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ABSTRACT Here, we present the 3.9-Mb draft genome sequence of Nitrobacter vul-
garis strain Ab1, which was isolated from a sewage system in Hamburg, Germany.
The analysis of its genome sequence will contribute to our knowledge of nitrite-
oxidizing bacteria and acyl-homoserine lactone quorum sensing in nitrifying bacteria.

Aerobic nitrification is generally a two-step process where ammonia is oxidized to
nitrite, which is subsequently oxidized to nitrate (1). The second step is carried out

by nitrite-oxidizing bacteria (NOB) (2, 3). NOB include both r-strategists, such as
Nitrobacter spp., and K-strategists, such as Nitrospira spp., which coexist in a variety of
environments (2–4). Nitrobacter spp. play a role in the response to large nitrogen
fluctuations in soils and other systems (5–7). In addition, Nitrobacter spp. were the first
NOB shown to produce and respond to acyl-homoserine lactone (AHL) quorum-sensing
(QS) chemical signals (8, 9). Nitrobacter vulgaris strain Ab1 is a well-studied nitrifier, yet
it has no available genome sequence (5, 10, 11). To address this need, we sequenced
the genome of Nitrobacter vulgaris strain Ab1. Our primary goal was to identify loci
corresponding to AHL autoinducer synthase and AHL-binding LuxR transcription fac-
tors.

Genomic DNA was isolated using the Wizard genomic DNA purification kit (Pro-
mega). A Nextera XT DNA sample preparation kit was used to construct the sequencing
library. The instructions were followed, up to those for normalization of libraries. A
Qubit double-stranded DNA high-sensitivity assay kit (Life Technologies, Inc.) and
Agilent TapeStation 4200 high-sensitivity D5000 DNA ScreenTape (Agilent Technolo-
gies) were used to determine the concentration and average sizes of the library
fragments. The library was then quantified by quantitative PCR on an ABI 7500 Fast
real-time system (Life Technologies, Inc.) using the Kapa library quantification kit (Kapa
Biosystems). Sequencing was completed on a MiSeq (Illumina) 250-bp paired-end nano
flow cell.

There was a total of 2,436,208 reads, for an average coverage of 156�. Nextera XT
adapter sequences were trimmed from the raw reads using the BBDuk software, as
recommended in the manual (http://jgi.doe.gov/data-and-tools/bbtools/). Reads were
error-corrected and assembled into contigs using SPAdes version 3.10.0, with the
“--careful” flag and the k-mer setting of “-k 21,33,55,77,99” (12), and screened for
contaminating sequences with the blobtools software (version 0.9.19.5) (13, 14). De
novo assembly of the MiSeq reads resulted in 95 contigs that totaled 3,900,573
nucleotides in length, with a mean contig size of 41,059 nucleotides; the N50 contig
length was 130,999 nucleotides. Genome annotation was completed using the NCBI
Prokaryotic Genome Annotation Pipeline, resulting in 3,501 coding genes and 56
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RNA-coding genes (15). The N. vulgaris genome sequence is 59.8% G�C and has
pairwise average nucleotide identities (16) of 83.0% and 81.2% to Nitrobacter wino-
gradskyi and Nitrobacter hamburgensis, respectively (17, 18). These low values suggest
that N. vulgaris is too distant from comparators to be considered a member of their
species.

The N. vulgaris genome has all the genes necessary for chemolithotrophic growth on
nitrite. Interestingly, genes encoding a putative AHL autoinducer synthase and AHL-
binding LuxR homolog were present, as well as putative nitric-oxide-forming nirK (aniA)
and nnrS genes, possibly suggesting similar QS regulation of NO fluxes to N. winograd-
skyi (9).

Accession number(s). The genome of N. vulgaris strain AB1 was deposited at

DDBJ/EMBL/GenBank under the accession number MWPQ00000000. The version de-
scribed in this paper is the first version.
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