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Abstract

In 2019, the third and updated edition of the Clinical Practice Guideline (CPG)

on Prevention and Treatment of Pressure Ulcers/Injuries has been published.

In addition to this most up-to-date evidence-based guidance for clinicians,

related topics such as pressure ulcers (PUs)/pressure injuries (PIs) aetiology,

classification, and future research needs were considered by the teams of

experts. To elaborate on these topics, this is the third paper of a series of the

CPG articles, which summarises the latest understanding of the aetiology of

PUs/PIs with a special focus on the effects of soft tissue deformation. Sustained

deformations of soft tissues cause initial cell death and tissue damage that ulti-

mately may result in the formation of PUs/PIs. High tissue deformations result

in cell damage on a microscopic level within just a few minutes, although it

may take hours of sustained loading for the damage to become clinically visi-

ble. Superficial skin damage seems to be primarily caused by excessive shear

strain/stress exposures, deeper PUs/PIs predominantly result from high pres-

sures in combination with shear at the surface over bony prominences, or

under stiff medical devices. Therefore, primary PU/PI prevention should aim

for minimising deformations by either reducing the peak strain/stress values

in tissues or decreasing the exposure time.
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Key messages
• Pressure-induced tissue deformation is one major pathway for pressure ulcer

(PU)/pressure injury (PI) development.
• Understanding PU/PI development allows health professionals to imple-

ment appropriate evidence-based and individualised PU/PI prevention.
• New technologies designed to support PU/PI prevention should be based on

aetiological mechanisms.
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1 | INTRODUCTION

In 2019, the third and updated edition of the Clinical
Practice Guideline (CPG) on Prevention and Treatment
of Pressure Ulcers/Injuries has been published by the
European Pressure Ulcer Advisory Panel (EPUAP), the
National Pressure Injury Advisory Panel (NPIAP), and
the Pan Pacific Pressure Injury Alliance (PPPIA).1

Twenty-eight small working groups (SWGs) and the
Guideline Governance Group (GGG) supported by a
methodologist reviewed, summarised, and appraised the
current evidence regarding pressure ulcer (PU)/pressure
injury (PI) prevention and treatment. In addition to this
most up-to-date and comprehensive evidence-based guid-
ance for clinicians, related topics such as PU/PI aetiology,
classification, and future research needs were considered
by the SWGs and GGG.2 In order to elaborate on these
important topics that provide the pathophysiological and
research contexts to the practical clinical guidance, a
series of journal papers are being developed. Specifically,
after describing the CPG 2019 development methods3,4

and discussing PU/PI classification,5 this is the third
paper in a series of CPG articles. The objective of this
compilation of the Aetiology Chapter of the 2019
CPG2 and relevant literature published since is to
make this aetiological information accessible and
updated for use by the scientific, medical research,
and clinical communities.

A PU/PI has been defined in the 2019 CPG as
“localised damage to the skin and/or underlying tissue,
as a result of pressure or pressure in combination with
shear; PUs/PIs usually occur over a bony prominence but
may also be related to a medical device or other object”.2

The PU/PI can present itself as intact skin or as an open
wound and may be painful. The tissue damage occurs as
a result of intense and/or prolonged exposure of soft tis-
sues to sustained mechanical loading, that is, deforma-
tions in compression, tension, or shear or a combination
of these loading modes. Sustained loading (also known as
quasi-static loading, ie, a nearly/almost static loading
state) refers to loads that are applied continuously for
long durations, such as minutes to hours or even days.
The tolerance of soft tissues to sustained deformations
differs by the tissue type; it may also be influenced by
microclimate, perfusion, age, health status (either
chronic or acute), and systemic comorbidities and
localised (topical) conditions of the soft tissues, which
are affected by the sustained mechanical loading. A
number of contributing or confounding factors are also
associated with PUs/PIs; the primary of which are
impaired mobility/activity and a high potential for
exposure to static or dynamic frictional forces.2 A sec-
ondary contributing factor is impaired sensory

perception (sensation),2 which often leads to impaired
mobility/activity, as a person does not move because
they do not feel the discomfort, and further on, the
nociceptive pain that appears as damage forms in cells
and tissues.6 Without the presence of impaired mobil-
ity, PUs/PIs are unlikely to occur, the case of device-
related injuries notwithstanding.

2 | TERMINOLOGY

Since the first description of the wound referred to earlier
as a PU/PI, there has been an ongoing debate regarding
terminology.7 The oldest term is decubitus, which evolved
in the 1950s to decubitus ulcers or ischaemic ulcers. None
of these terms are accurately descriptive and the latter
term used by Kosiak8 implies an overly limited
aetiological pathway that focuses almost exclusively on
pressure-induced deformation and occlusion of capil-
laries with resultant tissue ischaemia. Although this
pathway is well documented in the research literature, it
does not account for the aetiological pathways initiated
by cellular and tissue deformation that is the primary
focus of this article. The term bedsores arose after publica-
tion of the Bedsore Biomechanics (1976) edited book that
followed the first international conference on pressure
ulcer aetiology held in Glasgow in the previous year. This
term indicates the association of wounds with a stay in
bed, which ignores the potential occurrence of these
wounds on any other type of support surfaces. In the
1980s, the term pressure sore became more popular, thus
no longer relating the injury to (just) the bed. Since the
early 1990s, the term pressure ulcer, referring to an open
ulcer at the skin surface that is difficult to heal or fails to
heal, has been in common usage. However, this term fails
to capture both the deep tissue pressure injury form, an
internal soft tissue damage under intact skin, and
Category/Stage I in which the skin surface remains
intact.2 Currently, in Europe, the term pressure ulcer is
widely used. In the United States, Canada, Australia,
New Zealand, and some countries in Southeast Asia, the
term pressure injury was widely adopted. However, the
aetiological triggering events and driving factors of
PUs/PIs are identical, and all terms refer to the same
phenomenon.5 In this article, the terms pressure ulcer
(PU) and pressure injury (PI) are used interchangeably.

Several aetiological pathways for PI/PU development
have been proposed and supported by laboratory evi-
dence including ischaemia from capillary closure, reper-
fusion injury, and tissue deformation. This article
primarily focuses on more recent evidence regarding the
effects of tissue deformation and its implications for clini-
cal practice.
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3 | MECHANICAL LOADS
APPLIED TO SOFT TISSUES

Mechanical loads applied to soft tissues are all the types
of forces that can possibly act upon skin and underlying
tissues of an individual as a result of contact between the
skin and an external surface, object, or medical device.
These loads include the bodyweight forces typically trans-
ferred through bony structures into soft tissues. External
mechanical loads are often characterised as being a
normal force (acting perpendicularly to the skin) or a
shear force (acting parallel to skin). In real-world scenar-
ios, external forces always have normal and shear compo-
nents. Pressure is defined as normal force per unit surface
area (of skin or underlying tissue). Shear stress is likewise
defined as the shear force (acting in a direction that is
parallel to the skin or underlying tissue surface) per unit
surface area.

The term friction is used as an abbreviation of the
“coefficient of friction” to describe interface properties
and the potential for sliding of two surfaces with respect
to each other. The friction phenomenon is associated
with shear deformations and stresses on the skin surface,
within skin layers and subcutaneously, which may be
static (if there is no relative movement between the skin
and the contacting surface/object/device) or dynamic
(when such relative movement occurs).9,10 Continuous
rubbing or sliding of the skin against materials such as
textiles can result in inflammation, abrasions, or wounds
referred to as friction blisters11; these blisters are not con-
sidered to be PUs/PIs.1,12

Loaded skin and deeper soft tissues distort and
deform in response to mechanical loads, resulting in
localised strain (a measure of the relative deformation)
and stress (force transferred per unit area) in tissues.
Excessive internal strains and stresses or prolonged tissue
exposures to sustained strains and stresses will impair
transport phenomena in cells by causing damage to cell
structures such as the cytoskeleton or plasma mem-
brane.13,14 At a mesoscale, strains and stresses may also
hinder transport processes within tissues, for example, by
reducing blood perfusion, impairing lymphatic function,
and affecting transport in interstitial spaces.1 Cell death,
in turn, triggers an inflammatory response, which gener-
ates inflammatory oedema1,15 that further increases the
mechanical loads on cells and tissues resulting from a
rise in the interstitial pressure levels (Figure 1). If an
underlying ischaemic condition exists, which lowers the
peripheral perfusion pressure to an extent where plasma
does not cross the vascular wall even if the wall is abnor-
mally permeable (since the vascular wall resistance to the
flow is too high to allow fluid movement across the wall
to the interstitial space), then local oedema will not form.

The specific ways by which cells and tissues are
affected by mechanical loads are complex processes,
which depend on anatomical structure and morphology,

FIGURE 1 A, A schematic description of the vicious cycle of

cell and tissue damage in pressure ulcers/injuries (PUs/PIs),

resulting from sustained mechanical deformations (the triggering

event), which inflicts the primary, direct deformation damage (first

damage event), then leading to secondary inflammatory-oedema

related damage (second damage event), and finally to tertiary

ischaemic damage (third damage event). B, Each of these three

factors contributes to the cumulative cell and tissue damage, which

develops in an escalated manner as a result of the added

contributions of the above factors. Of note, while it is likely that the

ischaemic damage follows from the inflammatory damage as

visualised here, ischaemia per se may also be present prior to the

onset of the PU/PI vicious cycle (eg, due to a persistent peripheral

vascular disease), or develop independently from, or concurrently with

the inflammation (eg, as a result of a thrombotic event in a patient

with coronavirus disease 2019). In contrast, localised

inflammation may follow from or intensify because of an

existing ischaemic condition, especially when reperfusion is

allowed (eg, immediately after repositioning). Accordingly, the

process of accumulation of tissue damage over time in a forming

PU/PI as described here is likely, but is not necessarily a linear

one (particularly with regard to the order of the inflammatory

and ischaemic damage phases)
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for example, the sizes and shapes of the different tissue
layers and the biophysical and mechanical properties of
the tissues involved. Relevant biophysical and mechani-
cal tissue properties are the density and composition,
water contents, stiffness, strength, and diffusion coeffi-
cients. These properties shape the magnitudes and distri-
butions of the mechanical forces that are applied to the
tissues at the regions of contact with a support surface,
object or medical device, and also, within the tissue struc-
tures.16 In addition, the morphology, mechanical proper-
ties, and tissue tolerance to the loading can all change
over time because of ageing, lifestyle, chronic injury, or
disease.16-18 In general, externally applied forces, even of
a uniform nature, will lead to highly irregular internal
tissue strain/stress responses, that is, different loading
intensities at different tissue locations, depending on the
internal anatomy, body posture, and properties of tissues
of the individual.19-22 This can also be referred to as
heterogeneous or nonhomogeneous tissue responses to the
applied loads. Further complications are introduced
because normal forces on the surface of the weight-
bearing body (eg, during lying or sitting) or due to a
skin-contacting device (eg, oxygen mask) will be highly
non-uniform across the supported areas and some shear
forces will always exist. For example, while an individual
is sitting in a chair, it is common that internal tissue
strain levels in muscle can reach values of 50% and
above.19,20,23 Furthermore, soft tissue stiffness increases
under weight-bearing sitting and may contribute to
increasing the potential PU/PI risk in sitting, compared
with lying prone, given the stiffer behaviour of tissues
observed in sitting postures.16

Techniques available for assessment of internal tissue
deformations are magnetic resonance imaging,
elastography, and ultrasound.16,24 These imaging modali-
ties can be used in combination with subject-specific the-
oretical computational models such as finite element
(FE) models; FE modelling is a method of solving (bio)
mechanical problems by means of a capable computer
workstation and dedicated software, to estimate deforma-
tions, strains, and stresses throughout cell and tissue
structures, and thereby predict the risk of cell and
tissue damage. However, even the best and most accurate
FE models are theoretical assumptions25 and clinical
reality is infinitely complex, PUs/PIs develop as a result
of the internal tissue response to the mechanical loading
state in the individual. Understanding the aetiology of
PUs/PIs therefore relies on knowledge concerning the
internal cell and tissue responses to mechanical loads
(including the responses of vascular and lymphatic struc-
tures) and not on just what is apparent on the outside of
the body or at the skin surface.26-28

4 | SOFT TISSUE RESPONSES TO
SUSTAINED MECHANICAL LOADS

The primary cause of PUs/PIs is exposure to sustained
mechanical loads that are applied to soft tissues, most
often near a bony prominence, but not always. These
mechanical loads can originate from bodyweight forces
(ie, the body mass pulled by gravity) or from the environ-
ment, for example, delivered by a medical device such as
a ventilation mask or a pulse oximeter, which apply con-
tinuous forces and deformations to skin and deeper tis-
sues near the contact region with these devices. Such
medical devices are typically stiffer than the skin and
underlying soft tissues. The mismatch in mechanical
properties between device and skin as well as underlying
soft tissues causes focal deformations and mechanical
stress concentrations in tissues near the contact sites with
the device.15,29 By definition, sustained deformations of
skin and deeper tissues, either due to bodyweight loads
or exerted from the environment, must be present in
order to cause the initial cell death and tissue damage
that ultimately result in the formation of a PU/PI
(Figure 1). Without timely relief of the localised loads,
this initial cell death and tissue damage associated with
the aforementioned compromised control over molecular
transport at the microscale may occur within short time
frames, in the order of minutes.30-38

A large body of research performed over decades has
shown that the magnitude of the internal mechanical
loads required to lead to tissue damage depends on the
duration of time during which the loads are applied. Both
a high-magnitude load for a short period and a low-
magnitude load applied for a prolonged period can lead
to tissue damage.31,33,39-46 Taken together, these study
results indicate that high tissue deformations result in cell
damage, which may be visible on a microscopic level within
just a few minutes, although it may take hours of sustained
loading for the damage to become clinically visible.

By contrast, impact damage, which usually occurs
because of an accident or trauma, does not fall under the
definition of PUs/PIs (although impact similarly damages
cells and tissues by application of mechanical loads). The
aetiological difference is essentially the time of exposure
to the mechanical loads. For impact damage, an impulse
of high mechanical load is applied within a fraction of a
second to the tissues and organs. The mass of the
impacting objects plays an important role and inertia
effects leading to shock, shear and pressure waves in the
tissues may cause high external and internal damage in a
fraction of a second.47 Discriminating between traumatic
damage and PU/PI requires knowing the circumstances
leading to the wound.
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The historical threshold function for tissue damage
developed by Reswick42 depended on the interface pres-
sures applied to human skin and the duration of these
applied pressures (Figure 2). However, their curve
required corrections as it did not accurately reflect the
risk of tissue damage at the extremes of the very short
and very long loading times. Sufficiently high loads can
cause damage within minutes to tissues at a microscopic
level. Conversely, very low loads will not lead to damaged
tissues even if applied for extended periods of time.48,49

Due to variability in individual anatomies, tissue toler-
ances, and confounding factors, it is not possible to deter-
mine generic quantitative values for tissue damage
thresholds as a function of the mechanical loads and
exposure time. The absence of time and pressure scales
on the graph in Figure 2 is intentional to emphasise the
need for individualisation in care. An example of an
extrinsic confounding factor that has been shown to have
a profound effect on the tissue tolerance to pressure dam-
age is temperature, which is important in aspects of inter-
action with support surfaces and medical devices.50-52

Another intrinsic confounding factor may be arteriolar
insufficiency and endothelial dysfunction, for example,
related to diabetes mellitus.53,54

Minimising pressure and shear stresses at the inter-
face between the body and a support surface or at a skin-
device contact region are effective clinical interventions
for reducing the risk of developing PUs/PIs.1,55-57

However, pressure measurements alone are not reliable
measures for the risk of tissue breakdown, given that
similar interface pressure magnitudes will translate to

considerably different internal tissue loads in different
individuals depending on their internal anatomy (curva-
ture of bony prominences, masses and composition of
soft tissues, skin roughness characteristics, and soft tissue
mechanic properties). Thus, damage thresholds based on
interface pressures alone or even exposure to interface
pressures over time are not appropriate.19,20,26-28,31,58,59 In
other words, while clinically, interface pressure measure-
ments are commonly used as a relative guide to
repositioning individuals who are at risk of PUs/PIs, for
minimising certain areas of high localised interface pres-
sures, these measurements are not appropriate for
predicting injury conditions in the examined individuals
or more generally, as an absolute measure of tissue
damage thresholds.

Elevated shear stresses at the interface between the
body and a support surface or medical device can exacer-
bate the damaging deformations caused by pressures
alone.60-63 Internal strains and stresses adjacent to bony
prominences are substantially higher than those near the
surface, and rise with the level of sharpness of the
bony prominence, due to stress concentration effects.
These stress concentrations have the potential to cause
damage in deep tissues before the superficial tissue is
damaged and before damage is visible to the unaided
eye.19,20,55,57,58,64-69 In addition to internal tissue stress
concentrations, superficial shear stresses associated with
frictional forces that act on skin may disturb the barrier
function of the stratum corneum.51 Accordingly, support
surfaces characterised by high coefficient of friction
(COF), or for which the COF increases substantially due
to wetness (perspiration, exudates and body fluids), rep-
resent an extra danger for skin health. Sustained weight-
bearing or application of a skin-contacting medical device
for prolonged periods, per se or in combination with
moisture and wetness at the skin-object interface, may
affect the skin microtopography (roughness) features,
which in turn affects the COF of skin with the contacting
object.9,10,59,70-74

If a PU/PI has been formed due to sustained deforma-
tions, soft tissue properties may abnormally change. For
example, skeletal muscle may exhibit localised “rigour
mortis” sites of stiffening (ie, localised pathological con-
tractions due to destruction of muscle fibre membranes),
which adds inhomogeneity to the loading patterns and
promotes intramuscular stress concentrations that endan-
ger adjacent tissues.65,75 Likewise, fibrous scar tissues at
the skin or internally promote tissue stress concentra-
tions and contribute to the inhomogeneity of the
sustained loading, as scars are less effective than healthy
tissues in dissipating mechanical loads through elastic
deformations, due to their disorganised microstruc-
ture.59,76,77 This provides a biomechanical explanation for

FIGURE 2 Tolerance behaviour of soft tissues subjected to

sustained mechanical loads formulated by Linder-Ganz et al.33 and

Gefen et al.32 based on experimental data from animal and tissue-

engineered models, respectively (marked “Gefen curve”), compared

with the historical Reswick and Rogers pressure-based damage

threshold proposed for sitting and recumbent patients in the 1970s
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the typical recurrence of a PU/PI at the site of a former,
already healed full-thickness PU/PI.

5 | TISSUE DAMAGE DUE TO
MECHANICAL LOADING, REPAIR,
AND INDIVIDUAL SUSCEPTIBILITY

There seem to be differences between the aetiology of
superficial PUs/PIs, which onset as skin damage, versus
those PUs/PIs that originate and form in deeper tissue
layers.78-81 Superficial skin damage seems to be primarily
caused by excessive shear strain/stress exposure at the
skin surface. Deeper PUs/PIs predominantly result from
high pressures in combination with shear at the surface
over bony prominences, or under a stiff medical device
where tissues are continuously distorted between the
device and musculoskeletal structures, such as in the case
of facial tissues that are confined between an oxygen
mask and the skull.59,72,75,79,82-91

A possible damage cascade in PIs/PIs, illustrated in
Figure 1A, includes the sequential cell and tissue damage
associated with direct deformation (first factor),
damage associated with the inflammatory response (sec-
ond factor), and damage induced by ischaemia (third
factor).15,41,92 The additive nature of these damages
(depicted in Figure 1B) highlights the importance of
minimisation of the exposure to sustained tissue defor-
mations and early detection of cell and tissue damage
for effective PU/PI prevention. In the context of the
theoretical framework described in Figure 1, the work of
Coleman and colleagues93 highlighted the factors that
characterise the PU/PI risk of an individual. The internal
anatomy, including the sharpness of bony prominences,
the tissue morphologies, and the mechanical and thermal
properties of tissues will altogether dictate the internal
tissue deformations, strains, and stresses, as well as the
thermodynamic state and transport (diffusional) proper-
ties of the distorted tissues. The cell and tissue repair
capacity and transport properties at the cell and tissue
scales will determine the ability of the body to repair
damage at various stages of progression. The progression
of damage relative to the progression of repair will consti-
tute the time for a PU/PI to develop (if developed) in the
individual and the extent and severity to which the injury
will progress, if that individual is immobile/inactive.

Of note, while it is likely that the ischaemic damage
follows from the inflammatory damage as visualised in
Figure 1, ischaemia per se may also be present prior to
the onset of the PU/PI vicious cycle (eg, due to a persis-
tent peripheral vascular disease or prolonged pressure-
induced capillary closure), or develop independently
from or concurrently with the inflammation (eg, as a

result of a thrombotic event in a patient with coronavirus
disease).94 In contrast, localised inflammation may follow
from or intensify due to an existing ischaemic condition,
especially when reperfusion and possible reperfusion
injury are allowed (eg, immediately after
repositioning).34,35,95-101 Accordingly, the process of accu-
mulation of tissue damage over time in a forming PU/PI
as described here is likely, but is not necessarily a linear
one (particularly with regard to the order of the inflam-
matory and ischaemic damage phases).

Once the vicious cycle of a PU/PI enters the
ischaemic phase in the cellular deformation model
(Figure 1A), biochemical stress develops in the affected
tissues because of the lack of supply of essential mole-
cules and impaired clearance of metabolic waste prod-
ucts. Specifically, the ischaemia resulting from the
inflammatory oedema (through an increase in the inter-
stitial pressure level that distorts the vasculature) may
lead to hypoxia, reduced supply of glucose and essential
hormones (eg, insulin), and impaired removal of carbon
dioxide and nitrogenous compounds (eg, ammonia, urea,
uric acid, and creatinine). Lymphatic impediments are
also associated with abnormally high interstitial pres-
sures.102,103 Deprivation of nutrients and decrease in the
pH of the interstitial fluid towards a more acidic extracel-
lular environment, because of the accumulation of meta-
bolic waste products, will eventually lead to cell death
and necrotic tissue damage; however, cells are able to
survive for considerable times, on the order of hours, by
shifting to an anaerobic metabolism.39,40,61,104 Prolonged
exposure to ischaemic conditions including an acidic
extracellular environment (ie, pH < 7.4) has shown to
slow collective cell migration, particularly of fibroblasts,
in cell culture models,105 which may compromise the
body's attempts to repair microscale damage and hence
contribute to an overall accelerated rate of tissue damage
in PUs/PIs.

The time duration during which cells and tissues can
endure ischaemia without irreversible damage differs for
the tissue types (ie, skeletal muscle, adipose, and skin)
that are potentially involved in PUs/PIs. Skeletal muscle
tissues are more susceptible to PU/PI damage than skin,
likely due to the greater capillary and mitochondrial vol-
ume density in muscles, which is associated with their
greater metabolic demand.43,44,61,62,106 Skin is also con-
siderably stiffer than muscle or adipose tissues and there-
fore deforms to a lesser extent in most clinically relevant
scenarios, which in turn makes it less susceptible to
ischaemic damage. In animal experiments, the first signs
of ischaemic damage are found in skeletal muscle after
2 to 4 hours of sustained deformations.33-35,39,40,61,69,104

Sustained skeletal muscle deformations at strains
greater than 50% will almost immediately (within
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minutes) lead to tissue damage at a microscopic scale.31

At these strain levels, there is a strong correlation
between the magnitude of the strain and the amount
of damage inflicted to the muscle cells and fibres. This
direct deformation-inflicted damage to cells is the
result of (i) loss of integrity and structural support
provided to the cell body by the cytoskeleton;
(ii) overstretching of the plasma membrane, which
increases when the structural support provided to the
membrane by the cytoskeleton diminishes; and
(iii) internal signalling pathways related to these
excessive cell deformations that cause apoptotic cell
death.13,14,44-46,107-110 Recent mechanobiology work
focusing on the cell scale has further indicated that
stimulating cells mechanically, by applying low-level,
non-damaging mechanical deformations (strains),
accelerates collective cell migration into damage
sites in laboratory cell cultures.111,112 Given that
PUs/PIs form when the rate of cell and tissue death is
greater than the corresponding rate of regeneration
(ie, through cell proliferation, migration, and differ-
entiation), mechanobiology research has already iden-
tified certain features of stimuli to promote repair
processes, particularly migration of cells into a dam-
age site at the onset of a PU/PI.111,112

Balance at the interstitial spaces, where transport of
nutrients and waste products occurs, is critical for
healthy tissue homeostasis. Specifically, diffusion of
nutrients and clearance of waste products and hormones
that regulate tissue metabolism may be hindered by
sustained mechanical loading.32,38,113,114 Cell culture, tis-
sue engineering, and computational modelling work
suggested that the localised sustained large tissue defor-
mations in weight-bearing body regions under bony
prominences translate to large cellular deformations at
the microscale, thereby causing distortion of cellular
organelles, for example, considerable stretching of cellu-
lar plasma membranes.14,91,108,113-119 The prolonged
exposure to large tensional plasma membrane strains
may interfere with normal cellular homeostasis, primar-
ily by affecting transport through the plasma membrane,
which becomes more permeable when it is highly
stretched. This has been visualised and quantified in cell
cultures subjected to physiologically relevant deforma-
tions for periods of 2 to 3 hours, using biomolecular fluo-
rescent markers.13,14,107 The progression of cell death and
tissue necrosis causes gradual local alterations of the
mechanical properties of the injured tissues that can, in
turn, change the distributions of strains and stresses
in forms that are likely to exacerbate the evolving injury,
for example, through development of inflammatory
oedema and localised rigour mortis in skeletal mus-
cles.65,69,75,120-122 Localised inflammatory oedema, one of

the earliest signs of cell death in PUs/PIs, may be detect-
able via measurement of a biophysical marker called the
biocapacitance of tissues.15,121-132 Reperfusion that fol-
lows a period of prolonged ischaemia may further
increase the extent of tissue damage as it involves release
of damaging oxygen free radicals.95-100,133

The microclimate between the skin and the support
surface or any skin-contacting medical device or object
plays an important role in the development of
PUs/PIs.51,52,134 Microclimate refers to the temporal and
spatial temperature, humidity, and airflow in the vicinity
of the outer surface of the skin. The characteristics of an
optimal microclimate are still a matter of debate and
ongoing research; however, with an increase in tempera-
ture and humidity, the skin becomes more vulnerable to
damage.51,55,135 Excessively dry skin may be also undesir-
able.136 Wetness of the interface plays an important role
in the mechanical interactions between the skin and a
support surface, a medical device, clothing, bedsheets, or
other objects.9,10,52,134,135,137,138 Materials with a higher
wettability, including skin, generally show a larger
increase in COF when exposed to warm and moist condi-
tions.9,139 The body core and skin surface temperatures
influence transepidermal water loss140 and sweating.141

The evaporation of perspiration from the skin surface
depends on the local and ambient humidity.51,135 These
microclimate conditions eventually impact the frictional
properties of skin, that is, the skin COF with contacting
objects. The magnitude of this COF influences the inten-
sity of the frictional forces acting on the body and ulti-
mately, the skin and subdermal tissue deformations
resulting from any frictional sliding movements between
the skin and a support surface, a medical device, or other
objects.1,9,10,52,59 Overall, there are strong connections
between microclimate and friction, and hence, surface
and internal tissue loads and the exposure of living cells
to these mechanical loads strongly depend on the micro-
climate conditions.52,72,73,134

6 | CONCLUSION: WHAT DOES
THIS MEAN FOR CLINICAL
PRACTICE AND RESEARCH?

Current aetiological knowledge confirms that PUs/PIs
develop due to sustained mechanical loading leading to
soft tissue deformation. Therefore, primary PU/PI pre-
vention should aim for minimising deformations by
either reducing the peak strain/stress values in tissues
(eg, through the use of an appropriate pressure redistri-
bution support surface) or decreasing the continuous
exposure time of tissues to the sustained strain/stress
state (eg, through repositioning).1,142 Early detection of
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initial tissue damage through regular skin assessment is a
strategy to prevent possible progression (secondary pre-
vention).1,128 Other PI prevention strategies such as nutri-
tional interventions or appropriate use of leave-on
products aim to enhance tissue tolerance.1

The described recent advances in research also enable
various innovative approaches for primary and secondary
PU/PI prevention.53,101,143-147 These innovations are promis-
ing and urgently needed because the incidence and preva-
lence of PUs/PIs remain high across all healthcare settings.1

Until evidence supports clinical effectiveness of these inno-
vations, evidence-based PU/PI prevention should be based
on the latest guideline recommendations.1
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