
distribution scMMST is implemented, however, not covered in
the simulations and real data analysis since only methods for
count data are considered in thisarticle.

The implementations of scMMSTs are available in
Supplementary Data S1. Codes for simulations and real
data analysis are partially based on the GitHub repositories12

of papers (Yang et al., 2017; Van den Berge et al., 2018) and the
GMMAT R package (version 1.3.0) (Chen et al., 2016, 2019). R
packages doParallel (version 1.0.15) (Corporation and Weston,
2019) and BiocParallel (version 1.20.1) (Morgan et al., 2019)
are used for parallel computation. The reduced null model
is estimated by lme4 R package (version 1.1.23) and p-values
are calculated by CompQuadForm R package (version 1.4.3).
Simulated single cell datasets are generated by splatter R package
(version 1.10.1) (Zappia et al., 2017). Additionally, the code
to reproduce all analyses, figures and tables reported in this
manuscript is attached in Supplementary Data S1.

Simulations
We perform simulations to evaluate performances of scMMSTs,
which are our methods of association tests under the proposed
GLMMs, comparing with state-of-art DE methods under a range

1https://github.com/biostat0903/RNAseq-Data-Analysis
2https://github.com/statOmics/zinbwaveZinger

of scenarios. We simulate the scRNA-seq data based on GLMMs
directly and by the R package splatter. Splatter can directly
estimate model parameters for real scRNA-seq data and generate
quality controlled simulated mock datasets with DE genes easily
and can add batch effects, which are not associated with group
effects, to the simulated data. The simulated number of genes for
one dataset by splatter and GLMMs is 10,000 and the number of
cells is 250 with balanced two groups and five batches. In the DE
genes simulations, the proportion of the DE genes is set to be 0.1.

Additional parameters of splatter simulations, batch.facLoc–
batch factor location, batch.facScale–batch factor scale, and
out.prob–the expression outlier probability, are set to be 0.5. For
DE gene simulations, de.facLoc, DE factor location, is set to 2 and
de.facScale, DE factor scale, is set to be 0.5.

The procedure to simulate datasets based on the proposed
GLMMs is as follows. We assume that the scRNA-seq count
data follow Poisson and NB distributions and generate yi
based on the GLMM shown with the parameters setting and
generate a Bernoulli random variable zi with parameter πi =

logit−1 (µπ + Bib). Larger values of parameter µπ causes smaller
baseline proportions of zeros. If zi = 0, then yi = 0, and
yi remains the same otherwise. The parameter settings for
simulations are based on the real data analysis and references
(Yang et al., 2017). Seven parameters are considered: the variance
of the batch or individual effects b(σ2

b), the variance of the group
or cell type effects β(σ2

β), the baseline group effect (β0), the
number of batches (p), the dispersion parameter (θ = 1/φ) for
NB distributions and the intercepts (µ0) and (µπ) for the GLMM
and logstic regression for excess zeros, respectively. σ2

b shows the
heterogeneity of batch effects in different batches. σ2

β shows the
heterogeneity of group effects in different batches. β0 shows the
baseline group effect. The larger the |β0|, the larger the baseline
group effect is. Other parameters describe the features of the gene
expression and zero inflation. σ2

b is set to be 0.25 and σ2
β varies in

0, 0.01, 0.25, and 1. β0 varies in 0, 0.01, 0.1, 0.3, and 0.5. θ varies
in 0.5, 1, and 2. µπ varies in−1, 0, and 2. p = 5 and µ0 = 5.

Real Data Sets
Usoskin Dataset
This scRNA-seq dataset contains mouse neuronal cells in the
dorsal root ganglion (Usoskin et al., 2015). The processed
expression values were downloaded from the Github respiratory3

of the zinbwave paper. Following the process procedures given
in the zinbwave paper, the authors considered 622 cells with a
classification of 11 neuronal cell-types, which were denoted as
NF1 to NF5, NP1 to NP3, PEP1, PEP2 and TH. Genes with
less than 20 counts were removed and a total of 12,132 genes
are considered for the following analyses with 68% zero counts.
The authors showed the existence of a batch effect related to the
picking session for the cells. Thus, the picking session covariate
(with values Cold, RT-1, and RT-2) in this dataset was considered
as a batch covariate for real data analysis. The batch effect
was associated with expression measures and the relationship
between zero inflation and sequencing depth, which was shown

3https://github.com/statOmics/zinbwaveZinger/tree/master/datasets
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in Figure 5 of the zinbwave paper (Hicks et al., 2015; Van den
Berge et al., 2018). We repeated the results of Figures 5A,B of
the zinbwave paper in Supplementary Figures S1A,B. There is a
large variation in the depth of sequencing among batches, which
weaken the overall association with zero inflation when pooling
cells across batches (Supplementary Figure S1A). Zero inflation
was also identified for the Usoskin dataset. Histograms of
observational weights for nonzero counts, which were calculated
by the ZINB-WaVE model including the cell type as a covariate
with and without the batch effect as fixed effects, are shown
in Supplementary Figure S1B. Calculated weights of nonzero
counts with and without the batch effect both have high modes
near zero. This suggests zero inflation in the Usoskin dataset. The
real data analysis of the processed Usoskin dataset was done to
identify DE genes for defined 11 cell types vs. the rest. Simulated
datasets based on this dataset were generated by spaltter with
estimated corresponding parameters. For a null dataset without
DE genes, we created 10,000 genes, 250 cells, five balanced
batches and two balanced groups for cells. Twelve methods were
implemented to identify DE genes between the two groups for
each of the 30 simulated null data sets. A gene was declared to
be DE if its unadjusted p-value was less than or equal to 0.05.
Declared DE genes were false positives for these simulated null
datasets. The empirical PCER of each method was calculated as
the proportion of declared DE genes and was compared to the
0.05 nominal PCER.

Tung Dataset
This scRNA-seq dataset is for induced pluripotent stem cells from
three individuals from HapMap (Tung et al., 2017). Following
the splatter paper (Zappia et al., 2017), the matrix of molecules
(UMIs) was treated as counts and was used directly. This
dataset is available from GEO (accession GSE77288)4 and the
Github respiratory5 of the splatter paper. No batch information
is available for this dataset. Genes with less than 20 counts were
removed and a total of 14,893 genes with 864 cells containing
44% zero counts were considered. Zero inflation was identified
for the Tung dataset. Histograms of observational weights of
nonzero counts of two filtered datasets (18,726 genes with more
than 0 count and 14,893 genes with more than 19 counts,
respectively), which were calculated by the ZINB-WaVE model,
are shown in Supplementary Figures S1C,D. There are moderate
proportion s of calculated weights of nonzero counts close to
zero. This suggests zero inflation in the Tung dataset. Comparing
to the Usoskin dataset, the Tung dataset is less zero inflated.
We generated 30 simulated null datasets and identified DE genes
using the same procedures for the Usoskin dataset with spaltter.

RESULTS

Method Overview
Single cell mixed model score tests are computationally efficient
DE analysis tools for scRNA-seq data considering batch effects

4https://github.com/jdblischak/singleCellSeq
5https://github.com/Oshlack/splatter-paper

and zero inflation. Bath effects are estimated as random effects
under the reduced null models of GLMMs. A weighting
strategy is implemented to characterize excess zeros. The score
statistics are derived on theoretical asymptotic distributions.
First, we estimated normalization factors of count matrix
by the function calcNormFactors in edgeR after counts per
million (CPM) normalization. Second, the estimation of the
observational weights is efficient. We use zinbwave to fit NB-
zinb which might be the most time-consumed assumption.
Third, we use lme4 for the estimation, the most efficient
method to fit GLMM, to estimation the parameters in the
null hypothesis (Eddelbuettel and François, 2011; Eddelbuettel,
2013; Eddelbuettel and Balamuta, 2017). Considering the
real data, the estimation procedure of mixed model is not
related to the number of groups or cell types. Compared
to the traditional estimation procedure, scMMSTs use three
strategies to decrease memory usage and computation time.
First, scMMSTs do not need to store n× n matrices P̂
and 6̂ explicitly. The p-value is efficiently calculated by
CompQuadForm with eigenvalues of E or E′w, which is
only a p× p matrix. Second, scMMSTs use an analytical
form to calculate the inverse of 6̂ which might be the
most time consumption procedure in the estimation of T
or Tw. Third, scMMSTs is implemented for parallel computing.
Therefore, although more complicated models GLMMs are
considered, scMMSTs are computationally affordable compared
to other DE methods.

Simulations by Real Datasets and
Splatter
Simulated datasets generated by the splatter used parameters
estimated from two publicly available real scRNA-seq datasets,
the Usoskin (Usoskin et al., 2015) and Tung (Tung et al.,
2017) datasets.

The FPR control was assessed by the PCER. Results are shown
in Figure 1. For the Usoskin dataset, the estimated common
dispersion parameter value of biological coefficient of variation
(BCV) was φ̂ = 1/̂θ =1.89. TrNB and Poisson failed to control
the FPR. The PCERs of NB-zinb, DESeq2, edgeR-zinb, and edgeR
were a little inflated. DESeq2-zinb and MAST controlled the FPRs
with large variability, especially for MAST. Other methods were
a little conservative with PCERs smaller than the nominal level
0.05. For the Tung dataset, the estimated common dispersion
parameter value of BCV was φ̂ = 1/̂θ = 0.11. Poisson failed
to control the FPR. The PCERs of TrNB and edgeR were a
little inflated. Other methods conservatively controlled FPRs,
especially for NB, DESeq2-zinb, and NB-zinb. We treated “NA”
p-values of DE methods as 1, thus, there are peak bars at 1 for
some methods in the unadjusted p-value histograms shown in
Figures 1B,D. In summary, standard DE methods can control the
FPRs and scMMSTs except Poisson and TrNB can conservatively
control the FPRs. FPRs of scMMSTs increase as the dispersion
parameter θ decreases.

False discovery proportion-true positive rate curves
for adjusted p-values are shown in Figure 2. For the
Usoskin dataset, bulk RNA-seq DE methods are shown to
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FIGURE 1 | False positive rate control on simulated null Usoskin datasets and Tung datasets. (A) Boxplot of PCER for 30 simulated null Usoskin datasets generated
by splatter for each of 12 DE methods. scMMSTs are marked in blue. (B) Histogram of uncorrected p-values for one dataset in panel A. (C) Boxplot of PCER for 30
simulated null Tung datasets generated by splatter for each of 12 DE methods. scMMSTs are marked in blue. (D) Histogram of uncorrected p-values for one dataset
in panel C. PCER, per-comparison error rate; DE, differential expression; scMMST, single cell mixed model score test.
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FIGURE 2 | FDP-TPR curves of DE methods on simulated Usoskin datasets and Tung datasets. (A) Line plot of the FDP-TPR curves for simulated Usoskin datasets
generated by splatter for each of 12 DE methods. (B) Line plot of the FDP-TPR curves for simulated Tang datasets generated by splatter for each of 12 DE
methods. Circles represent values at a 0.05 nominal FDR threshold and are filled in if the FDP (i.e., empirical FDR) is less than 0.05. DE, differential expression; TPR,
true positive rate; FDP, false discovery proportion; FDR, false discovery rate.

perform well, possibly due to the high proportion of zeros
and low counts (Van den Berge et al., 2018). In general,
standard DE methods except MAST perform better than
scMMSTs when the batch effects is not associated with
group effects.

Simulations by GLMMs
Results of PCERs are shown in Supplementary Figures S2,
S3 and Supplementary Table S1. Methods performances of
the FPR control were similar to those in simulations by
splatter. Based on FDP-TPR curves for adjusted p-values shown
in Figure 3, scMMSTs performed better than standard DE
methods when batch effects were associated with weak group
effects. NB-zinb was the best among all methods considered
for comparisons. EdgeR-zinb and DESeq2-zinb were the best
two methods among the six standard DE methods considered.
TrPois and ZiPois perform very close to each other. Figure 4
demonstrates bar plots of AUCs for adjusted p-values. |β0|,
σ2

β , θ and µπ exhibited positive correlations with AUCs.
Our scMMSTs performed better when the group effect size
and its heterogeneity are larger and the counts dispersion
BCV and proportion of zeros are smaller. Similar results are
obtained to those of FDP-TPR curves. Therefore, our results
demonstrate that scMMSTs performs better than standard DE

methods when the group effect size is small with large group
effect heterogeneity.

Real Data Analysis
Table 1 and Supplementary Figure S4 show the numbers of
DE genes detected by the 12 methods considered in simulations
for 11 cell types in the Usoskin dataset. This dataset was also
analyzed in the zinbwave paper. MAST failed for some cell-
types, so no DE gene was detected. NB-zinb defined smallest
number of DE genes in general. The results of Venn diagrams
and Upset plots by R packages VennDiagram (version 1.6.20)
(Chen, 2018) and upsetR (version 1.4.0) (Gehlenborg, 2019) are
shown in Supplementary Figures S5–S15. Since NB-zinb is
conservative for FDR, the DE genes only detected by NB-zinb
highly likely have weak group effects with their heterogeneity
across batches. In general, scMMSTs, as supplement to standard
methods, are superior at selecting DE genes with weak group
effects and their heterogeneity in different batches for scRNA-
seq data.

Computational Time
To demonstrate the computation time scale of DE methods
considered, we benchmarked two different simulated null
datasets by splatter with parameters estimated by the Usoskin
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FIGURE 3 | FDP-TPR curves of DE methods on simulated datasets generated by GLMMs with µπ = 0. (A) Line plot of the FDP-TPR curves for simulated datasets
based on NB GLMMs for each of 12 DE methods with the dispersion parameter θ = 0.5. (B) Line plot of the FDP-TPR curves for simulated datasets based on
negative binomial (NB) GLMMs for each of 12 DE methods with θ = 1. (C) Line plot of the FDP-TPR curves for simulated datasets based on NB GLMMs for each of
12 DE methods with θ = 2. (D) Line plot of the FDP-TPR curves for simulated datasets based on Poisson GLMMs for each of 12 DE methods with β0 = σ2

β = 0.01.
Circles represent values at a 0.05 nominal FDR threshold and are filled in if the FDP (i.e., empirical FDR) is less than 0.05. DE, differential expression; GLMM,
generalized linear mixed model; NB, negative binomial; TPR, true positive rate; FDP, false discovery proportion; FDR, false discovery rate.

Frontiers in Genetics | www.frontiersin.org 9 February 2021 | Volume 12 | Article 616686

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-616686 February 5, 2021 Time: 13:31 # 10

He et al. scRNA-seq Mixed Model Score Tests

FIGURE 4 | AUCs of DE methods for simulated datasets generated by GLMMs with µπ = 0. Adjusted p-values are used as predictors. (A) Bar plot of AUCs for
simulated datasets generated by NB GLMMs for each of 12 DE methods with the dispersion parameter θ = 0.5. (B) Bar plot of AUCs for simulated datasets
generated by NB GLMMs for each of 12 DE methods with θ = 1. (C) Bar plot of AUCs for simulated datasets generated by NB GLMMs for each of 12 DE methods
with θ = 2. (D) Bar plot of AUCs for simulated datasets generated by Poisson GLMMs for each of 12 DE methods. AUC, area under curve; DE, differential
expression; GLMM, generalized linear mixed model; NB, negative binomial.
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TABLE 1 | Numbers of declared differentially expressed genes by 12 methods for 11 defined cell types vs. the rest in the Usoskin dataset (n = 622 cells).

Methods NF1 NF2 NF3 NF4 NF5 NP1 NP2 NP3 PEP1 PEP2 TH

edgeR 826 1206 348 646 1070 1877 880 362 1833 328 2424

DESeq2 906 963 218 402 782 1988 748 407 2649 102 2387

limma-voom 5427 3762 3777 721 2572 2505 4857 203 7892 173 4800

MAST 0 0 0 2 0 85 5 2 10 0 112

edgeR-zinb 509 778 244 550 985 1871 987 486 2475 185 3225

DESeq2-zinb 555 1003 319 453 1235 1985 786 392 2249 153 3166

NB 295 517 186 365 555 462 329 218 592 145 533

TrNB 910 703 596 1763 885 1127 2139 2254 3752 537 1986

NB-zinb 192 308 77 295 364 976 467 270 2004 100 878

Pois 745 1214 410 881 1195 1401 745 583 2104 339 1942

TrPois 242 298 82 345 321 602 756 444 3353 54 708

ZiPois 337 311 81 487 376 607 1019 446 3350 137 704

and Tung datasets. Other settings remained the same as those in
the simulations for PCERs. Results are shown in Figure 5. For
both datasets, the fastest method was limma-voom. DESeq2 was
slower than edgR, thus, DESeq2-zinb was also slower than edgeR-
zinb. Our scMMSTs performed in the same scale of DESeq2-
zinb and DESeq2-zinb. The computation times of simulated null
Tung datasets were shorter than those of simulated null Usoskin
datasets with the same number of cores. More cores used in
the parallel computation made our scMMSTs faster. With eight
cores, the computation times of Poisson related methods were
close to MAST, edgeR, and DESeq2. In summary, our scMMSTs
are computationally affordable compared to other DE methods
especially when parallel computing is allowed. All computations
were done on a cluster with 24 Intel Xeon Processor (Skylake,
IBRS) at 2.60 GHz (2593 MHz) and 128 GB RAM.

FIGURE 5 | Computational times for differential expression methods on the
simulated null Usoskin and Tung datasets, which were generated by splatter.
The number of cores were set to be 1 and 8 on a cluster with 24 Intel Xeon
Processor (Skylake, IBRS) at 2.60 GHz (2593 MHz) and 128 GB RAM.

DISCUSSION

We proposed scMMSTs to identify DE genes, considering batch
effect and zero inflation of scRNA-seq data. Both simulations
and real data indicated that these methods have advantages
in selecting DE genes with weak group effects and their
heterogeneity in different batches. In simulations, scMMSTs
conservatively controlled FPRs or type I error rates in each setting
under assumptions of NB and Poisson distributions, except TrNB
and Poisson assumption. However, TrNB controlled FPRs when
θ is large. Second, following the model assumption, scMMST was
the best one when |β0|was small and σ2

β was large, especially when
θ was large. In real data analysis, the Venn diagrams and Upset
plots of DE genes (Supplementary Figures S5–S15) directly
indicated the relationships among the DE methods. scMMATs
defined smaller numbers of DE genes and NB-zinb defined the
smallest. Since scMMATs are conservative, the DE genes only
defined by NB-zinb are likely to have the small group effect size
with its heterogeneity across batches.

Furthermore, scMMSTs exhibited three innovations. First,
scMMSTs derived the association test score statistics and their
theoretical null distributions in the framework of GLMMs under
the binomial, Poisson and NB assumptions. Second, the group
effect β was modeled as random effects associated with batches
in the framework of GLMMs. Third, scMMSTs verified their
effectiveness to detect DE genes with the weak group effect
and its heterogeneity in different batches. However, scMMSTs
have some limitations. scMMSTs performed worse than other
standard DE methods to detect DE genes without group effect
heterogeneity across batches. scMMSTs performed worse when
the dispersion parameter θ was small, especially for the TrNB
method, this may due to the non-robust estimation of θ.
scMMSTs, in fact, are derived to test H′0 under the assumption
β0 = 0, not to jointly test β0 = 0 and σ2

β = 0. This decreases
the power of testing H0 for scMMSTs. For association tests,
the Mixed effects Score Test (MiST), which jointly tests H0, is
more powerful. Therefore, scMMSTs may be extended using the
framework of GLMM-MiST (Sun et al., 2013) in future work
to overcome these drawbacks. E′w is used to approximate Ew
for the statistic Tw of scMMSTs. This approximation performs
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worse when there are more excess zeros. Better approximations
of Ew or methods to efficiently calculate Ew may improve the
performance of scMMSTs. The weighting strategy implemented
may be explained in a Bayesian framework and scMMSTs may
be extended accordingly. In addition, following the idea of PEA
(Shao et al., 2019), scMMSTs may be extended to efficiently
identify gene-pathway interactions without permutations of test
statistics. In conclusion, scMMSTs, supplements to standard
single cell DE methods, are advantageous at selecting genes with
the weak group effect and its heterogeneity across batches for
scRNA-seq data analysis.
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