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Background/Purpose: Some multidrug-resistant gram-negative bacteria as a global
threat have been recently prioritized for research and development of new treatments. We
studied the efficacy of methylene blue–mediated antimicrobial photodynamic therapy
(MB-aPDT) for the reduction of extensively drug-resistant Acinetobacter baumannii (XDR-
AB) and Pseudomonas aeruginosa (XDR-PS) and multidrug-resistant Klebsiella
pneumoniae (MDR-KP) isolated in a university hospital setting in Thailand.

Method: Two isolates of each selected bacterium were collected, XDR-AB1 and AB2,
XDR- PS1 and PS2, and MDR-KP1 and KP2. Three triplicate experiments using various
MB concentrations alone, various red light fluences alone, as well as the selected non-
toxic doses of MB and fluences of red light combined as MB-aPDT were applied on each
selected isolate. The colonies were counted [colony forming units (CFU)/ml]. Estimation of
the lethal treatment dose defined as reduction of > 2 log10 in CFU/ml compared with
untreated bacteria.

Result: There were generally negligible changes in the viable counts of the bacterial
suspensions treated with all the MB concentrations (p > 0.05). In the second experiment
with the only red light treatments, at fluences higher than 2 J/cm, reduction trend in viable
counts across all the isolates was observed. Only for MDR-KP1, however, the lethal dose
was achieved with the highest fluence of red light (80 J/cm). With the concentration of MB,
50 and 150 mg/L in the third experiment (MB-aPDT), the greater bacterial reduction was
observed in all clinical isolates leading to their lethal viable cell reduction when escalating
the light fluence to 80 J/cm.
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Conclusions: MB-aPDT evidently killed the selected XDR and MDR-gram negative
bacteria. In highly drug-resistant crisis era, MB-aPDT could be a promising option,
particularly for local infections and infection complicating chronic wounds.
Keywords: photodynamic therapy, methylene blue (MB), antimicrobials, multidrug resistance (MDR),
nosocomial infection
INTRODUCTION

An initial broad-spectrum empirical antimicrobial treatment is a
common practice at least until causative pathogens and their
antibiotic susceptibility patterns are determined. As
microorganisms can rapidly develop resistance against the
widespread use of various antimicrobial agents, this has
become a global concern in the past several years, reaching
crisis in many settings (Prescott, 2014). Certain infections are
rapidly becoming untreatable (Rice, 2008; Bush and Jacoby,
2010; Wang et al., 2020). The term “ESKAPE” (Rice, 2008;
Bush and Jacoby, 2010) originally made up of the group of six
highly potentially multidrug-resistant (MDR) and virulent
bacteria has been known as the leading causes of life-
threatening nosocomial infections across the globe. World
Health Organization (WHO) recently described a priority list
for research and development for new treatments regarding the
four most importantly weighted criteria including treatability,
mortality, heathcare burden, and 10-year trend of resistance
(Tacconelli et al., 2018). Of the ESKAPE pathogens,
carbapenem-resistant A.baumannii and Pseudomonas
aeruginosa, and Klebsiella spp. have been stratified into the
critical priority tier. These three invasive pathogens can cause a
wide variety of infections ranging from wound, burn, soft tissue,
liver, urinary tract infections, pneumonia to meningitis
(Dijkshoorn et al., 2007; Driscoll et al., 2007; Kerr and
Snelling, 2009; Ramirez et al., 2020) particularly in neonates,
the elderly, and the immunocompronised in a hospital setting.

To fight against the drug resistance crisis, apart from a thrive
to develop highly efficient multi-target antibiotics and the
discovery of new microbial natural products (NPs) (Hutchings
et al., 2019), photoantimicrobials seem to be a promising instant
way out of this issue particularly for local skin and soft tissue
infections. Methylene blue–mediated photodynamic therapy
(MB-PDT) has been known as a powerful monotherapy or
adjunct tool to broad-spectrum antimicrobials (Alberdi and
Gomez, 2020; Bowornsathitchai et al., 2020). A variety of
methylene-blue formulations allow specific delivery of the
photosensitizer (PS) to an infected area while sparing adjacent
healthy tissue. In addition, the use of economical long-life light
sources offers financial affordability to both healthcare providers
and patients. Compatibility with other necessary systemic
therapies makes MB-PDT nearly universally patient-friendly
even for medically complex patients with polypharmacy.
Acceleration of wound healing is the other exceptional
advantage of MB-PDT over other antimicrobial therapies
(Bowornsathitchai et al., 2020) particularly for treating
infection complicating chronic wounds.
gy | www.frontiersin.org 2
Despite various factors stated to cause delayed wound healing,
infections (Fu, 2005) appear to be a principal contributing factor
of chronic wound development in the Middle East and Asia
particularly in patients with diabetes (Basu et al., 2009; Jiang
et al., 2011), leading to disabling diabetic foot ulcers (Sugandhi
and Prasanth, 2014; Tekin et al., 2014; Li et al., 2018; Jouhar et al.,
2020; Guan et al., 2021). The greatly diverse and exceptionally
dynamic genetic composition of the successful opportunistic
pathogens primarily contributes virulence and antibiotic
resistance. This genomic diversity has been found not only the
strains in different clinically relevant infections but also among
ones isolated from different geographic locations (Subedi et al.,
2018; Galac et al., 2020; Lebreton et al., 2021; Kiyaga et al., 2022).

Despite many encouraging outcomes of MB-aPDT for MDR-
gram positive and negative bacteria reported from many
countries, there has been yet no data for the efficacy of MB-
aPDT against carbapenem-resistant A. baumannii and P.
aeruginosa, and MDR- K. pneumoniae in Thailand. Hence, our
objectives were to study the efficacy of MB-aPDT for the
reduction of carbapenem-resistant or extensively drug-resistant
A. baumannii (XDR-AB), carbapenem-resistant or extensively
drug-resistant P. aeruginosa (XDR-PS), and MDR K.
pneumoniae (MDR-KP) collected and isolated in a university
hospital setting in Thailand.
MATERIALS AND METHODS

Bacterial Strains and Culture Conditions
The study protocol was approved by the Institutional Review
Board of Faculty of Medicine, Chulalongkorn University, and
conducted under good practice and ethical principles of
Declaration of Helsinki 2008. All identified isolates were
obtained by Microbiology laboratory, Department of
Microbiology, Chulalongkorn University, during June 2019 to
August 2020. Two isolates of A. baumannii (AB1 and AB2) were
collected from sputum and chronic wound infection,
respectively, P. aeruginosa (PS1 and PS2) from bile and urine,
respectively, and K. pneumoniae (KP1 and KP2) from sputum.
Detailed patients’ profiles and antimicrobial susceptibility
pattern of each isolate done according to the Clinical and
Laboratory Standards Institute (CLSI) guideline (Weinstein,
2021) were shown in Supplementary Tables 1 and 2,
respectively. AB and PS were XDR, whereas KP was MDR
strains. Each strain was cultivated overnight on trypsic soy
agar (TSA) plates at 37°C. A suspension of each strain was
then prepared in sterile phosphate-buffered saline (PBS) (pH =
July 2022 | Volume 12 | Article 929242
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7.4) to McFarland turbidity standard of 2, a concentration
approximately of 6 × 10 (9) to 9 × 10 (9) colony forming units
(CFU)/ml.

Photosensitizer Preparation
MB (Merck KGaA, Darmstadt, Germany) solution was prepared
in normal saline solution (NaCl), filtered-sterilized, and kept in
the dark. Any procedures involving MB were performed in a
dark room under weak yellow light exposure (l = 596 nm) to
minimize PS activation.

Effect of MB Concentration on
Bacterial Population
The prepared MB was diluted with 0.9% NaCl to give final
concentrations of 10, 25, 50, 100, and 150 mg/L. For each
concentration, a MB aliquot (500 ml) was added to an equal
amount of each bacterial strain suspension and subsequently
incubated in the dark for 10 min (MB/bacteria). A dilution of
bacterial aliquot with 0.9% NaCl in 1:1 served as negative control.
The MB/bacteria mixture suspensions were washed in PBS to
remove unbound PS and centrifuged at 13.00×g for 5 min twice
until the pellets of bacterial suspension were formed. Cell pellets
of each bacterial strain were resuspended in 1 ml of PBS. Then,
aliquots (100 ml) in PBS were subsequently transferred into 96-
well microtiter plates. Viable bacterial count in CFU/ml was
determined after incubation at 37°C overnight.

Effect of Red Light on Bacterial Population
An aliquot (500 ml) of each aforementioned bacterial strain
suspension prepared in sterile PBS without the addition of MB
or subsequent incubation in the dark was transferred into a
transparent 96-well plate. The microtiter plates were
subsequently placed at a constant distance of 4 cm under the
illumination head of incoherent red light (peak emission
spectrum at 633 nm, 65 mW/cm (2)) from light emitting
diodes (HEALITE®, Lutronic Corp., Goyang, S. Korea).
Irradiations were carried out with the light fluences of 1, 2, 5,
10, 20, 40, and 80 J/cm (2), which took 0.20, 0.40, 1.40, 3.20, 6.40,
13.20, and 26.40 min, respectively. Each plate was kept covered
and exposed to only one fluence of the red light. Survival was
determined after the irradiation.

Effect of MB-aPDT on Bacterial Population
To develop the appropriate MB-aPDT regimen using the
minimum effective concentration–fluence dose, we selected two
non-lethal MB concentrations, 50 and 150 mg/L to pair with the
light fluences of 1, 2, 40, and 80 J/cm (2).

Estimation of Post-Treatment Viability and
Determination of the Sublethal and Lethal
Doses of Treatments
Treated bacterial isolate suspension was transferred from the
wells, serially diluted, and streaked on TSA agar plates. The
colonies were counted (CFU/ml) after overnight incubation at
37°C. The experiments were performed in triplicates. Sublethal
dose was defined as the dose at which the capability of direct
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
damage made by one treatment is not sufficient to destroy most
of the bacterial population, whereas the lethal dose was defined
as where the extent of direct damage is sufficient to destroy most
of the viable bacterial population. For the purpose of the study,
sublethal effect was defined as reduction of 0.5–2 log10 in CFU/
ml and lethal treatment dose defined as reduction of > 2 log10 in
CFU/ml compared with untreated (Cassidy et al., 2010).

Statistical Analyses
Comparisons between log10 mean changes within the treatment
groups and the control were analyzed by using the non-
dependent t-test. Data values were expressed as log10 means ±
standard deviation and mean difference with 95% confidence
interval (CI). All statistical analyses were conducted with Stata
version 13.1 (StataCorp, College station, Texas, USA). The
difference was considered statistically significant when P < 0.05.
RESULTS

The Effect of Various MB Concentrations
Apart from the progressively increased survival of PS1 isolates
treated with MB of 25, 50, 100, and 150 mg/L (p < 0.05)
compared with the control group, there were negligible
FIGURE 1 | The effect of various MB concentrations on each bacterial strain.
MB concentrations could not exhibit the sublethal and lethal effect to all
bacterial strains: (A) XDR-AB1 and AB2, (B) XDR-PS1 and PS2, and (C)
MDR-KP1 and KP2. *Statistically significant difference (p-value <0.05).
July 2022 | Volume 12 | Article 929242
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changes in the viable counts of the bacterial suspensions in the
remainder (p > 0.05). None of them demonstrated bactericidal
efficacy (Figure 1).

The Effect of Red Light
There was no reduction of viable bacteria in any isolates at the
fluences of 1 and 2 J/cm (2) of light. At fluences higher than 2 J/
cm (2), reduction trend in viable counts across all the isolates was
observed (Figure 2). In both strains of AB (AB1 and AB2) and
PS (PS1 and PS2) and KP2, sublethal light fluences were
demonstrated within the 5 to 80 J/cm (2) range, which reduced
the bacterial viability by up to 1.68, 1.63, 1.69, 1.77, and 1.94 log10
units, respectively (p < 0.01). Only for KP1, the lethal dose was
achieved with the highest fluence of red light (80 J/cm (2)), which
led to viable count reduction by 2.12 (1.96 to 2.28) log10 units (p
< 0.01). This demonstrated that red light alone had bactericidal
effect on certain strains in a fluence-dependent manner.

MB-aPDT Is an Effective Treatment for
Selected XDR and MDR-Gram
Negative Bacteria
We demonstrated MB-dose/light fluence–dependent antibacterial
effects across all the isolates (Figure 3). All clinical isolates, for both
50 and 150 mg/L of MB, lethal light fluence was defined because
MB of 50 mg/L and 40 J/cm (2), leading to viable cell reduction over
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
2 log10, except for the PS1 and KP2 as showing only sublethal
reduction by 2 (1.91 to 2.09, p < 0.001) and 1.82 (1.73 to 1.91, p <
0.001) log10, respectively (Table 1). However, when escalating the
light fluence to 80 J/cm (2) with the same concentration, 50 mg/L,
the greater bacterial reduction was observed in all clinical isolates,
including PS1 and KP2, leading to their lethal viable cell reduction
by 3.17 (3.09 to 3.26) and 2.82 (2.73 to 2.91), respectively, and 2.82
(2.72 to 2.91) log10 units for AB1 (p < 0.001), 2.83 (2.74 to 2.91) for
AB2 (p < 0.001), 3.13 (3.04 to 3.22) for PS2 (p < 0.001), and 2.94
(2.88 to 3.01) log10 units for KP1 (p < 0.001). There was statistically
significant difference of the viable cell reduction between red light
alone and MB-aPDT groups with MB of both 50 and 150 mg/L in
all clinical isolates (p < 0.001) (Table 2).
DISCUSSION

Infections in this drug resistance era further complicate wounds
causing an enormous hurdle to overcome (Mulani et al., 2019).
We demonstrated the promising outcomes of MB-aPDT against
clinically important isolates of XDR-AB, XDR-PS, and MDR-KP
from Thailand of which pathogens WHO prioritized research
and development of new treatments (Medina and Pieper, 2016;
Mulani et al., 2019). Looking at the reduction pattern of the
FIGURE 2 | The effect of various red light fluence on each bacterial strain.
This demonstrated the effect of red light on bacterial population: (A) XDR-
AB1 and AB2, (B) XDR-PS1 and PS2, and (C) MDR-KP1 and KP2 in the
dose-dependent manner. *Statistically significant difference (p-value <0.05).
FIGURE 3 | Results of MB-aPDT on (A) XDR-AB1 and AB2, (B) XDR-PS1
and PS2, and (C) MDR-KP1 and KP2, with the light doses of 1, 2, 40, and
80 J/cm2 (irradiance of 65 mW/cm2, irradiation time from 0.20 to 26.40 min;
lmax at 633 nm) and two MB concentrations were tested (50 and 150 mg/L).
The values demonstrated were the means of triplicate measurements.
*Statistically significant difference (p-value <0.05)
July 2022 | Volume 12 | Article 929242

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Songsantiphap et al. MB-PDT for XDR Bacteria TH
TABLE 1 | Mean log10 difference of MB-aPDT group for XDR-AB, XDR-PS, and MDR-KP compared with baseline.

MB conc.(mg/l)
Fluence(J/cm2)

0 (control) 50 150

XDR-AB1 XDR-AB2 XDR-AB1 XDR-AB2 XDR-AB1 XDR-AB2

Mean
difference
(95% CI)

P-
value

Mean
difference
(95% CI)

P-
value

Mean
difference
(95% CI)

P-
value

Mean
difference
(95% CI)

P-
value

Mean
difference
(95% CI)

P-
value

Mean
difference
(95% CI)

P-
value

0
(control)

0.06
(−0.03 to
0.16)

0.20 0.03
(−0.06 to
0.11)

0.54 0.01
(−0.08 to 0.1)

0.85 0.03
(−0.05 to
0.12)

0.47 −0.01
(−0.1 to 0.08)

0.83 −0.02
(−0.1 to 0.07)

0.68

1 0.14
(0.05 to 0.23)

0.01 0.02
(−0.20 to
−0.24)

0.82 −0.11
(−0.2 to
−0.03)

0.01 −0.11
(−0.2 to
−0.03)

0.01 −0.18
(−0.26 to
−0.09)

<0.001 −0.19
(−0.27 to
−0.1)

<0.001

2 0.08
(−0.04 to
−0.20)

0.14 0
(−0.15 to
0.14)

0.95 −0.19
(−0.28 to
−0.09)

<0.001 −0.18
(−0.26 to
−0.1)

<0.001 −0.23
(−0.32 to
−0.13)

<0.001 −0.26
(−0.34 to
−0.18)

<0.001

40 −0.71
(−0.84 to
−0.58)

<0.01 −0.66
(−0.81 to
−0.51)

<0.01 −2.10
(−2.19 to −2)

<0.001 −2.15
(−2.23 to
−2.07)

<0.001 −2.12
(−2.21 to
−2.02)

<0.001 −2.20
(−2.28 to
−2.12)

<0.001

80 −1.68
(−1.79 to
−1.57)

<0.01 −1.63
(−1.78 to
−1.47)

<0.01 −2.82
(−2.91 to
−2.72)

<0.001 −2.83
(−2.91 to
−2.74)

<0.001 −3.03
(−3.13 to
−2.94)

<0.001 −3.70
(−3.79 to
−3.62)

<0.001

MB conc.
(mg/l)
Fluence
(J/cm2)

0 (control) 50 150

XDR-PS1 XDR-PS2 XDR-PS1 XDR-PS2 XDR-PS1 XDR-PS2

Mean
difference
(95% CI)

P-
value

Mean
difference
(95% CI)

P-
value

Mean
difference
(95% CI)

P-
value

Mean
difference
(95% CI)

P-
value

Mean
difference
(95% CI)

P-
value

Mean
difference
(95% CI)

P-
value

0
(control)

0.05
(−0.04 to
0.14)

0.26 0.08
(−0.01 to
0.17)

0.09 0.06
(−0.03 to
0.15)

0.17 0.06
(−0.03 to
0.15)

0.16 −0.02
(−0.11 to
0.07)

0.59 −0.01
(−0.09 to
0.08)

0.90

1 0.09
(−0.01 to
0.19)

0.07 0.20
(0.02 to 0.38)

0.04 −0.09
(−0.18 to 0)

0.05 −0.09
(−0.17 to 0)

0.05 −0.17
(−0.26 to
−0.09)

<0.001 −0.12
(−0.2 to
−0.03)

0.01

2 0.09
(−0.01 to
0.20)

0.07 0.19
(0.01 to 0.38)

0.04 −0.16
(−0.25 to
−0.08)

0.001 −0.15
(−0.24 to
−0.06)

0.002 −0.23
(−0.32 to
−0.14)

<0.001 −0.23
(−0.31 to
−0.14)

<0.001

40 −0.77
(−0.92 to
−0.62)

<0.01 −0.74
(−0.96 to
−0.51)

<0.01 −2.00
(−2.09 to
−1.91)

<0.001 −2.07
(−2.16 to
−1.99)

<0.001 −2.14
(−2.23 to
−2.06)

<0.001 −2.24
(−2.33 to
−2.15)

<0.001

80 −1.69
(−1.79 to
−1.59)

<0.01 −1.77
(−1.97 to
−1.57)

<0.01 −3.17
(−3.26 to
−3.09)

<0.001 −3.13
(−3.22 to
−3.04)

<0.001 −3.63
(−3.72 to
−3.54)

<0.001 −3.28
(−3.37 to
−3.19)

<0.001

MB conc.
(mg/l)
Fluence
(J/cm2)

0 (control) 50 150

MDR-KP1 MDR-KP2 MDR-KP1 MDR-KP2 MDR-KP1 MDR-KP2

Mean
difference
(95% CI)

P-
value

Mean
difference
(95% CI)

P-
value

Mean
difference
(95% CI)

P-
value

Mean
difference
(95% CI)

P-
value

Mean
difference
(95% CI)

P-
value

Mean
difference
(95% CI)

P-
value

0
(control)

0.08
(0.01 to 0.15)

0.02 0.04
(−0.05 to
0.13)

0.40 0.11
(0.04 to 0.17)

0.003 0.10
(0 to 0.2)

0.95 0.03
(−0.04 to
0.09)

0.39 0.02
(−0.08 to
0.12)

0.70

1 0.30
(0.15 to 0.45)

<0.01 0.20
(0.06 to 0.35)

0.02 −0.04
(−0.11 to
0.02)

0.18 −0.02
(−0.12 to
0.08)

0.72 −0.13
(−0.19 to
−0.06)

<0.001 −0.08
(−0.18 to
0.02)

0.10

2 0.29
(0.15 to 0.44)

<0.01 0.20
(0.06 to 0.33)

0.02 −0.09
(−0.15 to
−0.02)

0.02 −0.12
(−0.21 to
−0.03)

0.01 −0.18
(−0.25 to
−0.12)

<0.001 −0.19
(−0.28 to
−0.1)

<0.001

40 −1.34
(−1.50 to
−1.18)

<0.01 −1.11
(−1.25 to
−0.97)

<0.01 −2.01
(−2.08 to
−1.94)

<0.001 −1.82
(−1.91 to
−1.73)

<0.001 −2.03
(−2.1 to
−1.96)

<0.001 −1.82
(−1.91 to
−1.73)

<0.001

(Continued)
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bacterial viability after MB-aPDT (Figure 3), although MDR-KP
appeared to be less resistant regarding the antimicrobial
susceptibility pattern profiles, XDR-AB and XDR-PS generally
seemed more susceptible to MB-aPDT than MDR-KP. This
differential sensitivity is not, by any means, unexpected.
Importantly, there were independent patterns of the aPDT
susceptibility of the clinical isolates regardless of the patterns
of antimicrobial resistance (Supplementary Table 2),
emphasizing its known exclusive non-selective mechanism of
action (Liu et al., 2015). The major advantage of PDT lies in the
fact that, with appropriate fluences of light and oxygen, PSs
undergo an intersystem crossing to generate triplet state oxygen
molecules ( (3)O2). Reactive oxygen species (ROS), such as singlet
oxygen, superoxides, and hydroxyl radicals, have a broad-
spectrum effect on numerous microbial targets (Vatansever
et al., 2013). This unique mechanism of action constitutes by
default bactericidal effects independent of antimicrobial
resistance patterns (Tegos and Hamblin, 2006; Tegos et al.,
2008; Huang et al., 2012; Huang et al., 2012; Liu et al., 2015).

One beauty of PDT is one can vary PSs’ concentrations as well
as light fluences, and even frequency of the treatment to tackle
different pathogens. Many PSs possess unique properties. With
different PSs, the effective antimicrobial properties were reported
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
to be considerably variable in the same settings of irradiation
against the same bacterial strains (Merigo et al., 2019). We
particularly chose MB due to its several advantages over other
PSs. The cationic charge of non-toxic MB, a derivative of
phenothiazinium dyes, provides high binding affinity to
multiple microbial targets, e.g., cell membrane, mitochondria,
and nucleic acids (Zeina et al., 2001; Kashef et al., 2011;
Vatansever et al., 2013; Liu et al., 2015). Moreover, MB is an
“instant” PS, requiring no incubation period, allowing
significantly shorter treatment time along with its hydrophilic
polarity property rendering it a painless treatment (Castano
et al., 2004; Bowornsathitchai et al., 2020). MB is also a
pragmatic choice for use in most healthcare settings in which
neither commercial PSs nor in-house preparation are available.
In brief, MB solution for intravenous administration, which is
widely available across the world, can be a viable and economical
option (Kashef et al., 2011; Kawczyk-Krupka et al., 2018).

The selection of light fluences can be rather challenging as
different effects have been observed, also in our study. This can
be explained by biphasic biological response curve of visible
light–based treatments, particularly in the red to near-infrared
region whereby too low or too high fluences can lead to
unwanted effects (Huang et al., 2009; Huang et al., 2011).
TABLE 2 | Comparison of Mean log10 difference between the MB-aPDT and red light alone group for XDR-AB, XDR-PS, and MDR-KP.

Strains
Conditions

XDR-AB1 XDR-AB2 XDR-PS1 XDR-PS2 MDR-KP1 MDR-KP2

Mean
difference
(95% CI)

P-
value

Mean
difference
(95% CI)

P-
value

Mean
difference
(95% CI)

P-
value

Mean
difference
(95% CI)

P-
value

Mean
difference
(95% CI)

P-
value

Mean
difference
(95% CI)

P-
value

F40 Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref
F40/MB50 −1.21

(−1.35 to
−1.07)

<0.001 −1.36
(−1.49 to
−1.23)

<0.001 −1.17
(−1.28 to
−1.05)

<0.001 −1.18
(−1.30 to
−1.06)

<0.001 −0.48
(−0.56 to
−0.40)

<0.001 −0.55
(−0.65 to
−0.46)

<0.001

F40/MB150 −1.23
(−1.37 to
−1.09)

<0.001 −1.41
(−1.53 to
−1.28)

<0.001 −1.31
(−1.43 to
−1.19)

<0.001 −1.35
(−1.47 to
−1.23)

<0.001 −0.5
(−0.58 to
−0.42)

<0.001 −0.55
(−0.65 to
−0.45)

<0.001

F80 Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref
F80/MB50 −0.96

(−1.08 to
−0.84)

<0.001 −1.06
(−1.14 to
−0.99)

<0.001 −1.43
(−1.56 to
−1.31)

<0.001 −1.21
(−1.37 to
−1.04)

<0.001 −0.63
(−0.70 to
−0.56)

<0.001 −0.72
(−0.86 to
−0.59)

<0.001

F80/MB150 −1.17
(−1.29 to
−1.05)

<0.001 −1.94
(−2.02 to
−1.87)

<0.001 −1.89
(−2.02 to
−1.76)

<0.001 −1.36
(−1.53 to
−1.19)

<0.001 −0.83
(−0.91 to
−0.76)

<0.001 −0.81
(−0.95 to
−0.68)

<0.001
July 2022 | Volu
me 12 | Article
Ref, reference/baseline; F, red light fluence (J/cm2); F40, red light fluence at 40 J/cm2; F80, red light fluence at 80 J/cm2; MB, methylene blue; MB50, methylene blue of 50 mg/L; MB150,
methylene blue of 150 mg/L.
TABLE 1 | Continued

MB conc.(mg/l)
Fluence(J/cm2)

0 (control) 50 150

XDR-AB1 XDR-AB2 XDR-AB1 XDR-AB2 XDR-AB1 XDR-AB2

Mean
difference
(95% CI)

P-
value

Mean
difference
(95% CI)

P-
value

Mean
difference
(95% CI)

P-
value

Mean
difference
(95% CI)

P-
value

Mean
difference
(95% CI)

P-
value

Mean
difference
(95% CI)

P-
value

80 −2.12
(−2.28 to
−1.96)

<0.01 −1.94
(−2.14 to
−1.75)

<0.01 −2.94
(−3.01 to
−2.88)

<0.001 −2.82
(−2.91 to
−2.73)

<0.001 −3.15
(−3.21 to
−3.08)

<0.001 −2.91
(−3 to −2.82)

<0.001
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When appropriate fluences are used, photobiomodulation
(PBM) leading to photoactivation of endogenous molecules,
particularly cytochrome C oxidase, subsequently activates the
intracellular ROS generation, of which certain high levels may
potentially cause cell damage (Huang et al., 2011; Kashef et al.,
2011; Wozniak et al., 2019). This might explain why higher
fluences of red light alone, 5 to 80 J/cm (2) in this study, generally
reduced the bacterial population to the sublethal and lethal point.
Although the lethal light dose, 80J/cm2 was achieved for KP1
without MB combined, to find the minimum effective
concentration–fluence dose of MB-aPDT, we then performed
the similar combinations of concentration–fluence doses to what
were used for the other selected pathogens resulting in the
minimum effective dose of MB-aPDT for KP1 of MB of 50
mg/L and light of 40 J/cm2.

Alongside with partial antibacterial effect, PBM can also
activate multifaceted growth factors, especially extracellular
transforming growth factor b, which has the crucial role for
assisting wound repair. Moreover, PBM can also promote
regeneration of skin appendages, epithelial migration and
proliferation, endothelial migration for angiogenesis, fibroblast
matrix synthesis, and wound contraction.Mosca et al., 2019
Taken together, PDT seems very promising both as
monothrapy (Huang et al., 2012; Huang et al., 2012; Sperandio
et al., 2013; Longo et al., 2014; Liu et al., 2015) and as an adjuvant
treatment in chronic wound condition, with wide range of anti-
microbial activities, especially upon otherwise drug-resistant
lethal strains, and as wound healing enhancer (Gollnick et al.,
2003; Weber et al., 2012; Reginato et al., 2014; Anzengruber et al.,
2015; Corsi et al., 2016; Grandi et al., 2018; Oyama et al., 2020;
Sun et al., 2020).

The optimum effect of MB-aPDT was also related to other
factors, for example, the internalization of PS into the bacterial
cell and the bacterial protective mechanism (Huang et al., 2012;
Longo et al., 2014). MDR and XDR gram-negative bacteria have
a unique mechanism to encounter the harmful substances by
using the transmembrane proteins called multidrug resistance
pumps such as AcrAB-TolC, one of the tripartite pumps
expressed in Escherichia coli, MexAB-OprM in P. aeruginosa
(Lewis, 1999), and kpnGH in K. pneumoniae (Srinivasan et al.,
2014), that manage the efflux of amphipathic cations outside the
cells, including MB. Efflux pump inhibitors (EPIs) (Tegos et al.,
2008) as seemingly promising strategies have been intensely
researched because the first multidrug efflux pump was
identified in 1996 (Paulsen et al., 1996) yet approved for
clinical use (Ughachukwu and Unekwe, 2012). Some studies
suggested using electron acceptor, such as sodium azide and
potassium iodide (Vecchio et al., 2015), to potentiate the aPDT
outcome whenMB-aPDT yields suboptimal results (Huang et al.,
2012). Furthermore, certain organisms have distinctive
mechanisms to protect them from deleterious exogenous
causes. For example, AB, PS, and KP have an adroit capacity
to rapidly adapt themselves from planktonic to biofilm phase and
quorum sensing against the injury (Longo et al., 2014). These
might somehow explain the different number of reductions in
our study when using the same MB-aPDT setting on each
bacterial strain.
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In addition, sublethal and lethal parameters of aPDT also
affect the frequency and duration of aPDT protocol. Recent
studies showed that repetitive uses of sublethal doses of aPDT
potentially lead to tolerance adaptation (Leanse et al., 2018;
Pieranski et al., 2020) of bacteria through multiple metabolic
pathways, e.g., cell wall biogenesis, DNA recombination/repair
(Kashef and Hamblin, 2017), and a stimulation of biofilm
formation (Schembri et al., 2003; Murphy et al., 2005; Wen
et al., 2005; Villa et al., 2012; Hendiani et al., 2019). This situation
is dissimilar to the mechanism of bacterial resistance in which
the bacteria are still eliminated but require more frequency and
higher light fluences. Thus, antimicrobial photoinactivation
essentially needs precise application of the lethal doses of MB
and red light combined to minimize this phenomenon. Our
suggested lethal concentration–fluence dose of 50 mg/L with 80
J/cm (2) from this study might be useful as a starting reference for
clinical application and further development of an optimal
aPDT protocol.

Other aPDT protocols against ESKAPE pathogens employing
different PSs and lights have been published both as in vitro and
in vivo studies (Dai et al., 2009; Huang et al., 2014; Maisch et al.,
2014; Zhang et al., 2014; Boluki et al., 2017; Khan et al., 2017;
Yuan et al., 2017; Pereira et al., 2018; Yang et al., 2018; Hendiani
et al., 2019; Marcolan De Mello et al., 2019a; Wozniak et al.,
2019). Most PSs used were of phenothiazinium-based dyes,
including MB, Rose Bengal (RB), and toluene blue O (TBO).
Similar to our study yet using one concentration of MB coupled
with variable fluences and step ranges of red light against a wide
range of global priority drug-resistant bacteria including
ESKAPE pathogens and two yeast species, Candida albicans
and Cryptococcus neoformans, Sabino CP et al. (Huang et al.,
2012; St Denis et al., 2013; Sarker et al., 2021) successfully
demonstrated the efficacy of MB-aPDT against across all the
selected strains in species-specific dose–response kinetics
regardless of drug-resistance profiles. The improvement of the
efficacy of MB-aPDT was observed with the addition of some
chemical compounds (Vecchio et al., 2015) including an inert
inorganic salt potassium iodide (KI) (Vecchio et al., 2015), which
seems to be safe for future clinical application. With different
combined additives, Sarker et al. (Ishiwata et al., 2021) have
recently reported the efficacy of MB-aPDT with three once-daily
treatment sessions in controlling burn wounds infected with PS
from the wound surface to the region deeper than 1,200 mm in
the hypodermis in rats. Ishiwata et al. (2021) have demonstrated
the importance of repetitive MB-aPDT application, which was
given every 24 h for 7 consecutive days for controlling bacterial
migration and extending the survival of rats with an extensive
deep burn wound infected with PS. Wozniak et al. (2019)
reported aPDT using RB, coupled with green light (lmax, 515
nm) on XDR-AB. In another study De Mello et al. performed
MB-aPDT against MDR-AB (Marcolan De Mello et al., 2019b).
A study by Boluki et al. (2017) demonstrated successful
bactericidal activity of sublethal aPDT using TBO, with red
light–emitting diode (lmax, 630 nm) in a combination with
colistin against PDR-AB (Park et al., 2011). Moreover, in
addition to the efficacy of aPDT against bacteria, PDT is also a
powerful weapon against superficial mycoses, either
July 2022 | Volume 12 | Article 929242
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dermatophytes or non-dermatophytes. Recent systematic review
showed that MB-PDT is as efficacious if not superior to ALA and
MAL when treating onychomycosis (Shen et al., 2020).

The strengths of our study are that, first, we demonstrated
the effects of MB in various concentrations, red light, and the
combination of the two, and MB-aPDT against locally isolated
XDR-AB, XDR-PS, and MDR-KP. All the strains used were all
clinical isolates that should well represent pathogens of
clinical concerns particularly in our local region. However,
there were some limitations worth mentioning here. The
bacterial strains utilized in the study were isolated from
various settings rather than entirely from chronic wounds.
Second, the process of PS incorporation into the bacterial cells
in the laboratory experiments might be different from actual
clinical scenarios. Third, we used only MB and red light in our
study. Other PSs and light sources should be investigated in
the future. Last, we investigated “single” PDT regimen, while
in fact, the painless nature and short-irradiation protocol may
allow for repeat treatments, adding even further benefits in
clinical settings.
CONCLUSION

MB-aPDT evidently killed the selected XDR and MDR-gram
negative bacteria. In a highly drug-resistant crisis era, MB-aPDT
could be one of the promising options, particularly for local
infections and infection complicating chronic wounds with one
suggested combination ofMB of 50mg/L and red light of 80 J/cm (2)

of red light as a guide to begin with. Both in vitro study for other
MDR-bacteria and in vivo study to establish precise PDT protocol
for effective antimicrobial and wound healing purposes are to
be investigated.
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