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INTRODUCTION 
 

Frailty, as a manifestation of aging, is a state of 

increased vulnerability due to cumulative decline in 

multiple physiological systems [1]. The concept of 

frailty has been operationalized in two principal 

models: the frailty phenotype (FP) defines frailty as a 

clinical syndrome associated with unintentional 

weight loss, weak grip strength, slow walking speed, 

exhaustion, and low physical activity [2], whereas the 

Rockwood frailty index (FI) summarizes vulnerability 

quantitatively and defines frailty as the accumulation 

of deficits from a wide range of physical and 

psychosocial functioning [3, 4]. Regardless of  

the definition being used, frailty has been consistently 

linked to adverse outcomes such as falls, 

hospitalizations, loss of independence, and mortality 

[5], posing a significant public health concern. 

Tackling frailty is also recognized as a priority by the 

European Union [6], calling for better understanding 

of the syndrome. The prevalence of frailty increases 

with age, with an overall estimated prevalence of 

10.7% among those aged ≥65 and 26.1% among those 

aged ≥85, varying depending on which frailty scale is 

used [7]. Meanwhile, there is sizable variability in the 

frailty status at all ages [8], highlighting the necessity 

to gain understanding on the underpinnings of the 

individual differences. The sex-paradox of frailty has 

been widely described, in which women experience 

higher levels of frailty but men are more vulnerable to 

death at any given level of frailty, yet the mechanisms 

behind remain elusive [9]. 
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ABSTRACT 
 

Frailty is influenced by numerous genetic and environmental factors. However, sex differences in how these 
factors affect frailty, and the gene-environment interplay among frailty and two of its well-established risk 
factors, unhealthy body mass index (BMI) and low education, are less clear. In a large sample of 42,994 Swedish 
twins, we used structural equation models to estimate the genetic (heritability) and environmental sources of 
variance in frailty, defined as the frailty index (FI), separately in men and women. Genetic and individual-
specific environmental factors contributed approximately equally to the FI variance. The heritability of FI was 
slightly, but significantly, higher in women (52%) than in men (45%), yet we found only weak-to-no indication of 
different sources of genetic variance influencing frailty across sexes. We observed a small-to-moderate genetic 
overlap between FI and BMI, and that the correlation between FI and education was largely explained by 
environmental factors common to twins in a pair. Additionally, genetic factors accounted for more of FI 
variation at both low and high BMI levels, with similar patterns in both sexes. In conclusion, the twin-based 
heritability of frailty is higher in women than in men, and different mechanisms may underlie the associations 
of frailty with BMI and education. 
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In accordance with its multifactorial nature, frailty is 

influenced by both genetic and environmental factors, 

with twin-based heritability estimates of the FI ranging 

from 30 to 45% [10, 11]. However, these studies 

included female twins only, leaving sex differences in 

the heritability of FI unaddressed. A vast body of 

literature has discerned the lifestyle and environmental 

determinants of frailty [12–14], and showed a persisting 

socioeconomic gradient in frailty, with increasing 

socioeconomic adversity associated with higher frailty 

and contributing to health inequalities even in old age 

[15]. Two of the most significant risk factors of frailty 

are unhealthy body mass index (BMI) ranges, including 

both underweight and obesity [16–18], and low 

educational attainment [12, 19–21]. A recent Mendelian 

randomisation analysis showed that the genetic risk of 

higher BMI and lower educational attainment had the 

strongest associations with frailty among all modifiable 

risk factors [22]. However, few studies have elucidated 

the mechanisms by which these risk factors influence 

frailty, and whether there may be overlap in the genetic 

and/or environmental underpinnings of FI with BMI 

and education. Moreover, it is not known whether the 

genetic and environmental influences on the FI are 

altered by BMI and education levels, that is, whether 

there is gene-environment interaction (G×E) such that 

genetic risk of frailty may be amplified or suppressed 

with different environmental circumstances. It is also 

unclear whether men and women may differ with 

respect to G×E. 

 

Twin studies offer a natural experiment to partition 

variance of traits into genetic and environmental 

etiologies by comparing the genetic similarities 

between monozygotic (MZ) and dizygotic (DZ) twins, 

who share 100% and ~50% of their segregating alleles 

respectively. Large twin samples also allow robust 

assessment on whether the heritability of a trait differs 

quantitatively by sex, meaning whether it is the same 

genes but at different magnitudes that act upon the 

trait. Moreover, with the inclusion of opposite-sex 

twins, qualitative sex differences can be examined, 

informing whether the trait is influenced by different 

genetic factors in men and women. As the extension 

to classical twin models, bivariate models allow study 

of the sources of covariation between traits, while 

moderation models enable examination of G×E. To 

date, studies on the variance components of the FI are 

scarce and the potential sex differences remain 

unaddressed. The mechanisms by which high BMI 

and low education influence frailty are likewise 

poorly known. Not only is understanding the basis of 

the sex differences in frailty of importance, but 
identifying how the risk factors affect frailty will also 

aid in informing preventive strategies and public 

health interventions. 

Towards this end, we performed structural equation 

modelling using data from the Screening Across the 

Lifespan Twin study (SALT), a large sample of 

Swedish twins (n = 42,994), with aims to (i) provide a 

comprehensive estimation of the contribution of genetic 

and environmental factors to the variance of the FI, and 

identify potential quantitative and qualitative sex 

differences therein; (ii) explore the common genetic and 

environmental influences on the covariation of FI with 

BMI and education, two of the most prominent risk 

factors of frailty; and (iii) test for G×E by levels of BMI 

and education. 

 

RESULTS 
 

Sample characteristics 

 

Table 1 shows the descriptive statistics of the sample, 

among the 42,994 twin individuals the mean age of 

which was 58.8 (standard deviation 10.7; range 41–99). 

The median FI, i.e., the proportion of endorsed frailty 

items out of 44 (items listed in Supplementary Table 1), 

was 0.108 (interquartile range 0.062–0.176). Women 

were on average older (mean age 59.2 vs 58.4 years) 

and had a higher median FI (0.119 vs 0.097) than men. 

Mean BMI and length of education were 25.0 kg/m2 and 

10.5 years respectively; both were similar across sex. 

 

Phenotypic, intraclass and cross-twin cross-trait 

correlations 

 

Age-adjusted correlations across zygosity are presented 

in Table 2 (unadjusted correlations in Supplementary 

Table 2). For FI, BMI and education, when correlating 

the same phenotype across twins in a pair (i.e., 

intraclass correlation), the MZ correlations were larger 

than DZ correlations and were less than 1, suggesting 

both genetic and individual-specific environmental 

influences on all three traits. We observed significantly 

greater intraclass correlations of FI in women than in 

men for same-sex twins, implying quantitative sex 

differences; nevertheless, intraclass correlation of FI in 

opposite-sex twins did not seem to be smaller than that 

in same-sex DZ twins, suggesting absence of qualitative 

sex differences. 

 

FI had a positive phenotypic correlation with BMI (r = 

0.13) and a negative correlation with education (r = -

0.09). The higher MZ than DZ cross-twin cross-trait 

correlation between FI and BMI indicated that part of 

their covariation could be explained by genetic 

influences in common. In contrast, cross-twin cross-trait 

correlations between FI and education were comparable 

for MZ and DZ twins, indicating environmental factors 

common to twins in a pair, rather than genetic factors, 

contributing to their covariance. 
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Table 1. Characteristics of study population by sex. 

Characteristic 
Total 

(n = 42,994) 

Men 

(n = 19,940) 

Women 

(n = 23,054) 

Age at interview, mean (SD) 58.8 (10.7) 58.4 (10.4) 59.2 (11.0) 

FI, median (IQR) 0.108 (0.062, 0.176) 0.097 (0.057, 0.153) 0.119 (0.068, 0.193) 

BMI (kg/m2), mean (SD) 25.0 (3.5) 25.5 (3.1) 24.5 (3.8) 

Education (years), mean (SD) 10.5 (3.2) 10.5 (3.2) 10.4 (3.3) 

Zygosity, n (%) 

  MZ 10,785 (25.1) 4,788 (24.0) 5,997 (26.0) 

Twins from complete pairs 8,516 (79.0) 3,640 (76.0) 4,876 (81.3) 

  DZ same-sex 16,448 (38.3) 7,640 (38.3) 8,808 (38.2) 

Twins from complete pairs 11,824 (71.9) 5,266 (68.9) 6,558 (74.5) 

  DZ opposite-sex 15,761 (36.7) 7,512 (37.7) 8,249 (35.8) 

Twins from complete pairs 11,582 (73.5) 5,791 (77.1) 5,791 (70.2) 

Note: BMI, body mass index; DZ, dizygotic twins; FI, frailty index; IQR, interquartile range; MZ, monozygotic twins; SD, 
standard deviation. 

 

Table 2. Adjusted phenotypic correlations, intraclass correlations and cross-twin cross-trait correlations for the 
frailty index (FI), body mass index (BMI) and education. 

Zygosity 
Phenotypic correlations Intraclass correlations Cross-twin cross-trait correlations 

FI and BMI FI and Education FI BMI Education FI and BMI FI and Education 

Total 0.13 (0.12, 0.14) -0.09 (-0.10, -0.08)      

MZ 0.12 (0.10, 0.14) -0.09 (-0.11, -0.07) 0.51 (0.49, 0.53) 0.68 (0.67, 0.70) 0.65 (0.64, 0.67) 0.10 (0.08, 0.12) -0.07 (-0.10, -0.05) 

DZ 0.14 (0.13, 0.15) -0.09 (-0.11, -0.07) 0.18 (0.17, 0.20) 0.23 (0.22, 0.25) 0.42 (0.40, 0.43) 0.06 (0.05, 0.07) -0.08 (-0.09, -0.06) 

MZ males 0.14 (0.11, 0.17) -0.10 (-0.13, -0.07) 0.45 (0.41, 0.48) 0.66 (0.63, 0.68) 0.66 (0.63, 0.68) 0.11 (0.08, 0.14) -0.07 (-0.10, -0.04) 

MZ females 0.15 (0.12, 0.18) -0.09 (-0.12, -0.06) 0.53 (0.50, 0.56) 0.69 (0.67, 0.71) 0.65 (0.63, 0.67) 0.13 (0.10, 0.16) -0.08 (-0.11, -0.05) 

DZ males 0.12 (0.09, 0.14) -0.09 (-0.11, -0.07) 0.12 (0.09, 0.16) 0.27 (0.24, 0.31) 0.44 (0.42, 0.47) 0.05 (0.02, 0.07) -0.07 (-0.10, -0.05) 

DZ females 0.19 (0.17, 0.21) -0.07 (-0.09, -0.05) 0.24 (0.20, 0.27) 0.31 (0.28, 0.34) 0.46 (0.43, 0.48) 0.10 (0.08, 0.13) -0.06 (-0.09, -0.04) 

DZ opposite-sex 0.11 (0.09, 0.13) -0.10 (-0.13, -0.08) 0.17 (0.15, 0.20) 0.18 (0.15, 0.20) 0.38 (0.36, 0.41) 0.03 (0.01, 0.06) -0.09 (-0.11, -0.06) 

Note: MZ, monozygotic twins; DZ, dizygotic twins. Phenotypic correlations are the within-individual correlations between 
FI and BMI, and between FI and education. Intraclass correlations indicate the extent to which each trait correlates within 
twin pairs. Cross-twin cross-trait correlations show the extent to which FI of the first twin correlate with the other trait 
(i.e., BMI or education) of the second twin. 95% confidence intervals are presented in parenthes es. All correlations were 
adjusted for age. 

 

Univariate twin modelling 

 

Univariate sex-limitation models of FI were fitted as 

shown in Table 3, providing estimates of the variance 

components in men and women: additive genetic factors 

(A), dominance genetic factors (D), common 

environmental factors (C), and unique environmental 

factors (E). Overall, the best-fitting model was an ADE 

model (i.e., a model including A, D and E variance 

components) with only quantitative sex differences. 

Compared to the saturated model (i.e., a model that 

fully describes the observed data), the full ADE model 

did not provide a worse model fit, indicating that the 

model fit the data well, but both the ACE and AE 

models provided a poor fit to the data. Removing 

quantitative sex differences (i.e., different magnitude of 

heritability) from the ADE quantitative sex-limitation 

model resulted in a reduced model fit. Meanwhile, the 

genetic correlation for opposite-sex twins (rfm), which is 

used for assessing qualitative sex difference (i.e., 

different sources of genetic variance), was close to, and 

statistically non-significantly different from unity. This 

suggests the presence of quantitative, but not qualitative 

sex differences in the genetic contributions to FI. We 

observed largely dissimilar proportions of additive and 

dominance genetic influences on FI for men and 

women. Alternatively, we estimated the broad-sense 

heritability, H, of FI (i.e., proportion of variance that 

can be explained by the total of additive and dominance 

genetic factors), which was estimated to be 45% [95%  
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Table 3. Model fitting results and parameter estimates from univariate sex-limitation models of the frailty  
index (FI). 

Model 
Model fit statistics  Parameter estimates for men and women (95% CI) 

AIC ΔLL Δdf p  A D/C H E rfm 

Saturated 19953 - - -  - - - - - 

ADE full sex-limitation 
19940 19.1 16 0.264  M: 7% (0, 23) M: 38% (21, 55) M: 44% (41, 48) M: 56% (52, 59) 0.69 (0.41, 0.96) 

     F: 41% (28, 55) F: 11% (0, 25) F: 52% (50, 55) F: 48% (45, 50)  

ADE quantitative sex-limitation 
19939 19.7 17 0.288  M: 0% (0, 1) M: 44% (41, 48) M: 45% (41, 48) M: 55% (52, 59) 1.00 (NA) 

     F: 41% (28, 55) F: 11% (0, 25) F: 52% (50, 55) F: 48% (45, 50)  

ADE no sex difference 
19949 32.1 18 0.021  M: 0% (0, 2) M: 49% (45, 52) M: 49% (47, 51) M: 51% (49, 53) 1.00 (NA) 

     F: 44% (31, 58) F: 4% (0, 19) F: 49% (47, 51) F: 51% (49, 53)  

ACE full sex-limitation 
19961 40.4 16 0.001  M: 41% (37, 44) M: 0% (0, 0) M: 41% (37, 44) M: 59% (56, 63) 0.76 (0.64, 0.88) 

     F: 51% (49, 54) F: 0% (0, 0) F: 51% (49, 54) F: 49% (46, 51)  

AE full sex-limitation 
19957 40.4 18 0.002  M: 41% (37, 44) M: 0% (NA) M: 41% (37, 44) M: 59% (56, 63) 0.76 (0.64, 0.88) 

     F: 51% (49, 54) F: 0% (NA) F: 51% (49, 54) F: 49% (46, 51)  

Note: AIC, Akaike’s Information Criterion; LL, log-likelihood; df, degrees of freedom; p, p-values of likelihood ratio tests 
compared with the saturated model. CIs are Wald-type confidence intervals with lower and upper bounds of 0 and 1 
respectively. A, additive genetic factors; D, dominance genetic factors; C, common environmental factors; H, total genetic 
factors/ broad-sense heritability; E, unique environmental factors; rfm, genetic correlation between men and women, 
estimated using opposite-sex twins. M and F represents parameter estimates for men and women respectively. Full sex-
limitation models allowed both quantitative and qualitative sex differences. In ADE quantitative sex-limitation model, rfm was 
fixed to be 1. In ADE no sex difference model, broad-sense heritability of men and women were equated, but variance 
difference between sex was allowed. ACE and AE sub-models are not shown as the full models fit significantly worse than the 
saturated model. All models were adjusted for age. Best-fitting model is shown in bold. 

 

confidence interval (CI): 41–48%] in men, and at a 

statistically significantly higher proportion of 52% 

(95% CI: 50–55%) in women. The rest of the variation 

in FI was explained by unique environmental factors. 

 

Bivariate twin modelling 

 

Using bivariate twin models, we assessed the overlap of 

genetic and environmental variance components of FI 

with BMI and education and allowed for sex 

differences. The best-fitting bivariate model for FI and 

BMI was an ADE model (Figure 1A; model fit statistics 

and parameter estimates in Supplementary Tables 3, 4). 

Variance of BMI was predominantly explained by 

genetic factors (men: H = 66%; women: H = 69%). We 

observed modest genetic correlations between FI and 

BMI, which were 0.19 (95% CI: 0.14–0.23) and 0.26 

(95% CI: 0.22–0.29) in men and women, respectively. 

The bivariate heritability for FI and BMI, i.e., the 

proportion of covariance explained by genetic factors, 

was 81% (95% CI: 65–97%) in men and 87% (95% CI: 

78–95%) in women, indicating that a substantial part of 

the correlation between FI and BMI could be 

attributable to genetic factors in common to both traits 

(Figure 1C). By contrast, the best-fitting bivariate 

model for FI and education according to the Akaike’s 

Information Criterion (AIC) was an ACE model (Figure 

1B), although, all bivariate models between FI and 

education provided a worse fit than the saturated model. 

A moderate proportion of the variation in education was 

due to common environmental factors, which was 25% 

(95% CI: 19–31%) in men and 29% (95% CI: 23–34%) 

in women. The C component of FI was small and non-

significant in both sexes, however, they had perfect 

negative correlations with that of education (rC = -1.00). 

Common environmental factors also accounted for 

considerable proportions of the phenotypic correlations 

between FI and education, which were 65% (95% CI: 

23–107%) in men and 74% (95% CI: 22–126%) in 

women (Figure 1C). There was only weak overlap of 

genetic factors and unique environmental factors 

between FI and education. 

 

Moderation analysis 

 

To determine whether genetic and environmental 

variance components of FI change with levels of BMI 

and education, we constructed a series of bivariate 

and univariate moderation models to examine whether 

there is moderation on the covariance between FI and 

the moderator (i.e., BMI and education), in addition to 

the variance unique to FI. For moderation by BMI, we 

observed significant moderating effects on the 

variance unique to FI as well as on the covariance 

between FI and BMI; in contrast, for moderation by 

education, we observed only significant moderating 

effects on the unique variance of FI (Supplementary 

Tables 5, 6). Therefore, a full bivariate moderation 
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model and an extended univariate moderation model 

were fitted for moderation by BMI and education, 

respectively, as proposed by van der Sluis et al [23]. 

The H and E components of FI from the best-fitting 

moderation models are plotted in Figure 2 (see 

Supplementary Figure 1 for separate A and D 

components; and Supplementary Figure 2 for separate 

common and unique variance estimates of FI by BMI 

levels). Patterns of moderation were consistent in both 

men and women, although women had a higher 

absolute variance of FI than men. The total variance 

of FI was larger at low and high BMI levels and at 

fewer years of education. It appeared that genetic 

variance of FI increased at both ends of BMI levels, 

while unique environmental variance of FI was 

similar at all BMI values; hence, the heritability of FI 

was greater at low and high BMI. In contrast, both 

genetic and environmental variance of FI declined to a 

comparable extent with increased years of education; 

therefore, the relative proportions of genetic and 

environmental sources of FI variance did not seem to 

vary across education years. 

 

Sensitivity analysis 

 

We additionally performed sensitivity analysis to 

examine if the skewed distribution of FI affected its  

heritability estimates. Variance component estimates 

of the square-root transformed FI were largely 

consistent with that of the non-transformed FI 

variable (Supplementary Table 7). Moreover, similar 

patterns of moderating effects by BMI and education 

on the transformed FI were observed in men, but there 

was less evidence of moderation by BMI in women 

(Supplementary Figure 3). We also fitted the 

univariate and bivariate models using an alternative 

“direct symmetric approach” that allows negative 

variance components [24]; all the conclusions were 

essentially the same as in the main analysis 

(Supplementary Tables 8–10). 

 

DISCUSSION 
 

Using a large sample of Swedish twins, we found that 

the variation in frailty was attributed rather equally to 

 
 

Figure 1. Parameter estimates from the best-fitting bivariate twin models. (A) ADE bivariate quantitative sex-limitation 
model between frailty index (FI) and body mass index (BMI), adjusted for age. Single headed-arrows represent the proportion of each 
traits explained by latent (circular) variance components; while double-headed arrows represent correlations between variance 
components. H indicates the sum of additive and dominance genetic factors; E indicates unique environmental factors; M and F are 
the estimates for men and women respectively. (B) ACE bivariate quantitative sex-limitation model between FI and education, 
adjusted for age. A indicates additive genetic factors; C indicates common environmental factors. (C) Phenotypic correlations of FI 
with BMI and education among men and women (with 95% confidence intervals), and the proportion of correlations explained by 
total genetic, common environmental and unique environmental factors.  Note: Model-fitting results and parameter estimates can be 
found in Supplementary Tables 3, 4. 
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both genetic (with presence of additive and dominance 

effects) and individual-specific environmental 

influences. The twin-based heritability of FI was greater 

in women than in men, but there was no strong evidence 

of qualitative sex difference, indicating that the same 

genes, although at different magnitudes, are influencing 

FI in both sexes. There was small-to-moderate genetic 

overlap between FI and BMI, and a complete overlap of 

the environmental factors common to twins within pairs 

between FI and education, suggesting different 

mechanisms on how BMI and education influence the 

risk of frailty. In addition, moderation analysis showed 

that the total variance of FI varies with levels of BMI 

and years of education, so that genetic influence on 

frailty was greater at both low and high levels of BMI, 

but the heritability of FI did not seem to differ across 

education years. 

 
Our finding that much of the FI variance is due to 

genetic factors is in line with two prior UK twin studies 

analyzing variance components of FI, which reported a 

heritability of 30–45% [10, 11]. By contrast, it is higher 

than the SNP-based heritability of 14% estimated in a 

recent genome-wide association study (GWAS) [22], 

which may be partly due to the overestimation of 

heritability in twin studies [25], or that GWAS does not 

include non-additive genetic effects, as observed in the 

current study, and it has limited power to detect rare 

genetic variants that normally exist in complex traits 

like frailty [25, 26]. Environmental factors shared by 

members within twin pairs, which are usually those 

from childhood such as family environment, have 

negligible influence on frailty. Instead, a substantial 

proportion of the variation of FI is shaped by 

environmental factors unique to individuals, although 

this component also includes measurement error. This 

may reflect the multidimensional nature of frailty, in 

which diverse physical, social, behavioral and 

psychological factors have been linked to the elevated 

risk of frailty [12–14].  

 

To our knowledge, this is the first study that has 

formally examined sex differences in the heritability of 

frailty. We observed rather small, but significantly 

greater heritability in women (52%) than in men (45%); 

meanwhile, there was weak and statistically non-

significant qualitative sex difference. A higher 

heritability of some psychological and neurological 

traits, such as depression [27], pain [28], and insomnia 

[29], has also been observed among women, which is

 

 
 

Figure 2. Moderation analysis of frailty index (FI) by (A) body mass index (BMI) and (B) education, stratified by sex. First row shows the 
absolute variance of FI, while the second row shows the proportion of FI variance explained by total genetic (H, indicating sum of additive and 
dominance genetic factors) and unique environmental (E) factors, with changes in BMI and education. Variance estimates of moderation by 
BMI were obtained from the full ADE bivariate moderation model between FI and BMI; while variance estimates of moderation by education 
were obtained from the ADE extended univariate moderation model between FI and education. Quantitative sex-differences were allowed in 
the models to obtain estimates separately for men and women. Models were adjusted for age. Note: Model-fitting results can be found in 
Supplementary Tables 5, 6. 
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attributed at least partly to the higher prevalence of 

these traits in women. Similarly, women may also be 

more genetically susceptible to frailty, given that the 

genetic underpinnings of frailty have been found to be 

associated with neurological pathways [22]. Another 

possible explanation to the difference in variance 

components across sex may be that men tend to report 

health problems less accurately [30], leading to an 

inflation of the E component. Notably, the total 

variance of FI was also higher in women than in men, 

reflecting the fact that women tend to have higher 

levels of frailty across the age range. The apparent sex 

difference may merely be owing to the overall greater 

variation of FI in women, instead of disparities in 

variance structure across sex, as shown in other traits 

such as BMI [31]. Furthermore, the observed sex 

difference is not immense, yet statistically significant, 

perhaps also due to our large sample that provided 

enough statistical power. More research is warranted 

to further investigate if sex differences in genetic and 

environmental factors contribute to the sex-specificity 

of frailty. 

 

Our second aim was to assess the overlap in genetic and 

environmental influences of FI with BMI and education. 

There was a small-to-moderate genetic correlation 

between FI and BMI, suggesting that frailty and BMI 

may in part be influenced by the same genes. This may 

be attributable to their shared underlying mechanisms of 

energy metabolism and inflammation, known to be 

associated with both frailty [32, 33] and BMI [34, 35]. 

Also, genes related to synaptic pathways, were found to 

be enriched in the genetic architecture of frailty [22], 

and likewise may affect BMI [35]. On the other hand, 

we found a relatively low genetic correlation between 

FI and education; instead, despite small and non-

significant common environmental variance component 

of FI, it explains a large proportion of the correlation 

between FI and education, suggesting the relative 

importance of family environment on the education-

frailty association. Previous studies found that genes 

associated with educational attainment have an inverse 

relationship with frailty [22, 36]; our finding may 

therefore imply a possible mechanism that education-

associated genes are not directly influencing frailty, but 

indirectly through affecting individuals’ socioeconomic 

circumstances [37]. The better family environment may 

then contribute to higher educational attainment and 

consequently prevention of frailty development, through 

the improved health literacy that higher education in the 

family brings [38, 39], as well as the health seeking 

behavior that is especially characteristic to women with 

high education [40]. It is however important to note that 
the common environmental factors of FI itself were 

small and not statistically significant and should be 

interpreted with caution. 

Finally, we saw significant moderating effects on the 

genetic and unique environmental variance 

components of FI by both BMI and education, and the 

patterns were generally similar in men and women, 

although sensitivity analysis showed less evidence of 

moderation by BMI on the transformed FI in women. 

The overall variance of FI, as well as the relative 

proportion of genetic variance component were higher 

at both low and high BMI levels, which follows the 

U-shaped association between BMI and physical 

frailty reported in the literature [16–18]. This 

indicates that in individuals whose BMI falls outside a 

healthy range, especially those with obesity 

(BMI>30), the increased risk of frailty may be due to 

their more pronounced expression of genetic 

susceptibilities to frailty. On the other hand, the 

reduced FI variance with increased years of education 

is congruent to previous literature showing smaller 

variance of health status at higher education levels 

[41]. Meanwhile, the proportions of genetic and 

unique environmental variance components over the 

total variance did not seem to differ over education 

years, suggesting that genetic and individual-specific 

environmental factors may have a stable contribution 

to frailty, independent of education.  

 

This study included a population-representative adult 

twin sample, which provided enough statistical power 

to examine sex differences in heritability of frailty. 

We also used a validated FI as the frailty measure, 

which was shown to predict higher risk of all-cause, 

cardiovascular disease, and respiratory-related 

mortality from midlife to old age [42]. Nevertheless, 

several limitations should be considered. First, given 

the cross-sectional nature of our data, we could not 

establish causal relationships among BMI, education 

and FI. Whether the variance components change with 

age should also be researched in future longitudinal 

studies with repeated measurements of frailty. 

Second, measures of frailty items, BMI, and education 

are all based on self-reported data, possibly causing 

misclassification and inaccurate reporting, especially 

in men [43]. Third, due to the different contribution of 

dominance genetic factors and common 

environmental factors to the variance of FI and 

education, all bivariate models for FI and education 

provided a poor fit, and we were unable to include 

both C and D parameters in the same statistical model 

with only reared-together twins in a classical twin 

design. Finally, there are some inherent limitations of 

twin modelling such as potential overestimation of 

heritability [25] and violation on the assumptions of 

equal environments (i.e., MZ and DZ twins are treated 
the same) and random mating in population (i.e., no 

assortment), although these should have minimal 

effects on the heritability estimates [44]. 
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Overall, our findings demonstrate that individual 

differences in frailty are attributable to both genetic and 

individual-specific environmental factors. Sex 

differences are evident, in which women have a slightly 

higher heritability of frailty than men, yet there is 

limited evidence of different genetic factors influencing 

frailty in men and women. Furthermore, the two main 

risk factors of frailty, BMI outside a healthy range and 

low education, seem to operate through different 

mechanisms in frailty development, highlighting the 

relative importance of genes and family environment on 

the associations of frailty with BMI and education, 

respectively. These results would help in expanding our 

current understanding on the individual differences in 

frailty. 

 

MATERIALS AND METHODS 
 

Study population 

 

Twin participants were from SALT, which is part of the 

population-based Swedish Twin Registry [45]. During 

1998–2002, all twins born in 1958 or before were 

invited to attend a telephone interview with questions 

on common diseases, symptoms, medication use, 

demographics, and lifestyle factors. With a response 

rate of 65% for those born in 1886–1925 and 74% for 

those born in 1926–1958, a total of 44,919 twin 

individuals participated in the survey [46]. Zygosity was 

determined based on DNA, or questions on intra-pair 

similarities during childhood; the latter method was 

over 95% accurate when validated against DNA testing 

[47]. This study has been approved by the Swedish 

Ethical Review Authority in Stockholm. Informed 

consent was obtained from all participants prior to data 

collection. 

 

For the present analysis, we excluded those with 

uncertain zygosity and those who had over 20% missing 

data across the 44 frailty items, leaving n = 42,994 

consisting of 31,922 paired and 11,072 single 

respondents, aged from 41 to 99 years. Single twin 

individuals were retained as they contribute to the 

mean, variance and within-individual covariance 

estimates. Twins were grouped by zygosity: 4,788 MZ 

males (1,820 complete pairs), 5,997 MZ females (2,438 

complete pairs), 7,640 DZ same-sex males (2,633 

complete pairs), 8,808 DZ same-sex females (3,279 

complete pairs), and 15,761 DZ opposite-sex 

individuals (5,791 complete pairs). 

 

Measures 

 

We constructed an FI based on Rockwood’s deficit 

accumulation model [3], using a total of 44 self-

reported frailty items selected from a wide range of 

health-status related symptoms, signs, disabilities, and 

diseases in various biological systems (items listed in 

Supplementary Table 1). Each respondent’s frailty 

items were summed up and divided by the total number 

of deficits measured (i.e., 44 in this study), yielding a 

continuous FI score ranging from 0 to 1. For instance, 

an individual with five deficits would have an FI of 5/44 

= 0.11. The FI in SALT has previously been validated 

for its ability to predict mortality [42]. 

 

Information on body mass index (BMI) and education 

were obtained from self-reported data. BMI was 

calculated as weight (kg) divided by height-squared 

(m2). We defined education as a continuous variable of 

the number of years of education completed. 

 

Statistical analysis 

 

Twin design 

The classical twin design allows decomposition of 

phenotypic variance into genetic and environmental 

sources, based on the fact that MZ twins are genetically 

identical while DZ twins share on average half of their 

segregating alleles. Genetic sources of variance include 

additive genetic variance (A, representing the sum of 

allelic effects at different loci that influence the trait) 

and dominance genetic variance (D, representing 

interactions between alleles at the same locus). In MZ 

twins, both A and D correlate 100%; while in DZ twins, 

A and D are assumed to correlate 50% and 25% 

respectively. The sum of A and D influences is referred 

to as the broad-sense heritability (H), which is the 

proportion of phenotypic variance that can be explained 

by genetic effects. On the other hand, environmental 

sources of variance include common environmental 

factors (C) such as family environment and 

environments that are in common or correlated in 

adulthood, which correlate 100% in both MZ and DZ 

twins; and unique environmental factors (E) which are 

uncorrelated between twins and contribute to 

differences between them. The E component also 

contains measurement error. In addition to variance, 

phenotypic covariance can also be partitioned into the 

same sources of influence, indicating the extent to 

which genetic and environmental variance components 

overlap across two or more traits. 

 

Phenotypic, intraclass and cross-twin cross-trait 

correlations 

For initial inspection of the familial similarity for MZ 

and DZ twin pairs, we estimated intraclass correlations 

for FI, BMI and education, which show how much each 

trait correlates within twin pairs. A higher MZ 
correlation than DZ correlation indicates contribution of 

genetics to variance in the trait. If DZ correlation is less 

than half of the MZ correlation, the D component is 
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inferred; on the contrary, the C component is implied if 

DZ correlation is greater than half of the MZ 

correlation. A MZ correlation less than 1 indicates 

presence of E. 

 

Within-individual between-trait correlations, which we 

refer to as “phenotypic correlations”, were calculated 

for FI with BMI and education. To explore the genetic 

and environmental sources of covariances, we 

computed cross-twin cross-trait correlations, which 

represent the strength of relationship between one trait 

of the first twin and another trait of the second twin. 

They can be interpreted in a similar way as intraclass 

correlations. For example, a larger cross-twin cross-trait 

correlation in MZ than DZ twins suggests that 

phenotypic correlation between the two traits is partially 

owing to common genetic influences; and if MZ cross-

twin cross-trait correlation is less than the phenotypic 

correlation then E is present. 

 

Phenotypic, intraclass and cross-twin cross-trait 

correlations across zygosity were estimated from 

constrained saturated models in which means, variances 

and phenotypic correlations were equated across twin 

order. Age was regressed out of the means (as linear 

effect for FI and linear+quadratic effect for BMI and 

education, after initial investigation of associations 

between variables), so that twin correlations are not 

spuriously inflated due to the same age of twins in pairs. 
 

Univariate twin modelling 

Before model fitting, we checked and observed no 

violations in the assumptions of equal means and 

variances across twin order and zygosity. Univariate 

twin models were fitted to estimate variance 

components of FI, after adjusting for age. Since C and 

D are confounded in classical twin modelling, either an 

ACE or ADE model can be fitted at a time. Sex 

differences were allowed in the models to examine 

whether genetic influence on FI differs across sex 

quantitatively (i.e., different magnitude of heritability in 

men and women) and qualitatively (i.e., different 

genetic sources in men and women). Quantitative sex 

differences were modelled by allowing variance 

components to differ among men and women. 

Qualitative sex differences were estimated by 

multiplying a genetic correlation term (rfm) to the 

expected genetic covariance of opposite-sex twin pairs, 

where a value of 1 would imply maximum genetic 

correlation (see Supplementary Methods for details). 

ACE or ADE sex-limitation models were then 

compared with their reduced models. We examined 

quantitative sex difference by constraining the broad-
sense heritability to be equal in men and women (but 

allowing total variance to differ across sex) and tested if 

there was a significant reduction in model fit. 

Qualitative sex difference was assessed by testing 

whether rfm was significantly less than 1. AE models 

were fitted to determine if the C and D parameters can 

be excluded from ACE and ADE models. 

 

Bivariate twin modelling 

During assumption testing, all means and variances 

could be equated across twin order and zygosity, except 

that equating means of education across zygosity led to 

a significant decrease in model fit, so they were 

estimated separately in subsequent bivariate models. A 

“correlated factor model” [48] was applied to estimate 

the etiological correlations between genetic (rA and rD) 

and environmental (rC and rE) variance components of 

FI with BMI and education, apart from estimating 

variance components of each variables. We define the 

correlation between A+D in trait X and A+D in trait Y 

as the broad-sense genetic correlation, rH. Correlation of 

±1 indicates complete overlap, while 0 indicates no 

overlap. Bivariate heritability was also calculated, 

which is referred to as the proportion of phenotypic 

correlation explained by genetic covariation. Since 

estimates of A and D components are highly dependent, 

as shown by non-significant A and D estimates, we 

estimated the broad-sense heritability and interpreted in 

ADE models to indicate the total genetic effects. Only 

same-sex twins were included in the bivariate 

quantitative sex-limitation models, and variance 

components and etiological correlations were estimated 

separately by sex, after adjusting for age. 

 

Moderation analysis 

In previous univariate and bivariate models, we assumed 

that variance components of FI were constant across the 

population (i.e., no gene-environment interaction). We 

relaxed this assumption and examined whether the genetic 

and environmental influences on FI are moderated by 

different levels of BMI and education. Moderation may 

occur on the variance that is unique to FI; for example, 

changes in genetic variance components of FI with years 

of education would suggest differential genetic sensitivity 

of FI to education levels. Furthermore, moderation may 

exist on the covariance between FI and the moderator, for 

example, the genetic correlation between FI and BMI may 

vary with different levels of BMI. To investigate these 

possible moderating effects, we adopted the full bivariate 

moderation models developed by Purcell [49], and the 

extended univariate moderation models proposed by van 

der Sluis et al [23] (Supplementary Figures 4, 5). By the 

bivariate moderation models, we first assessed if there 

were significant moderating effects on the covariance of 

FI with BMI and education on top of the variance unique 

to FI. In case of no statistically significant moderation on 
the covariance between FI and the moderator, the 

extended univariate moderation models were employed 

instead. All moderating effects were examined separately 
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by sex in quantitative sex-limitation models using same-

sex twins and controlled for age. Absolute genetic and 

environmental variance components of FI, as well as their 

proportions to the total variance, were plotted over BMI 

and education.  

 

Sensitivity analysis 

Since the FI variable is positively skewed 

(Supplementary Figure 6), we followed previous work 

and applied a square-root transformation to obtain an 

approximately normally-distributed FI [10, 11]. 

Univariate twin modelling and moderation analysis of 

the transformed FI were then performed to check for 

robustness of our results. We additionally compared 

our results of univariate and bivariate twin modelling 

with models fitted using the “direct symmetric 

approach” proposed by Verhulst et al. [24], which 

allows variance estimates to be negative and 

potentially reduces Type I error rates. 

 

For all fitted models, we used the full information 

maximum-likelihood modelling in the R package 

OpenMx (version 2.17.3) for estimation of parameters 

that best fit the observed data. Changes in goodness of 

fit of models (distributed as χ2) were assessed by 

likelihood ratio tests, where significant values indicate 

worse fit of observed data. Akaike information criterion 

(AIC; a lower value is better) was used to select the 

most parsimonious and best-fitting models. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. Variance components of frailty index (FI) by (A) body mass index (BMI) and (B) education from moderation 
analysis, stratified by sex. First row shows the absolute variance of FI, while the second row shows the proportion of FI variance explained by 
additive genetic (A), dominance genetic (D) and unique environmental (E) factors, with changes in BMI and education. Variance estimates of 
moderation by BMI were obtained from the full ADE bivariate moderation model between FI and BMI; while the variance estimates of 
moderation by education were obtained from the ADE extended univariate moderation model between FI and education. Quantitative sex-
differences were allowed in the models to obtain estimates separately for men and women. Models were adjusted for age. 
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Supplementary Figure 2. Common and unique variance components of frailty index (FI) by body mass index (BMI) from 
moderation analysis, stratified by sex. First row shows the absolute variance of FI, while the second row shows the proportion of FI 

variance explained by additive genetic (A), dominance genetic (D) and unique environmental (E) factors, with changes in BMI levels. Variance 
estimates were obtained from the full ADE bivariate moderation model between FI and BMI. Quantitative sex-differences were allowed in 
the models to obtain estimates separately for men and women. Models were adjusted for age. 

 

 
 

Supplementary Figure 3. Variance components of square-root transformed frailty index [sqrt(FI)] by (A) body mass index (BMI) and (B) 

education from moderation analysis, stratified by sex. First row shows the absolute variance of sqrt(FI), while the second row shows the 
proportion of sqrt(FI) variance explained by additive genetic (A), dominance genetic (D) and unique environmental (E) factors, with changes 
in BMI and education. Variance estimates of moderation by BMI were obtained from the full ADE bivariate moderation model between 
sqrt(FI) and BMI; while variance estimates of moderation by education were obtained from the ADE extended univariate moderation model 
between sqrt(FI) and education. Quantitative sex-differences were allowed in the models to obtain estimates separately for men and 
women. Models were adjusted for age. 
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Supplementary Figure 4. Full bivariate moderation model between frailty index (FI) and body mass index (BMI) (for one 
twin). A, additive genetic factors; D, dominance genetic factors; E, unique environmental factors. AC, DC and EC indicate genetic and 

environmental influences common to FI and BMI; while AU, DU and EU indicate genetic and environmental influences unique to FI. Total 
variance of FI by BMI is the sum of common and unique variance estimates; for example, the total additive genetic variance components of FI 
by BMI can be calculated as: (ac + βac BMI)2 + (au + βau BMI)2. 

 

 
 

Supplementary Figure 5. Extended univariate moderation model between frailty index (FI) and education (for one twin). A, 

additive genetic factors; D, dominance genetic factors; E, unique environmental factors. Mean of FI is adjusted for the moderator (i.e. 
education) of both the individual and his/her co-twin. 
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Supplementary Figure 6. Distribution of frailty index (FI) among men and women (n = 42,994). Left panel shows the distribution 
of the untransformed FI, while right panel shows the distribution of the square-root transformed FI. Red color indicates men, while green 
color indicates women. 
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Supplementary Tables 
 

Supplementary Table 1. List of the 44 frailty items and the scoring used for construction of frailty index (FI). 

No. Frailty item Scoring 

1 General health status 
Excellent=0; Good=0.25; Average=0.5; Not so 

good=0.75; Bad=1 

2 Health status prevents from doing things normally would like to do 
Not at all=0; To some extent=0.5; 

A great deal=1 

3 Serious infections per year (other than respiratory) 0-1 time=0; 2-5 times=0.5; ≥5 times=1 

4 Buzzing in ears No=0; One ear/ both ears=1 

5 Angina pectoris No=0; Yes=1 

6 Heart attack No=0; Yes=1 

7 Heart failure No=0; Yes=1 

8 High blood pressure No=0; Yes=1 

9 Lipid disorder (e.g. high cholesterol, high triglycerides) No=0; Yes=1 

10 Vascular spasm in legs (intermittent claudication) No=0; Yes=1 

11 Clot in leg (venous thrombosis) No=0; Yes=1 

12 Cerebral hemorrhage or clot in brain (stroke) No=0; Yes=1 

13 TIA attacks (temporary weakness, paralysis or reduction of sensibility) No=0; Yes=1 

14 Irregular cardiac rhythm/ atrial fibrillation No=0; Yes=1 

15 Chronic lung disease (incl. chronic bronchitis, emphysema) No=0; Yes=1 

16 Dizziness No=0; Yes=1 

17 Rheumatoid arthritis No=0; Yes=1 

18 Knee joint problem No=0; Yes=1 

19 Sciatica No=0; Yes=1 

20 Osteoporosis No=0; Yes=1 

21 Hip joint problem No=0; Yes=1 

22 Back pain No=0; Yes=1 

23 Neck pain No=0; Yes=1 

24 Diabetes (incl. old age diabetes; excl. pregnancy diabetes) No=0; Yes=1 

25 Goiter No=0; Yes=1 

26 Glandular diseases (excl. goiter) No=0; Yes=1 

27 Gall bladder problem No=0; Yes=1 

28 Liver disease (e.g. cirrhosis) No=0; Yes=1 

29 Gout No=0; Yes=1 

30 Kidney disease No=0; Yes=1 

31 Stomach or intestine problems No=0; Yes=1 

32 Recurring urinary tract problems No=0; Yes=1 

33 Cancer, tumor disease or leukemia No=0; Yes=1 

34 Migraine No=0; Yes=1 

35 Asthma No=0; Yes=1 

36 Allergy No=0; Yes=1 

37 Recurrent periods of coughing No=0; Yes=1 

38 Feeling depressed during the past week 
Never/ almost never=0; Seldom=0.5; Often/ 

always/ almost always=1 

39 Feeling happy during the past week 
Never/ almost never=0; Seldom=0.5; Often/ 

always/ almost always=1 

40 Feeling lonely during the past week 
Never/ almost never=0; Seldom=0.5; Often/ 

always/ almost always=1 

41 Physical handicap No=0; Yes=1 

42 Crohn's disease or ulcerative colitis No=0; Yes=1 

43 Vision 
Good=0; Reduced=0.5; Highly reduced/ 

blind=1 

44 Hearing Good=0; Reduced=0.5; Highly reduced=1 
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Supplementary Table 2. Unadjusted phenotypic correlations, intraclass correlations and cross-twin cross-trait 
correlations for frailty index (FI), body mass index (BMI) and education. 

Zygosity 
Phenotypic correlations Intraclass correlations Cross-twin cross-trait correlations 

FI and BMI FI and Education FI BMI Education FI and BMI FI and Education 

Total 0.13 (0.12, 0.14) -0.17 (-0.18, -0.16)      

MZ 0.12 (0.09, 0.14) -0.17 (-0.19, -0.15) 0.53 (0.51, 0.56) 0.69 (0.67, 0.70) 0.71 (0.69, 0.72) 0.09 (0.07, 0.12) -0.16 (-0.18, -0.13) 

DZ 0.14 (0.13, 0.15) -0.17 (-0.18, -0.16) 0.23 (0.21, 0.25) 0.24 (0.22, 0.26) 0.50 (0.49, 0.52) 0.07 (0.06, 0.08) -0.16 (-0.17, -0.15) 

MZ males 0.11 (0.08, 0.14) -0.17 (-0.20, -0.14) 0.47 (0.43, 0.51) 0.66 (0.63, 0.68) 0.69 (0.67, 0.72) 0.09 (0.05, 0.12) -0.14 (-0.17, -0.10) 

MZ females 0.16 (0.13, 0.19) -0.18 (-0.21, -0.15) 0.55 (0.52, 0.58) 0.69 (0.67, 0.71) 0.72 (0.70, 0.74) 0.14 (0.11, 0.17) -0.17 (-0.20, -0.14) 

DZ males 0.10 (0.07, 0.12) -0.17 (-0.19, -0.15) 0.19 (0.15, 0.23) 0.27 (0.24, 0.31) 0.50 (0.47, 0.53) 0.03 (0.00, 0.06) -0.15 (-0.18, -0.13) 

DZ females 0.20 (0.18, 0.22) -0.17 (-0.19, -0.15) 0.28 (0.25, 0.31) 0.32 (0.29, 0.35) 0.57 (0.55, 0.59) 0.12 (0.09, 0.14) -0.16 (-0.19, -0.14) 

DZ opposite-sex 0.10 (0.08, 0.13) -0.17 (-0.19, -0.15) 0.21 (0.18, 0.23) 0.18 (0.16, 0.21) 0.47 (0.45, 0.49) 0.03 (0.00, 0.06) -0.14 (-0.17, -0.12) 

Note: MZ, monozygotic twins; DZ, dizygotic twins. Phenotypic correlations are the within-individual correlations between FI 
and BMI, and between FI and education. Intraclass correlations indicate the extent to which each trait correlates within twin 
pairs. Cross-twin cross-trait correlations show the extent to which FI of the first twin correlate with the other trait (i.e. BMI or 
education) of the second twin. 95% confidence intervals are presented in parentheses. 

 

Supplementary Table 3. Model fitting results from bivariate models of frailty index (FI) with body mass index 
(BMI) and education. 

Model -2LL df AIC ΔLL Δdf p 

Bivariate FI and BMI       

Saturated 203422.9 53568 96287 - - - 

ACE bivariate       

Quantitative sex-limitation 203503.7 53602 96300 80.8 34 1.12x10-5 

No sex difference 203548.6 53609 96331 125.6 41 1.60x10-10 

ADE bivariate       

Quantitative sex-limitation 203459.9 53602 96256 36.9 34 0.335 

No sex difference 203485.9 53605 96276 63.0 37 4.90x10-3 

AE bivariate       

Quantitative sex-limitation 203503.7 53608 96288 80.8 40 1.43x10-4 

No sex difference 203548.6 53612 96325 125.6 44 8.73x10-10        
       

Bivariate FI and education       

Saturated 198109.0 54150 89809 - - - 

ACE bivariate       

Quantitative sex-limitation 198175.0 54182 89811 65.9 32 3.84x10-4 

No sex difference 198208.4 54189 89830 99.4 39 3.53x10-7 

ADE bivariate       

Quantitative sex-limitation 198300.4 54182 89936 191.4 32 1.29x10-24 

No sex difference 198315.7 54185 89946 206.7 35 3.18x10-26 

AE bivariate       

Quantitative sex-limitation 198328.3 54188 89952 219.3 38 2.39x10-27 

No sex difference 198360.8 54192 89977 251.8 42 1.02x10-31 

Note: AIC, Akaike’s Information Criterion; LL, log-likelihood; df, degrees of freedom; p, p-values of likelihood ratio tests 
compared with the saturated models. Opposite-sex twins were excluded in the bivariate analyses. All bivariate models 
between FI and education had significant worse model fit than the saturated model, since an ADE model fits better for FI 
while an ACE model fits better for education. During assumption testing, equating means of education across zygosity 
resulted in a significantly worse fit of data compared to the saturated model; therefore, means of education were estimated 
separately across zygosity in bivariate models between FI and education. All models were adjusted for age (as linear effect 
for FI, and linear+quadratic effect for BMI and education). Best-fitting models are shown in bold, and the parameter 
estimates of these models are presented in Supplementary Table 4. 
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Supplementary Table 4. Parameter estimates (95% CI) from the best-fitting bivariate models. 

Model 
Variance components Genetic and environmental correlations Bivariate heritability 

A D/C H E rA rD / rC rH rE Bivariate A Bivariate D/C Bivariate H Bivariate E 

ADE bivariate model between FI and BMI 

FI 
M: 6% 

(0, 22) 

M: 38% 

(21, 54) 

M: 44% 

(40, 48) 

F: 56% 

(52, 60) 
        

 F: 42% 

(28, 55) 

F: 11% 

(0, 25) 

F: 53% 

(50, 55) 

F: 47% 

(45, 50) 
        

BMI 
M: 41% 

(27, 55) 

M: 25% 

(10, 39) 

M: 66% 

(64, 68) 

M: 34% 

(32, 36) 

M: 0.61 

(-0.25, 1.46) 

M: 0.01 

(-0.33, 0.36) 

M: 0.19 

(0.14, 0.23) 

M: 0.05 

(0.01, 0.10) 

M: 78% 

(-3, 159) 

M: 3% 

(-82, 88) 

M: 81% 

(65, 97) 

M: 19% 

(3, 35) 

 F: 56% 

(42, 69) 

F: 13% 

(0, 27) 

F: 69% 

(67, 71) 

F: 31% 

(29, 33) 

F: 0.48 

(0.29, 0.67) 

F: -0.64 

(-1.70, 0.42) 

F: 0.26 

(0.22, 0.29) 

F: 0.06 

(0.02, 0.10) 

F: 130% 

(79, 181) 

F: -43% 

(-96, 10) 

F: 87% 

(78, 95) 

F: 13% 

(5, 22) 

ACE bivariate model between FI and education 

FI 
M: 39% 

(35, 43) 

M: 1% 

(0, 3) 

M: 39% 

(35, 43) 

M: 60% 

(56, 63) 
        

 F: 51% 

(48, 54) 

F: 1% 

(0, 3) 

F: 51% 

(48, 54) 

F: 48% 

(46, 51) 
        

Education 
M: 41% 

(34, 48) 

M: 25% 

(19, 31) 

M: 41% 

(34, 48) 

M: 35% 

(32, 37) 

M: -0.02 

(-0.15, 0.11) 

M: -1.00 

(-1.00, -1.00) 

M: -0.02 

(-0.15, 0.11) 

M: -0.06 

(-0.10, -0.01) 

M: 8% 

(-46, 61) 

M: 65% 

(23, 107) 

M: 8% 

(-46, 61) 

M: 28% 

(6, 49) 

 F: 35% 

(29, 42) 

F: 29% 

(23, 34) 

F: 35% 

(29, 42) 

F: 36% 

(34, 38) 

F: -0.04 

(-0.15, 0.07) 

F: -1.00 

(-1.00, -1.00) 

F: -0.04 

(-0.15, 0.07) 

F: -0.01 

(-0.05, 0.03) 

F: 22% 

(-40, 84) 

F: 74% 

(22, 126) 

F: 22% 

(-40, 84) 

F: 4% 

(-17, 25) 

Note: BMI, body mass index; FI, frailty index; CI, Wald-type confidence interval; A, additive genetic factors; D, dominance 
genetic factors; H, total genetic factors/ broad-sense heritability; C, common environmental factors; E, unique environmental 
factors; r, correlation between variance components. M and F represents parameter estimates for men and women 
respectively. Bivariate heritability is the proportion of phenotypic correlation explained by genetic and environmental factors. 

 

Supplementary Table 5. Model fitting results from moderation models of frailty index (FI) by body mass index 
(BMI). 

Model -2LL df AIC Comp ΔLL Δdf p 

ACE bivariate        

1. Full moderation 146418.0 38963 68492 - - - - 

ADE bivariate        

2. Full moderation 146354.9 38963 68429 - - - - 

3. Drop all covariance moderation 146453.0 38969 68515 2 98.1 6 6.29x10-19 

4. Drop all moderation 146653.5 38975 68704 2 298.7 12 9.01x10-57 

AE bivariate        

5. Full moderation 146489.1 38973 68543 2 134.2 10 6.34x10-24 

6. Drop all covariance moderation 146615.8 38977 68662 5 126.7 4 1.96x10-26 

7. Drop all moderation 146697.7 38981 68736 5 208.6 8 9.73x10-41 

Note: AIC, Akaike’s Information Criterion; Comp, model of comparison; df, degrees of freedom; LL, Log-likelihood; p,  
p-values of likelihood ratio tests compared with the models of comparison. Opposite-sex twins were excluded in the models. 
Quantitative sex differences were allowed to obtain separate estimates for men and women. All models were adjusted for 
age (as linear effect for FI, and linear+quadratic effect for BMI). Best-fitting model is shown in bold. 
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Supplementary Table 6. Model fitting results from moderation models of frailty index (FI) by education. 

Models -2LL df AIC Comp ΔLL Δdf p 

ACE bivariate        

1. Full moderation 145282.4 40231 64820 - - - - 

2. Drop all covariance moderation 145289.7 40237 64816 1 7.3 6 0.297 

3. Drop all moderation 145537.7 40243 65052 1 255.3 12 1.09x10-47 

ADE bivariate        

4. Full moderation 145418.6 40231 64957 - - - - 

5. Drop all covariance moderation 145423.2 40237 64949 4 4.6 6 0.592 

6. Drop all moderation 145665.6 40243 40243 4 247.0 12 5.71x10-46 

AE bivariate        

7. Full moderation 145450.9 40241 64969 1 168.4 10 5.92x10-31 

8. Drop all covariance moderation 145454.7 40245 64965 7 3.8 4 0.432 

9. Drop all moderation 145694.2 40249 65196 7 243.3 8 4.42x10-48 

ACE extended univariate        

10. Full moderation 47816.3 20109 7598 - - - - 

11. Drop all moderation 48064.9 20115 7835 10 248.6 6 8.24x10-51 

ADE extended univariate        

12. Full moderation 47793.4 20109 7575 - - - - 

13. Drop all moderation 48039.4 20115 7809 12 246.0 6 2.90x10-50 

AE extended univariate        

14. Full moderation 47823.0 20113 7597 12 29.6 - - 

15. Drop all moderation 48064.9 20117 7831 14 241.9 4 3.69x10-51 

Note: AIC, Akaike’s Information Criterion; Comp, model of comparison; df, degrees of freedom; LL, log-likelihood; p, p-values 
of likelihood ratio tests compared with the models of comparison. Opposite-sex twins were excluded in the models. 
Quantitative sex differences were allowed to obtain separate estimates for men and women. Bivariate models were adjusted 
for age (as linear effect for FI, and linear+quadratic effect for education); extended univariate models were adjusted for age, 
as well as education for both the individual and the co-twin. Best-fitting model is shown in bold. Due to the non-significant 
moderation on the covariance between FI and education in the bivariate models, the more parsimonious ADE extended 
univariate model was used. 
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Supplementary Table 7. Model fitting results and parameter estimates from univariate sex-limitation models of 
the square-root transformed frailty index [sqrt(FI)]. 

Model 
Model fit statistics Parameter estimates for men and women (95% CI) 

AIC ΔLL Δdf p A D/C H E rfm 

Saturated -146609 - - - - - - - - 

ADE full sex-limitation -146620 20.6 16 0.196 
M: 7% (0, 23) 

F: 40% (27, 53) 

M: 34% (17, 50) 

F: 10% (0, 24) 

M: 41% (38, 45) 

F: 50% (47, 53) 

M: 59% (55, 62) 

F: 50% (47, 53) 
0.68 (0.49, 0.93) 

ADE quantitative sex-limitation -146621 21.4 17 0.208 
M: 0% (0, 1) 

F: 40% (26, 53) 

M: 41% (38, 45) 

F: 10% (0, 24) 

M: 42% (38, 45) 

F: 50% (47, 53) 

M: 58% (55, 62) 

F: 50% (47, 53) 
1.00 (NA) 

ADE no sex difference -146609 35.2 18 0.009 
M: 0% (0, 3) 

F: 43% (29, 57) 

M: 46% (41, 50) 

F: 3% (0, 17) 

M: 46% (44, 48) 

F: 46% (44, 48) 

M: 54% (52, 56) 

F: 54% (52, 56) 
1.00 (NA) 

ACE full sex-limitation -146602 38.7 16 0.001 
M: 38% (34, 41) 

F: 49% (46, 52) 

M: 0% (0, 0) 

F: 0% (0, 0) 

M: 38% (34, 41) 

F: 49% (46, 52) 

M: 62% (59, 66) 

F: 51% (48, 54)  
0.77 (0.65, 0.90) 

AE full sex-limitation -146606 38.7 18 0.003 
M: 38% (34, 41) 

F: 49% (46, 52) 

M: 0% (NA) 

F: 0% (NA) 

M: 38% (34, 41) 

F: 49% (46, 52) 

M: 62% (59, 66) 

F: 51% (48, 54) 
0.77 (0.65, 0.90)  

Note: AIC, Akaike’s Information Criterion; LL, log-likelihood; df, degrees of freedom; p, p-values of likelihood ratio tests 
compared with the saturated model. CIs are Wald-type confidence intervals with lower and upper bounds of 0 and 1. A, 
additive genetic factors; D, dominance genetic factors; C, common environmental factors; H, total genetic factors/ broad-
sense heritability; E, unique environmental factors; rfm, genetic correlation between men and women, estimated using 
opposite-sex twins. M and F represents parameter estimates for men and women respectively. Full sex-limitation models 
allowed both quantitative and qualitative sex differences. In ADE quantitative sex-limitation model, rfm was fixed to be 1. In 
ADE no sex difference model, broad-sense heritability of men and women were equated, but variance difference between 
sex was allowed. ACE and AE sub-models are not shown as the full models fit significantly worse than the saturated model. All 
models were adjusted for age. Best-fitting model is shown in bold. 

 

Supplementary Table 8. Model fitting results and parameter estimates from univariate sex-limitation models of 
the frailty index (FI) using “direct symmetric approach. 

Model 
Model fit statistics Parameter estimates for men and women (95% CI) 

AIC ΔLL Δdf p A D/C H E rfm 

Saturated 19953 - - - - - - - - 

ADE full sex-

limitation 

19940 19.1 16 0.264 M: 7% (-10, 23) M: 38% (20, 55) M: 44% (41, 48) M: 56% (52, 59) 0.69 (0.41, 0.96) 

    F: 41% (28, 55) F: 11% (-3, 25) F: 52% (50, 55) F: 48% (45, 50)  

ADE quantitative 

sex-limitation 

19939 19.7 17 0.288 M: 0% (0, 1) M: 44% (41, 48) M: 45% (41, 48) M: 55% (52, 59) 1.00 (NA) 

    F: 41% (28, 55) F: 11% (-3, 25) F: 52% (50, 55) F: 48% (45, 50)  

ADE no sex 

difference 

19949 32.1 18 0.021 M: 0% (-1, 2) M: 49% (45, 52) M: 49% (47, 51) M: 51% (49, 53) 1.00 (NA) 

    F: 44% (31, 58) F: 4% (-10, 19) F: 49% (47, 51) F: 51% (49, 53)  

ACE full sex-

limitation* 

19940 19.1 16 0.264 M: 63% (53, 74) M: -19% (-27, -10) M: 63% (53, 74) M: 56% (52, 59) 0.24 (-0.03, 0.51) 

    F: 58% (49, 66) F: -5% (-13, 2) F: 51% (49, 54) F: 48% (45, 50)  

AE full sex-limitation 
19957 40.4 18 0.002 M: 41% (37, 44) M: 0% (NA) M: 41% (37, 44) M: 59% (56, 63) 0.76 (0.64, 0.88) 

    F: 51% (49, 54) F: 0% (NA) F: 51% (49, 54) F: 49% (46, 51)  

Note: AIC, Akaike’s Information Criterion; LL, log-likelihood; df, degrees of freedom; p, p-values of likelihood ratio tests 
compared with the saturated model. CIs are Wald-type confidence intervals. Variance component estimates are allowed to 
be negative in the “direct symmetric approach” (Verhulst et al. 2019). A, additive genetic factors; D, dominance genetic 
factors; C, common environmental factors; H, total genetic factors/ broad-sense heritability; E, unique environmental factors; 
rfm, genetic correlation between men and women, estimated using opposite-sex twins. M and F represents parameter 
estimates for men and women respectively. Full sex-limitation models allowed both quantitative and qualitative sex 
differences. In ADE quantitative sex-limitation model, rfm was fixed to be 1. In ADE no sex difference model, broad-sense 
heritability of men and women were equated, but variance difference between sex was allowed. All models were adjusted 
for age. Best-fitting model is shown in bold. 
* An ACE quantitative sex-limitation model cannot be fitted due to an issue with the expected opposite sex twin covariance of 
√(VCm*VCf) (using notation from Verhulst et al.) when one common environmental component was negative, a problem 
identified in Verhulst et al. (2019). 

Supplementary Table 9. Model fitting results from bivariate models of frailty index (FI) with body mass index 
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(BMI) and education using “direct symmetric approach. 

Model -2LL df AIC ΔLL Δdf p 

Bivariate FI and BMI       

Saturated 203422.9 53568 96287 - - - 

ACE bivariate       

Quantitative sex-limitation 203459.9 53602 96256 36.9 34 0.335 

No sex difference 203510.4 53609 96292 87.5 41 3.26x10-5 

ADE bivariate       

Quantitative sex-limitation 203459.9 53602 96256 36.9 34 0.335 

No sex difference 203485.1 53605 96276 62.1 37 5.96x10-3 

AE bivariate       

Quantitative sex-limitation 203503.7 53608 96288 80.8 40 1.43x10-4 

No sex difference 203548.6 53612 96325 125.6 44 8.72x10-10        
       

Bivariate FI and education       

Saturated 198109.0 54150 89809 - - - 

ACE bivariate       

Quantitative sex-limitation 198147.1 54182 89783 38.1 32 0.213 

No sex difference 198186.2 54189 89808 77.2 39 2.60x10-4 

ADE bivariate       

Quantitative sex-limitation 198147.1 54182 89783 38.1 32 0.213 

No sex difference 198162.6 54185 89793 53.6 35 0.023 

AE bivariate       

Quantitative sex-limitation 198328.3 54188 89952 219.3 38 2.39x10-27 

No sex difference 198360.8 54192 89977 251.8 42 1.02x10-31 

Note: AIC, Akaike’s Information Criterion; LL, log-likelihood; df, degrees of freedom; p, p-values of likelihood ratio tests 
compared with the saturated models. Variance component estimates are allowed to be negative in the “direct symmetric 
approach” (Verhulst et al. 2019). Opposite-sex twins were excluded in the bivariate analyses. During assumption testing, 
equating means of education across zygosity resulted in a significantly worse fit of data compared to the saturated model; 
therefore, means of education were estimated separately across zygosity in bivariate models between FI and education. All 
models were adjusted for age (as linear effect for FI, and linear+quadratic effect for BMI and education). Best-fitting models 
are shown in bold, and the parameter estimates of these models are presented in Supplementary Table 10. 
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Supplementary Table 10. Parameter estimates (95% CI) from the best-fitting bivariate models using “direct 
symmetric approach”. 

Model 

Variance components Genetic and environmental correlations Bivariate heritability 

A D/C H E rA rD / rC rH rE 
Bivariate 

A 

Bivariate 

D/C 

Bivariate 

H 

Bivariate 

E 

ACE bivariate model between FI and BMI † 

FI 
M: 63% 

(52, 73) 

M: -19% 

(-27, -10) 

M: 63% 

(52, 73) 

F: 56% 

(52, 60) 
        

 F: 58% 

(50, 67) 

F: -5% 

(-13, 2) 

F: 58% 

(50, 67) 

F: 47% 

(45, 50) 
        

BMI 
M: 78% 

(70, 86) 

M: -12% 

(-19, -5) 

M: 78% 

(70, 86) 

M: 34% 

(34, 36) 

M: 0.15 

(0.05, 0.24) 
M: N/A* 

M: 0.15 

(0.05, 0.24) 

M: 0.05 

(0.01, 0.10) 

M: 82% 

(30, 135) 

M: -1% 

(-46, 43) 

M: 82% 

(30, 135) 

M: 19% 

(3, 35) 

 F: 75% 

(68, 82) 

F: -7% 

(-13, 0) 

F: 75% 

(68, 82) 

F: 31% 

(29, 33) 

F: 0.18 

(0.09, 0.26) 
F: N/A* 

F: 0.18 

(0.09, 0.26) 

F: 0.06 

(0.02, 0.10) 

F: 65% 

(34, 97) 

F: 22% 

(-6, 49) 

F: 65% 

(34, 97) 

F: 13% 

(5, 22) 

ADE bivariate model between FI and BMI † 

FI 
M: 6% 

(-10, 22) 

M: 38% 

(21, 55) 

M: 44% 

(40, 48) 

F: 56% 

(52, 60) 
        

 F: 42% 

(28, 55) 

F: 11% 

(-3, 25) 

F: 53% 

(50, 55) 

F: 47% 

(45, 50) 
        

BMI 
M: 41% 

(28, 55) 

M: 25% 

(11, 39) 

M: 66% 

(64, 68) 

M: 34% 

(32, 36) 

M: 0.61 

(-0.34, 1.56) 

M: 0.01 

(-0.36, 0.38) 

M: 0.19 

(0.14, 0.23) 

M: 0.05 

(0.01, 0.10) 

M: 78% 

(-8, 165) 

M: 3% 

(-88, 94) 

M: 81% 

(65, 97) 

M: 19% 

(3, 35) 

 F: 56% 

(44, 67) 

F: 13% 

(2, 25) 

F: 69% 

(67, 71) 

F: 31% 

(29, 33) 

F: 0.48 

(0.28, 0.68) 

F: -0.64 

(-1.71, 0.43) 

F: 0.26 

(0.22, 0.29) 

F: 0.06 

(0.02, 0.10) 

F: 130% 

(76, 184) 

F: -43% 

(-99, 13) 

F: 87% 

(78, 95) 

F: 13% 

(5, 22) 

ACE bivariate model between FI and education ‡ 

FI 
M: 63% 

(52, 73) 

M: -19% 

(-27, -10) 

M: 63% 

(52, 73) 

M: 56% 

(52, 59) 
        

 F: 58% 

(49, 66) 

F: -5% 

(-12, 2) 

F: 58% 

(49, 66) 

F: 47% 

(45, 50) 
        

Education 
M: 41% 

(34, 48) 

M: 24% 

(18, 30) 

M: 41% 

(34, 48) 

M: 35% 

(32, 37) 

M: 0.05 

(-0.08, 0.17) 
M: N/A* 

M: 0.05 

(-0.08, 0.17) 

M: -0.07 

(-0.11, 0.02) 

M: -24% 

(-91, 43) 

M: 92% 

(36, 148) 

M: -24% 

(-91, 43) 

M: 32% 

(11, 53) 

 F: 36% 

(29, 42) 

F: 28% 

(23, 34) 

F: 36% 

(29, 42) 

F: 36% 

(34, 38) 

F: -0.02 

(-0.13, 0.10) 
F: N/A* 

F: -0.02 

(-0.13, 0.10) 

F: -0.01 

(-0.05, 0.03) 

F: 11% 

(-58, 79) 

F: 84% 

(26, 142) 

F: 11% 

(-58, 79) 

F: 5% 

(-16, 27) 

ADE bivariate model between FI and education ‡ 

FI 
M: 6% 

(-10, 22) 

M: 38% 

(20, 55) 

M: 44% 

(41, 48) 

M: 56% 

(52, 59) 
        

 
F: 42% 

(29, 56) 

F: 10% 

(-4, 24) 

F: 53% 

(50, 55) 

F: 47% 

(45, 50) 
        

Education 
M: 114% 

(102, 125) 

M: -48% 

(-61, -36) 

M: 65% 

(63, 68) 

M: 35% 

(32, 37) 

M: -0.89 

(-2.02, 0.24) 
M: N/A* 

M: -0.12 

(-0.17, -0.07) 

M: -0.07 

(-0.11, -0.02) 

M: 252% 

(146, 358) 

M: -184% 

(-297, -72) 

M: 68% 

(47, 89) 

M: 32% 

(11, 53) 

 
F: 121% 

(111, 131) 

F: -57% 

(-67, -46) 

F: 64% 

(62, 66) 

F: 36% 

(34, 38) 

F: -0.28 

(-0.41, -0.15) 
F: N/A* 

F: -0.12 

(-0.16, -0.09) 

F: -0.01 

(-0.05, 0.03) 

F: 262% 

(152, 372) 

F: -168% 

(-283, -52) 

F: 95% 

(73, 116) 

F: 5% 

(-16, 27) 

Note: BMI, body mass index; FI, frailty index; CI, Wald-type confidence interval; A, additive genetic factors; D, dominance 
genetic factors; H, total genetic factors/ broad-sense heritability; C, common environmental factors; E, unique environmental 
factors; r, correlation between variance components. M and F represents parameter estimates for men and women 
respectively. Bivariate heritability is the proportion of phenotypic correlation explained by genetic and environmental factors. 
Variance component estimates are allowed to be negative in the “direct symmetric approach” (Verhulst et al. 2019). 
* Correlation between C or D components were not defined when the variance components are negative. 
† The same conclusion can be drawn from either the ACE and ADE bivariate models between FI and BMI, in which there is a 
modest genetic correlation (rH) between FI and BMI, and their phenotypic correlation is mostly explained by genetic factors 
(bivariate H). 
‡ Although both ACE and ADE bivariate models have the same model fit when allowing for negative variances, the ACE 
bivariate model is more in line with the observed cross-twin cross-trait correlations (MZ twins: -0.07; DZ twins: -0.08, shown 
in Table 2) that the phenotypic correlation between FI and education is largely explained by common environmental factors 
(bivariate C = 92% in men and 84% in women, slightly more than 65% and 74% using the standard approach). In contrast, the 
solution in the ADE bivariate model yielded a highly negative and non-sensical D component, and it causes all the common 
environmental influences on the covariance going to genetic factors – a result not in line with the standard interpretations of 
the observed cross-twin cross-trait correlations. 
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Supplementary Methods 

 

INTRODUCTION 
 

In this appendix we outline an approach to estimating 

the genetic correlation between males and females for a 

phenotype which has genetic contributions both from 

additive and dominance deviations to its variance. 1. 
Using the biometric model in a simplified two-allelic 

locus with equal allele frequencies, we will derive  

the resulting correlation between genetic contributions 

in males and females with different additive  

and dominance deviation contributions genotypic 

expression. 2. We then show that the resulting 

correlation depends on allele frequencies. 3. Finally, we 

suggest an intuitive solution for estimation of the 

genetic correlation between males and females, and 

compare its performance with other possible solutions 

in a series of simulations. 

 

As outlined below, our suggested model for the 

covariance between twins in opposite sexed DZ pairs is 

 

( )

( )

1

2

2 2 2

2 2 2

0.5 0.25 0.25 0.25

0.5 0.25 0.25 0.25

osDZ

Af Df Ef fm Af Am Df Dm Af Dm Df Am

fm Af Am Df Dm Af Dm Df Am Am Dm Em

Y
Cov

Y

r

r

          

          

  
  
  

 + + + + +
 =
 + + + + +
 

 (1) 

 

where 2

X  represent contributions to variance and 

covariance from source X. X are A, additive genetic 

contributions, D, dominant genetic contributions, and 

E, individually unique contributions. The sub-indexes 

are also complemented with f and m to indicate  

female and male sources. Below we show that this 

model, although not uniformly unbiased, has some 

features which makes it suitable for situations where 

additive and dominance contributions to variance of the 

phenotype exists in both sexes (possibly in different 

proportions). 

Derivation of correlation due to genetics from 

biometric model 

 

Following the set-up of the biometric model in Neale 

and Maes [1] we define one autosomal locus having 

allele A and a at equal ½ frequencies in a population. 

We define the genotypic effect on Y to be −d for allele 

combination aa, h for allele combination Aa, and d for 

allele combination AA (see Supplementary Figure 7). 

Note that the definition of genotypic effect is somewhat 

arbitrary, see e.g. Neale and Maes [1]. 

 

 
 

Supplementary Figure 7. Graphical representation of the genotypic effect. (Adapted from Neale and Maes [1]). 

 

Here h indicates the deviation from additivity; we 

assume h to be bounded between −d and d to keep a 
biologically feasible interpretation of additivity vs 

dominance/recessiveness. The ½ frequencies means 

that a random individual has a ¼ probability of having 

allele combination aa, a ½ probability of having Aa, 

and a ¼ probability of having AA. The mean genotypic 
contribution can be written as (using the law of total 

expectation). 
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 ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1

| Pr | Pr | Pr .
4 2 4 2

Y E Y E Y aa aa E Y Aa Aa E Y AA AA d h d h = = + + = −  +  +  =  (2) 

 

The variance can be calculated as 

 

 

( ) ( )( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

2 22

2

2 2 2

2 2 2 2 2 2

1
| Pr | Pr | Pr

2

1 1 1 1 1 1
.

4 2 4 4 2 4

Var Y E Y E Y E Y E Y

E Y aa aa E Y Aa Aa E Y AA AA h

d h d h d h

= − = −

 
= + + −  

 

= −  +  +  − = +

 (3) 

 

Now, let the same locus contribute to two phenotypes, 

Y1 and Y2 (e.g., same phenotype in males and females), 

possibly with different additivity and dominance 

deviation. Define the genotypic effects to be {−d1, h1, 

d1} and {−d2, h2, d2} for Y1 and Y2, respectively. Using 

the frequencies of allele combination in full siblings (or 

DZ twins), following Neale and Maes [1], we can create 

a table indicating the contributions to the covariance 

from each combination of allele in the two siblings 

(Supplementary Table 11). 

 

Supplementary Table 11. Contributions to covariance, and expected frequency, between two DZ twins. 

Sibling 1 

alleles 

Sibling 2 

alleles 

Genotypic effect 

minus mean, 

sibling 1 

Genotypic effect 

minus mean, 

sibling 2 

Contribution to covariance Frequency 

AA  AA  1 1

1

2
d h−  2 2

1

2
d h−  1 2 1 2 1 2 1 2

1 1 1

2 2 4
d d d h h d h h− − +  

9

64
 

AA  Aa  1 1

1

2
d h−  2

1

2
h  1 2 1 2

1 1

2 4
d h h h−  

6

64
 

AA  aa  
1 1

1

2
d h−  2 2

1

2
d h− −  1 2 1 2 1 2 1 2

1 1 1

2 2 4
d d d h h d h h− − + +  

1

64
 

Aa  AA  1

1

2
h  2 2

1

2
d h−  1 2 1 2

1 1

2 4
h d h h−  

6

64
 

Aa  Aa  1

1

2
h  2

1

2
h  1 2

1

4
h h  

20

64
 

Aa  aa  
1

1

2
h  2 2

1

2
d h− −  1 2 1 2

1 1

2 4
h d h h− −  

6

64
 

aa  AA  1 1

1

2
d h− −  2 2

1

2
d h−  1 2 1 2 1 2 1 2

1 1 1

2 2 4
d d d h h d h h− + − +  

1

64
 

aa  Aa  1 1

1

2
d h− −  2

1

2
h  1 2 1 2

1 1

2 4
d h h h− −  

6

64
 

aa  aa  
1 1

1

2
d h− −  2 2

1

2
d h− −  1 2 1 2 1 2 1 2

1 1 1

2 2 4
d d d h h d h h+ + +  

9

64
 

 

We can thus calculate the contribution to covariance from 

this locus between phenotypes and between DZ twins as 
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( ) ( )( )( )

( )( )( ) ( )

1 2

1 2

1 2 1 2

1 2

1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2
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64 2 2 4 64 2 4
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E Y Y

d d d h h d h h d h h h

d d d h h d h h h d h h

 

 

= − −

= − − =

   
= − − + + −   

   

   
+ − − + + + − +   
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64 2 2 2 2 2

h h

h d h h d d d h h d h h

d h h h d d d h h d h h

d d d h

 
 
 

   
+ − − + − + − +   

   

   
+ − − + + + +   

   

 
= − − + + − + − + − + 

 

+ − + + − − + 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2

9 1 9 6 1 6 20 6 1 6 9

2 64 4 4 4 4 4 4 4 4 4

1 1 16 1 1
16 0 0

64 64 4 4 16

h d h h

d d d h h d h h d d h h

   
+ − + − + − + − +   

   

=   +  +  +   = +
 (4) 

 

And thus, the expected correlation in this locus is 
 

 ( )
( )

( )

1 2 1 2
1 2

1 2

2 2 2 21 2
1 1 2 2

1 1
, 4 16,

1 1 1 1( )

2 4 2 4

d d h hCov Y Y
Cor Y Y

Var Y Var Y
d h d h

+

= =

+ +

 (5) 

 

We may investigate how the correlation will depend on 

dominance deviations by varying the h’s between +  

and – the d’s. In Supplementary Figure 8 we have 

plotted expected correlations over varying degrees of 

dominance deviations in the two genotypic effect for  

the different phenotypes, the d’s have value 1. An 

assumption is that d1 and d2 have same sign, thus the 

correlation is positive. 

 

 
 

Supplementary Figure 8. Contour plot of deviations from additivity, when h’s are at ±1 there is maximal dominance deviation. 
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From the derivation and plot we may notice several 

things: 1. When one genotypic effect is at maximum 

dominance, and the other at perfect additivity, the 

correlation is 
1

0.4082
6
 . 2. When both genotypic 

effects have maximum deviation, in the same ± direction, 

the correlation is 
5

0.4167
12

 . 3. When both genotypic 

effects are purely additive the correlation is 0.5. 4. When 

the genotypic effects are at maximum deviation, but in 

opposite ± direction, the correlation is 0.25. 

 

Thus, the contribution to correlation between two 

phenotypes in different DZ twins depends on the 

amount and direction (i.e., dominance or recessiveness) 

of dominance deviation. 

 

The correlation depends on the allele frequencies 

 

If we want to expand on previous simplified equal allele 

frequency and allow any allele frequency, we quickly 

generate a complex expression. Therefore, we set up a 

simulation with a larger number of alleles and a large 

number of DZ twins, where we vary the dominance 

deviations, to assess the impact of varying allele 

frequencies.  

 

We simulated 100,000 DZ pairs and 100 assumed 

contributing loci under different scenarios. In all 

scenarios we assumed that the sign and maximal 

genotypic effect were the same for both phenotypes. 

Additional assumptions were non-assortative mating 

(i.e., parents were treated as two random individuals in 

the population), no association between minor allele 

frequency (MAF) and genotypic effect, no interactions 

between loci, and no interactions with any 

‘environmental’ (i.e., non-genetic) variable. The 

genotypic effects were drawn randomly from a standard 

normal distribution. Each scenario is based on different 

MAF; 

 

1. MAF = 0.5 for all loci.  
 

2. MAF drawn from a uniform distribution between 0 

and 0.5. 
 

3. MAF drawn from a uniform distribution between 0 

and 0.1. 
 

4. MAF drawn from a random distribution between 0 

and 0.5 with an ‘L’-shape (a situation with MAF 

pushed towards 0 but still covering the full range). 

 

The MAF distribution in point 4 is presented in 

Supplementary Figure 9, and was found through 

 

( )

2

0.25

1
, where (0,.5)

2 1

Ue
MAF U Uniform

e

−
= 

−
 (6) 

 

 
 

Supplementary Figure 9. A specific scenario for minor allele frequency distribution. 

 

From the each of the four simulations with different 

MAF distributions we produce three separate series of 

estimates over varying dominance deviation: scenario 

A, varying degree of dominance deviation in one 

phenotype, and fixed additive genotypic effect in other 

phenotype, scenario B, varying degree of dominance 

deviation in one phenotype, and maximal dominance 

deviation genotypic effect in other, and Scenario C, 

varying dominance deviation vs maximal recessive 

deviance. Note that dominance in the minor allele 

corresponds to recessiveness in the major allele, and 

vice versa. These simulations serve to investigate the 

impact of MAF on correlation due to genetic effects 

between DZ twins (and full siblings) in the scenario 

where genotypic expression with regard to dominance 

deviations differ between the twins, results are 

presented in Supplementary Figure 10. 
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Supplementary Figure 10. Simulated correlation (y-axis) due to genetics with different MAF, and where one phenotype’s 
genotypic effect varies in dominance deviation (the h as proportion of d; x-axis) while the other’s is fixed as purely additive 
or with maximal dominance or recessive deviation. Negative values indicate that the minor allele is recessive, positive that it is 

dominant. 
 

We observe allelic frequency affect in all simulated 

correlations except where both individual’s genotypic 

expression is completely additive (where the correlation 

between individuals is 0.5 for all MAF distributions). 

Further, we can see that scenario A has a higher 

correlation than scenario B and C, except for when the 

dominance deviation goes towards its extremes, 

greater/lesser than approximately ±0.8. This is most 

clearly seen for Scenario B, where the minor allele is 

recessive.  

 

In reality, we would not have any way of knowing the 

MAF distributions for contributing loci, nor would we 

know the dominance deviations (which would vary 

between loci). 

 

Suggested intuitive solution 

 

We suggest that estimation of genetic correlation based 

on twin data based on an intuitive solution. We have 

observed that correlating a phenotype with varying 

dominance deviation between twins will produce a 

resulting correlation which lies between pure additivity 

(i.e., correlation = 0.5) and maximal dominance 

deviation for either the major or minor allele (varying 

resulting correlation depending on MAF) – except for 

when the dominance deviations are nearing its maxima 

or minima. Hence, if the classic twin model correctly 

captures the additive genetic effects (A) and dominance 

deviations (D) for each trait separately, we can suggest 

an intuitive modeling approach to estimate the genetic 

correlation between the two which relies on placing the 

resulting correlation in between that of A and D alone.  

 

Expected genetic correlation 

To be able to assess the performance of an estimating 

procedure of the genetic correlation we need to know 

the genetic correlation if both phenotypes were 

expressed in one individual. Since the solution when 

allele frequencies are unequal quickly become unruly, 

we simulate this is a similar fashion as in Section 2 

above, using the same ‘L’-shaped MAF. We simulated 

using 100,000 individuals per each combination of 

values from −1 to 1 by steps of 0.1 – in Supplementary 

Figure 11 the result is presented. 
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Supplementary Figure 11. Simulation for estimating genetic correlation. The contour plot shows resulting genetic correlation under 
different amounts of dominance deviation (positive) and recessive deviations (negative) for the minor allele. 
 

We can observe that produced correlations deviate from 

1 as the dominance deviations (or recessive ditto) 

moves away from 0 differently in the two phenotype’s 

genotypic effects. The genetic correlation becomes 

lowest when one phenotype has more dominance 

deviation for the minor allele and the other has more 

recessive deviations. We can also see that it matters 

which of the major or minor allele is more dominant, 

where the minor allele being dominant is less 

problematic.  

 

Suggested estimating procedure 

Per the classic twin model – with A, without D and C 

(the ‘shared environment’ contribution), but with E, the 

individually unique contributions to variance not shared 

between individuals (often referred to as an AE-model) 

– we may model the covariance between opposite sexed 

DZ twins (osDZ) as (see e.g. Neale and Maes [1]; here 

sub-index ending with f indicated the female twin and 

sub-index ending with m indicated the male twin): 

 
2 2

1

2 2
2

0.5

0.5

Af Ef fm Af Am

fm Af Am Am EmosDZ

rY
Cov

Y r

   

   

 +  
 =  
 +    

 (7) 

 

The model fitting would estimate the rfm as the genetic 

correlation between males and females, appropriately 

bounded between −1 and 1. A direct translation into 

situation where the model is an ADE model is 

 
2 2 2

1

2 2 2
2

0.5 0.25

0.5 0.25

Af Df Ef fm Af Am Df Dm

fm Af Am Df Dm Am Dm EmosDZ

rY
Cov

Y r

      

      

 + + +  
 =  
 + + +    

 (8) 

 

However, in this setup the estimated genetic correlation 

is not allowing D to contribute to estimation of rfm. A 

natural expansion with the inclusion of D is 
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2 2 2

1

2 2 2
2

0.5 0.25

0.5 0.25

Af Df Ef fm Af Am Df Dm

osDZ fm Af Am Df Dm Am Dm Em

rY
Cov

Y r

      

      

 + + +  
 =  
 + + +    

 (9) 

 

The assumption implicitly encoded here is that the same 

subset of loci having dominance deviations in one sex’s 

genotypic expression also has dominance deviation 

expression in the other sex, while additive effects in one 

sex does not correlate with dominance deviations in the 

other sex. As shown above, if we deviate from this 

assumption, we will have different resulting correlations 

due to genetic effects. As an extreme example, from a 

twin modelling view-point, suppose the female trait has 

an estimated 0 A contribution according to the model 

and some D contribution, while the male has only A 

contribution and no D; the result would be that there’s 

no way the model could ascribe any correlation between 

sexes to genetics (and the modelled rfm would take on 

any value between -1 and 1 with equal likelihood). This 

is obviously not appropriate, since the same locus could 

contribute in a pure additive way for one sex’s 

phenotype and a dominant way for the other sex’s 

phenotype. We therefore suggest that the correlation can 

be modelled as (note, same equation as in Introduction) 

 

( )

( )

1

2

2 2 2

2 2 2

0.5 0.25 0.25 0.25

0.5 0.25 0.25 0.25

osDZ

Af Df Ef fm Af Am Df Dm Af Dm Df Am

fm Af Am Df Dm Af Dm Df Am Am Dm Em

Y
Cov

Y

r

r

          

          

  
=  

  

 + + + + +
 
 + + + + +
 

 

 (1) 

 

This suggestion is based on the observed simulated 

correlations behavior towards the extremes of the 

dominance deviation (Supplementary Figure 10), where 

correlation due to genetics between DZ twins seem to 

be most affected by differences in dominance 

deviations. Not allowing genetics to contribute to the 

correlation across individuals A and D sources, may 

cause bias; and, towards the extremes, the correlation 

between additive and dominant/recessive genetic effects 

resemble that of dominance-to-dominance correlation 

behavior (although, not an exact correspondence 

between the two). As such, we expect the performance 

of the estimating procedure to be most suitable for 

scenarios where the A and D contributions to 

phenotypic variance differ considerable between males 

and females. 

 

To investigate the performance of this suggested 

modelling approach we performed a series of 

simulations. For each simulation we used the above 

approach of simulating parental alleles and drawing 

offspring alleles, and then we created same sexed MZ 

and DZ twin pairs in addition to the opposite sexed DZ 

pairs. We assumed 7000 pairs for each sex-zygosity 

combination. Additionally, we estimated the resulting 

genetic correlation, to be able to compare the produced 

correlation with. We added an individually unique 

variation (the E), drawn from a random normal 

distribution with the same variance as the simulated 

genetic variance separately by sex, and used the classic 

twin methodology with sex-limitation models to the 

data. We fitted the models using equations (1) (our 

suggestion), (9), (8), and (7), to provide an overall 

picture of the performance of different approaches. We 

a. investigated the full range of dominance deviations 

(all combinations of the h’s between −1 and 1 by 0.25 

steps), b. investigated the situation where one phenotype 

is additive and the other has dominance deviations (the 

h1 in −1.0 to −0.8 and 0.8 to 1.0 in 0.05 steps, the h2 

fixed at 0), and c. did a more thorough investigation on 

the extreme values (the h1 in −1.0 to −0.8 and h2 in 1.0 to 

0.8 in 0.05 steps) – for each combination the simulation 

was run 10 times. In the simulation we used the same 

‘L’-shaped MAF as above. In Supplementary Figures 

12a, 12b, and 12c the results of these three sets of 

simulations are shown. We plot the difference between 

estimated rfm and calculated true rG as an estimate of bias 

in the separate estimating approaches. 
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Supplementary Figure 12. Performance of different estimation procedures in a simulation. A locally smoothed polynomial 

regression line is fitted to each scenario (using ‘loess’ function in R). (A) Full range of dominance deviations. (B) Dominance deviations 
versus additive. (C) Dominance deviations towards extreme. 
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We summarize the behavior of the four different 

estimating approaches in Supplementary Table 12. We 

observe the following features of the four different 

estimating approaches: 

 

1. Neither estimating approach has as good 

performance throughout the dominance deviation 

range. 

 

2. Our suggested estimating approach has best 

performance in the most extreme scenarios. 

 

3. Our suggested estimating approach has a negative 

bias for most scenarios, and only slightly positive 

bias when dominance deviations are towards the 

very extremes. 

 

4. All standard estimating approach (i.e., the three 

simulated estimating approach except our suggestion) 

generally has a upwards bias, towards 1.0. 

 

5. The modelling approach of the 𝐴𝐸-model perform 

better than other estimating approach, except for the 

very extremes, with regard to bias (low mean 

squared error) but precision may be overestimated, 

i.e. too low standard errors (with relatively lower 

coverage probability compared with standard 

approaches). 

 

Supplementary Table 12. Performance over different scenarios for the investigated estimating procedures. 

 

a. Full range of 

dominance 

deviations 

b. Dominance 

deviations 

versus additive 

c. Dominance 

deviations 

towards 

extreme  

Mean squared error    

( )0.5 0.25 0.25 0.25fm Af Am Df Dm Af Dm Df Amr        + + +   0.029 0.015 0.003 

0.5 0.25fm Af Am Df Dmr    +   0.016 0.020 0.038 

( )0.5 0.25fm Af Am Df Dmr    +   0.020 0.021 0.063 

0.5fm Af Amr    from AE -model 0.007 0.002 0.021 

Mean error    

( )0.5 0.25 0.25 0.25fm Af Am Df Dm Af Dm Df Amr        + + +   -0.126 -0.103 0.024 

0.5 0.25fm Af Am Df Dmr    +   0.074 0.100 0.178 

( )0.5 0.25fm Af Am Df Dmr    +   0.086 0.105 0.242 

0.5fm Af Amr    from AE -model -0.001 0.001 0.134 

Proportion negative bias    

( )0.5 0.25 0.25 0.25fm Af Am Df Dm Af Dm Df Amr        + + +   0.872 0.935 0.318 

0.5 0.25fm Af Am Df Dmr    +   0.234 0.112 0.008 

( )0.5 0.25fm Af Am Df Dmr    +   0.229 0.096 0.000 

0.5fm Af Amr    from AE -model 0.499 0.463 0.000 

Coverage probability    

( )0.5 0.25 0.25 0.25fm Af Am Df Dm Af Dm Df Amr        + + +   0.602 0.721 0.895 

0.5 0.25fm Af Am Df Dmr    +   0.862 0.895 0.448 

( )0.5 0.25fm Af Am Df Dmr    +   0.755 0.841 0.054 

0.5fm Af Amr    from AE -model 0.768 0.965 0.192 
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CONCLUSIONS 
 

In a scenario with diverging dominance and additive 

contributions to phenotypic variance in males and 

females using the classic twin model, the standard 

estimating approaches has the feature that they 

overestimate the genetic correlation between males and 

females (which we here call rfm). Thus, even if there is a 

genetic correlation lower than 1.0 the estimating 

approaches will have a lower likelihood of detecting it 

since they are biased upwards. In contrast, using our 

suggested approach will produce an estimate which, if it 

is biased at all, will be biased downwards. Therefore, if 

a model fitted with our estimating approach produces a 

rfm which is not statistically significant, it is likely a true 

null finding. Additionally, if fitting an AE-model is not 

appropriate (e.g., due to poor model fit), our suggested 

estimating approach has a lower mean squared error 

than standard estimating approach in extreme scenarios 

(with a larger proportion of negative bias). 
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