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Abstract

Confocal microscopy analysis of fluorescence and morphology is becoming the standard tool in cell biology and molecular
imaging. Accurate quantification algorithms are required to enhance the understanding of different biological phenomena.
We present a novel approach based on image-segmentation of multi-cellular regions in bright field images demonstrating
enhanced quantitative analyses and better understanding of cell motility. We present MultiCellSeg, a segmentation
algorithm to separate between multi-cellular and background regions for bright field images, which is based on
classification of local patches within an image: a cascade of Support Vector Machines (SVMs) is applied using basic image
features. Post processing includes additional classification and graph-cut segmentation to reclassify erroneous regions and
refine the segmentation. This approach leads to a parameter-free and robust algorithm. Comparison to an alternative
algorithm on wound healing assay images demonstrates its superiority. The proposed approach was used to evaluate
common cell migration models such as wound healing and scatter assay. It was applied to quantify the acceleration effect
of Hepatocyte growth factor/scatter factor (HGF/SF) on healing rate in a time lapse confocal microscopy wound healing
assay and demonstrated that the healing rate is linear in both treated and untreated cells, and that HGF/SF accelerates the
healing rate by approximately two-fold. A novel fully automated, accurate, zero-parameters method to classify and score
scatter-assay images was developed and demonstrated that multi-cellular texture is an excellent descriptor to measure
HGF/SF-induced cell scattering. We show that exploitation of textural information from differential interference contrast
(DIC) images on the multi-cellular level can prove beneficial for the analyses of wound healing and scatter assays. The
proposed approach is generic and can be used alone or alongside traditional fluorescence single-cell processing to perform
objective, accurate quantitative analyses for various biological applications.
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Introduction

Molecular imaging via confocal microscopy is widely used to

infer cellular and molecular biological processes. Many advances

have occurred in microscopic imaging such as high throughput

data collection, but automatic analysis is still lagging behind. In

many cases, analysis is still performed manually and is the

bottleneck in visual-based cellular studies. Combining quantitative

fluorescent and bright field microscopy with information on

cellular morphology and texture will enhance understanding of the

biological processes involved. New approaches for automatic

processing and extraction of objective and accurate quantitative

measures, which are exceedingly important for progress in this

field, are thus sorely lacking.

A variety of software tools and imaging apparatuses exist to

enable high throughput studies. Cellular morphology character-

istics that decipher various biological activities, obtained via

bright-field imaging modalities such as DIC, are considered hard

to process and analyze and hence development of designated tools

and algorithms for these microscopy categories has been neglected.

Most of the existing work on bright field microscopy segmentation

relies on some local texture descriptor followed by applying a

threshold or global refinement [1,2]. Other approaches manipu-

late the image acquisition to make the segmentation task easier

[3,4].

Much of the current microscopy-based cellular research focuses

on the single-cell level. This approach relies on algorithmic

framework with powerful image analysis tools (e.g., [5,6,7]) and

requires single cell segmentation and tracking. However, direct

segmentation of single cells in bright field images, especially of cells

growing in dense populations, is an extremely challenging task and

is prone to algorithmic errors. These errors are mainly derived

from the difficulty to locally define the borders of a single cell

growing in a cluster, a task that is sometimes not trivial even for an

expert. We propose a specific application to analyze clusters of

cells, in addition to the common fluorescent-based analyses. This

approach is less susceptible to algorithmic faults and noisy data

and can be performed on mass data, thus enabling a truly robust

automatic analysis that is based on quantitative statistical

measurements of cellular regions.
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Cellular motility is a significant process in many biological

systems. For example, most deaths of cancer patients do not occur

due to the primary tumor but rather due to tumor cells that

acquire motile-invasive phenotype and develop metastases. A well-

studied model for cell motility leading to metastasis includes Met

tyrosine kinase receptor and its ligand, Hepatocyte Growth

Factor/Scatter Factor (HGF/SF) [8,9]. A better understanding

of the changes that occur during HGF/SF-induced motility and

development of new anti-metastatic targeted therapy are consid-

ered major challenges in biomedical research.

Here, we investigate HGF/SF-induced cell motility via a novel

approach that is based on Machine-learning classification to

segment and analyze cellular regions in bright field images, similar

to the general framework described by Shamir et al. [10].

Wound Healing Assay
Wound healing assay is the gold standard method to study cell

motility and migration [11,12]. It is performed by following the

closure of a wound formed by scratching a confluent cell culture.

The scratch is then imaged at different times during the healing

process and its area is measured. The rate of change in the

wound’s area is recorded and can be compared with other cells

and treatments. In some studies such as Yarrow et al. [13], the

wound healing assay is adapted to a 384 well plate, which provides

mass data and allows high-quality quantitative analysis of the

assay, which has not been available before. However, manual

analysis becomes unfeasible when large amounts of data need to

be processed.

Marking the region of interest (ROI) in the wound area for each

image is the basic task required to analyze wound healing assays.

Automating this process would save time and effort in future

studies, especially considering the high amount of data currently

available. Correct automatic wound tagging may enable high

throughput analysis while enhancing the temporal sampling

resolution, which is currently very limited. Several algorithms

and tools have recently been proposed to deal with this task

[1,14,15,16] that significantly improved the ability to perform

automatic analysis.

Available Tools for Automatic Analysis of Wound Healing
Assay

TScratch [1] is a freely available software that uses fast discrete

curvelet transform [17] to segment and measure the area

occupied by cells in an image. The curvelet transform extracts

gradient information in many scales, orientations and positions in

a given image, and encodes it as curvelet coefficients. TScratch

selects two scale levels to fit the gradient details found in cells’

contours, and generates a curvelet magnitude image by com-

bining the two scale levels, which incorporates the details of

the original image in the selected scales. Morphological operators

are further applied to refine the curvelet magnitude image. As

a final step, an automatic threshold is applied to partition the

curvelet magnitude image into occupied and free regions.

This approach was first applied for edge detection in microscopy

images [18]. However, this algorithm suffers from several

drawbacks: dependence on parameter settings, shortcoming in

detecting smaller wound regions and insufficient robustness to

different cell types or challenging imaging conditions. Additional

tools suffer from incompatibility to bright field images [5,6,14], or

employ image processing tools that are incapable of dealing with

data variability [15,16,19,20], as they are mainly based on

quantifying edges density or simple local texture descriptors

within the image.

Cell Scattering Assay
Cell scattering is the interruption of cell-to-cell interaction that

results by dispersal of cells. It is an important phenomenon in

pathological, developmental and cell migration investigations.

HGF/SF induces cell scattering through the tyrosine kinase-type

HGF/SF receptor c-Met [21,22,23]. Analyses of scatter assays are

almost always qualitative-based. Cell scattering is scored by an

expert’s manual decision, based on spreading and dispersion of

epithelial colonies. Only few attempts have been made to quantify

objective measures for cell scattering. Kort et al. [24] suggested a

simple image-processing application that detects and counts

clusters of cells and single cells based on fluorescent marking.

Although proving high correlation with manual counting, they do

not show a quantitative measure to describe cell scattering. Powell

et al. [25] quantified scatter response of MDCK cells to HGF/SF

by measuring the distances between nearest neighbor cell’s nuclei,

and demonstrated that addition of low concentrations of HGF/SF

resulted in cell dispersion.

We propose a novel segmentation algorithm which comprises of

a spatially local stage followed by a global stage, to automate the

partition of a bright field image into regions of cells versus

background. Based upon this algorithm, we developed a novel

multi-cellular texture-based approach for DIC microscopy that

enables classification and objective measurement of cell scattering.

Materials and Methods

Cell Lines
DA3 cells (derived from the mouse mammary adenocarcinoma

cell line D1-DMBA-3, induced in BALB/C mice by dimethyl-

benzanthracene) [26] were grown in DMEM (Gibco 6 BRL)

supplemented with 10% heat-inactivated FCS (Gibco 6 BRL).

Madin-Darby canine kidney epithelial cells (type 2) (MDCK)

were kindly provided by Dr. K. E. Mostov (University of

California San Francisco, San Francisco, CA). MDCK cells were

grown in DMEM (Gibco 6 BRL) supplemented with 5% heat-

inactivated FCS (Gibco 6 BRL).

Wound Healing Assay
The assay was carried out with DA3 cells. When the cells

reached 90% confluence, a scratch was generated using a 200 ml

sterile tip. Cells were incubated in DMEM 0.1% FCS with or

without HGF/SF (80 ng ml21) and imaged overnight every few

minutes.

Data Sets for Evaluation of MultiCellSeg
To evaluate our segmentation algorithm, we used wound

healing images available from TScratch website, images received

with the courtesy of S. Izraeli and I. Witz (personal communica-

tion), and new images that were acquired in our lab. These 126

images were manually marked to quantify our algorithm’s

performance. Twenty arbitrary images from all data sets were

selected to train the patches- and the regional-classifiers.

The 126 images were partitioned to the following four data sets:

N Only 24 images were available from the TScratch website.

The imaging configuration is detailed in [1]: ‘‘Two crosses

were scratched in each well, and these were instantly center-

imaged at 56 magnification, using a Zeiss Axiovert 200 M

microscope equipped with a Zeiss AxioCam MRm camera

with maximum contrast (Carl Zeiss AG, Feldbach, Switzer-

land)’’. This data set was denoted TScratch;

N 20 images of cell populations of brain metastatic melanoma

were acquired in the I. Witz lab using an inverted microscope

Learning Multi-Cellular Information
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(Eclipse TE 2000-S; Nikon, Enfield Enfield, CT, USA) fitted

with a digital camera (DXM1200F; Nikon). Ten of these over-

produced CLDN1, the other 10, infected with a mock plasmid.

This data set was denoted Melanoma;

N 28 DIC images (pixel size 0.62560.625 mm), denoted Init,

were acquired using LSM-410 microscope (Zeiss, Germany) in

non-confocal mode from 2 single-well experiment in our lab:

DA3 cells were plated on glassbottom 35 mm diameter

microwell plates (MatTek, Ashland, MA) and imaged

overnight every 3 minutes.

N A set of 54 DIC images (pixel size 1.2461.24 mm), denoted

SN15, were acquired LSM-510 microscope (Zeiss, Germany)

in non-confocal mode, from 27 different wells acquired in a

multi-well experiment performed in our lab: DA3 cells were

grown in 24 well plates and imaged overnight every 15

minutes. The position of each scratch was predefined, and a

macro that repetitively positions the microscope to each point

was executed. The acquired time-lapse images were used for

the analysis until occurrence of the first contact between

opposing borders of the wound.

Each image was manually segmented to enable comparisons

between accuracies of different segmentations.

Scatter Assay
The assay was carried out with MDCK cells as previously

described [31,32]. Cells were seeded in 96-well plates (Corning,

NY, USA) (4,000 cells in each well) and incubated overnight with

or without HGF/SF (80 ng ml21), examined under a microscope

(CLSM-410, Zeiss, Germany) and photographed.

The Segmentation Algorithm
The proposed algorithm is based on statistical learning of the

local appearance of cellular versus background (non-cell) small

image-regions (denoted patches) in wound healing assay images. As

a classification application, it is comprised of two phases, training

and testing. In the training phase, a set of (manually) tagged

images are given as input to a standard classification algorithm

that calculates a linear statistical model that assesses the expected

appearance of a background patch, the patch classifier. In the testing

phase, the acquired model is applied to classify new, untagged

images.

A given image (Fig. 1A) is partitioned into patches (typically of

size 20620 pixels). For every patch, the patch classifier outputs a

confidence score that represents the model’s ‘‘certainty’’ in that patch

being ‘‘cell’’ or ‘‘background’’, which is given by the Euclidian

distance of its feature-vector representation to the hyper plane

defined by the linear model. This is demonstrated in Fig. 1B,

where bright pixels are more likely to be ‘‘background’’, while dark

are more likely to be ‘‘cellular’’. This is followed by applying an

automatically-selected threshold on the confidence scores to define

the initial image segmentation (Fig. 1C). The next step is to apply

another, separate pre-trained classifier, denoted the region classifier,

to reclassify cell regions previously classified by the patch classifier

as background. It is designed to identify spatially connected

components of patches that were originally misclassified as

‘‘background’’ (Fig. 1D); the patches’ grouping introduces a

substantial advantage that enables to consider a large region in the

image, which contains much more image-textural information

than the local patches. Graph-cut based segmentation algorithm is

used to refine the spatial classification and produce the final

partitioning (Fig. 1E–F). This algorithm is denoted MultiCellSeg and

is described in detail in File S1. Using this approach, a small

amount of high quality, manually analyzed data can be used to

produce large amounts of automatically annotated data of similar

quality.

Given a test image, the following steps are applied to define the

background as the region of interest:

N Create patches’ grid, extract texture-based features (such as

patch’s gradient histogram), apply cascade of SVMs to classify

all patches as cell/background (visualized in Fig. 1C, and in

more detail in Fig. 2);

N Discard cellular regions that were marked as background by

the patches classifier and reclassified as cellular by the region

classifier (Fig. 1D);

N Apply graph-cut and output the region of interest (Fig. 1F).

Results

To compare the MultiCellSeg with alternative approaches, we

considered the available automatic tools for wound healing

analysis. Several researchers (e.g., [20,27]) use a combination of

edge-detection or simple local texture descriptors and morpho-

logical operators. These tools can be tuned to fit specific data sets

but bear difficulties in handling diverse ranges of image-acquisition

conditions and different cell types. CellProfiler [5] has many useful

applications, but its wound healing algorithm is using generic

modules that are more appropriate for other applications; its

performance in segmenting wound healing images under the

default settings is very poor hence direct comparison was

discarded. To the best of our knowledge, the only freely available

software for automatic analysis of wound healing that performs

reasonably well on bright field images without specific parameter

setting is TScratch [1]. The quality of MultiCellSeg was therefore

compared with it.

Both MultiCellSeg as well as TScratch can be seen as composed

of two parts. First, the original image is used to create a new one,

in which the intensity of each pixel represents the algorithm’s

confidence in its classification. Then, this image is used to define

the final ROI.

The first phase in TScratch is the construction of the curvelet

magnitude image, whereas in our approach, it is the generation of

the classifier’s confidence image. The second phase in TScratch is

the automatic setting of a threshold and then the application of

morphological operators. In MultiCellSeg, the second phase in-

cludes removal of erroneous tagged regions and contour refinement.

Thus, the comparison of these algorithms is performed in two

steps. The robustness of the first phase is measured by examining

the Receiver Operating Characteristic (ROC) which plots true-

positive versus false-positive classification rates of the pixels in each

image across the entire range of possible thresholds of the

confidence threshold, encoding the true potential of the underlying

approach. The second measure is a direct comparison between the

algorithms’ final tagging.

The ROC curves comparing TScratch with MultiCellSeg are

presented in Fig. 3. The x-coordinate represents the false-positive

rate, which is the percent of pixels that were incorrectly tagged as

background, out of all cellular pixels of the given image. The y-

coordinate is the true-positive rate, which is the percent of

background pixels correctly tagged, out of all image’s background

pixels. Each curve was produced by averaging the ROC curves of

all images in the data set. The higher the threshold is, the lower

the false positive classification rate will be, but this comes at the

cost of true positives. When comparing the potential accuracy of

several classification algorithms, an algorithm that has higher true-

positive rate for any fixed false-positive rate values is proved to be
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the best. Thus, higher curves correspond to more discriminative

algorithms. ROC is described in detail in File S1.

To set TScratch’s threshold, MultiCellSeg’s true-positive rate

was used to define TScratch’s threshold such that the same true-

positive rate was achieved; the total error rate (rate of false-

negative and false-positive pixels out of all image’s pixels) was

compared after applying this threshold. It is important to note that

this process actually ‘‘upgraded’’ TScratch; using a predetermined

threshold, or a dynamic threshold using Otsu’s method [28]

resulted with inferior performance (results not shown).

Table 1 compares the final segmentation results, after patch-

classification, and the final segmentation (after applying region-

classification and graph-cut refinement) with TScratch’s perfor-

mance. Each entry is an average accuracy on all images in the

designated data set. MultiCellSeg surpasses TScratch (p-value 0.001

for the TScrach dataset and less than 0.000015 for the other

datasets, paired Student t-test): it outperforms in 75-95% of the

images for all data sets, and presents accuracy of over 3% better

than TScratch’s. Since TScratche’s accuracy is over 90% for most

datasets, our approach actually decreases the rate of misclassified

zones from around 10% to around 7%, and this improvement

may turn crucial. A qualitative demonstration of MultiCellSeg’s

superiority on images with narrow background regions is presented

in Fig. 4.

Figure 1. MultiCellSeg Algorithmic overview. (A) Initial image. (B) Apply classification on 20620 pixels patches to produce confidence score:
image regions with higher intensity are more likely to be non-occupied (background), darker regions are more likely to be cellular. (C) Discrete
version, produced by applying an automatic threshold on the confidence image. (D) The regional classifier is applied to discard cellular regions
misclassified as non-occupied: non-occupied regions contours are marked in white while filtered regions are marked in black (some are pointed with
yellow arrows). The union of the black and white contours is the output of the first phase, patches classification. (E) Initial image’s energy map for
Graph-Cut refinement. (F) Final segmentation: result of Graph Cut segmentation using the output of the regional classifier as its baseline.
doi:10.1371/journal.pone.0027593.g001
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HGF/SF Effect on Wound Healing
To validate the effect of HGF/SF on the healing rate, we

trained models to analyze a specific time-lapse microscopy multi-

wells experiment, where DA3 cells in some wells were treated with

HGF/SF. An image was sampled every ,75 minutes until first

contact formation between cells from opposing borders of the

wound. Several arbitrary images were selected and manually

marked for training. Every image was segmented and the wound

area was examined as a function of time. Two measures were

determined in this study: the linearity of the healing process and

the change in wound closure rate under HGF/SF treatments.

The healing rate was linear in all experiments (r.0.978,

p,0.0003 via Pearson’s linear correlation coefficient, for all

experiments with more than 3 time points), as is visualized by the

normalized wound area over time (Fig. 5A). The healing slope is

calculated based on rate of change in wound area. HGF/SF

accelerates healing about 2-fold (p,0.0016 via Wilcoxon rank sum

test, which has no prior assumptions on the data distribution, thus

it is a strict test) (Fig. 5B).

Objective Measure for Cell Scattering
Each cell scattering image was visually classified by an expert as

‘‘scattered’’ (10 images) or ‘‘none scattered’’ (22 images) and was

verified by 3 independent experts. An example of ‘‘scattered’’ and

‘‘none scattered’’ images is illustrated in Fig. 6.

Every image was described by a feature vector of size 10 (as

detailed below). We used ‘‘leave one out’’ to objectively evaluate

the cell scattering measure; for each image, an SVM was trained

on the remaining 31 images, and the left-out image was used to

evaluate the trained model.

The translation of a given scattering image to a feature vector

was performed in the following manner:

N Down-sample the image’s spatial resolution such that each

pixel is of size 565 mm;

N MultiCellSeg was applied to partition the image to cellular and

background regions (Fig. 7A); designated classifiers were

trained on 4 scatter images for that purpose;

N Local Binary Pattern (LBP) descriptor [29], a gray-scale

invariant texture measure for the local-texture of the patch,

was extracted for every pixel classified as ‘‘cellular’’;

N The final descriptor is the normalized histogram of LBP values

in all cellular regions.

Evaluation of the proposed cell scattering measure succeeded

in all 32 images obtained. The confidence scores of scattered and

non-scattered experiments are shown in Fig. 7B: the confidence

value zero (the default) is a perfect classifier for this dataset

(p,0.0001, Wilcoxon rank sum test), the confidence scores for

each image was achieved using ‘‘leave one out’’ cross-validation,

as described above. In this case, it is easy to see that the features

of the extracted images’ texture are highly discriminative

(Fig. 7C), and thus it is not surprising that the classifier works

so well. As an additional validation step, we partitioned the

images to equal size train- and test-sets, where the only constraint

was to have more than 3 scattered images in the training set. An

SVM was trained on the training set and evaluated on the test

set. This process was repeated 100 times, each time selecting

independently the training set, and in all executions the

classification was perfect with respect to the experts’ manual

visual classification.

It can be visually observed in Fig. 7C that the most prominent

features in the LBP histogram are 6, 7 and 9. This was validated

by performing the same analysis on these 3 features and showing

Figure 2. Patches classification. (A) Initial image is divided into
patches (20620 pixels per patch for the wound healing application). (B)
Five sets of basic image-processing features are extracted per patch. (C)
Five pre-trained Support Vector Machines (SVM) are applied to classify
the feature sets. (D) A confidence score is produced for each
combination of patch and features set. An additional pre-trained SVM
is applied on the assembly of the confidence scores. (E) The final
confidence map, brighter patches correspond to high probability of
non-occupied regions.
doi:10.1371/journal.pone.0027593.g002
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that the classification accuracy is still 100% (Fig. S1). However,

since LBP is a well-known general texture descriptor we decided to

use it as is in the scattering application. For other cell lines or

different imaging conditions, the complete histogram might be a

more robust descriptor.

Discussion

Automatic processing of microscopic images is a critical

component in analysis of many biological experiments. In recent

years, much effort was devoted to develop algorithms and automatic

tools for this task. However, most algorithms are designed for

fluorescence microscopy, thus bright-field microscopy, which

demonstrates morphological alteration and is harder to process,

has been neglected.

We suggest a new approach for multi-cellular analysis of bright

field microscopy. The main idea is to use the natural textural

information for both image segmentation and appearance-based

classification tasks. MultiCellSeg is applied on DIC images from

time-lapse wound healing experiments to verify that HGF/SF

accelerates healing, and to demonstrate that the healing rate is

linear both for treated and untreated cells. It is also applied as the

first step in a texture-classification application to measure cell

scattering, an approach that proved to be extremely accurate,

achieving perfect agreement with manual expert’s visual tagging.

MultiCellSeg applies classification to the task of image seg-

mentation to cellular and background regions. To the best of our

knowledge, this is the first attempt to apply Machine Learning to

this problem and to conduct a comprehensive comparison of its

performance with that of a segmentation algorithm designed for

this purpose. Our approach surpasses the existing algorithms in

performing this task for a wide range of scales, illumination

conditions, and cell types without the need to tune parameters,

which is critical in such applications.

Figure 3. Segmentation results: ROC curves. Receiver operating characteristic (ROC) curves (red – TScratch, green – MultiCellSeg’s patch
classifier). The x-coordinates represent the false-positive rate; the percent of image’s pixels that were classified incorrectly to background pixels out of
all cellular pixels. The y-coordinates are the true-positive rate; the percent of background pixels tagged correctly out of all image’s background pixels.
Each curve was produced by averaging the ROC curves of all images in the data set. (A) Init: single well DA3 cells acquired at high temporal resolution
(28 images), (B) SN15: multi-well DA3 cells taken at different imaging conditions (54 images), (C) Melanoma: brain metastatic melanoma cell lines (20
images), (D) TScratch: all available TScratch’s sample images taken from http://www.cse-lab.ethz.ch/index.php?&option=com_content&view=article
&id=363, containing cell lines with various morphologies (24 images).
doi:10.1371/journal.pone.0027593.g003
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MultiCellSeg’s local-patches classification approach significantly

surpasses TScratch’s in all data sets but one (tscratch, see Fig. 3D).

This data set was taken from the TScratch package, with many

images that contain scattered cells. The region-classification is

designed to deal with this problem. When considering the final

segmentation, MultiCellSeg significantly tops the alternative in all

data sets.

In principle, the second phase of MultiCellSeg may be

plugged in to enhance the performance of Scratch’s second

phase, but TScratch seems to be less sensitive to small details,

Figure 4. Visual segmentation comparison. Visual comparison on images with small non-occupied regions: (A) MultiCellSeg’s before applying
graph-cut segmentation: non-occupied regions contours are marked in white while filtered regions are marked in black. (B) After graph-cut
refinement. (C) TScratch result with automatic threshold. (D) TScratch results after manual adjustment of the threshold such that most of the non-
occupied regions are marked.
doi:10.1371/journal.pone.0027593.g004

Table 1. Segmentation results.

Dataset Name Init SN15 Melanoma TScratch

Number of images 28 54 20 24

Patch Classifier Accuracy (%) 95.5 94.5 90.5 89.8

MultiCellSeg Accuracy (%) 96.9 95.3 91.2 92.2

TScratch Accuracy (%) 92.3 92.3 87.0 89.8

pValue: Patch Classifier vs. TScratch 1.9e-4 1.8e-5 4.6e-5 0.95

pValue: MultiCellSeg vs. TScratch 9.1e-8 1.38e-5 3.37e-6 0.01

Percent of Images for which MultiCellSeg
Outperforms TScratch (%)

95 85 90 75

Summary of segmentation accuracy and significance. Accuracy is defined as percent of correctly tagged pixels out of the total number of pixels in all images. Accuracy
was calculated for the patches classifier (intermediate segmentation) and for the final MultiCellSeg segmentation and was compared to TScratch accuracy on the same
set of images. pValue calculated as a paired t-test on the accuracy sequences: patches classification vs. TScratch MultiCellSeg vs. TScratch for each image. Percent of
images for which MultiCellSeg outperforms TScratches’ refers to the percent of images in the dataset that are better segmented by MultiCellSeg in comparison to
TScratch.
doi:10.1371/journal.pone.0027593.t001
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which results in significantly less fine regions then with our

approach.

Utilization of several types of features on several scales makes

MultiCellSeg robust for varying conditions. In contrast to other

approaches that tend to refrain from fine details to avoid gross

mistakes or use data-specific assumptions, our algorithm operates

in higher spatial resolution, detects small regions of interest and

then decides whether to keep or to discard them via post

processing (regional classification), in a fully automated manner.

As a result, in many images where the wound is almost healed, our

algorithm performs satisfactorily, whereas other algorithms fail to

mark open regions, as exemplified in Fig. 4.

To further enhance the proposed segmentation performance,

one can suit a model to fit a specific experiment, cell type or

imaging conditions. This can be exceedingly useful nowadays,

when high-throughput experiments are performed, each with

hundreds of images [13]. To this end, one (or more) image(s)

should be manually marked to apply the training phase in our

algorithm. This process is only partly automatic, but it requires no-

parameter setting and may result in notable improvement in

performance with minimal effort.

The automatic, accurate zero-parameters MultiCellSeg may

serve as a tool for various biological analyses. MultiCellSeg’s

Matlab source code is freely available as standalone software to

allow others to use it for wound healing analyses, multi-cellular

bright field cells segmentation, and for other applications yet

to evolve. The source code and accompanying graphical user

nterface (GUI) can be found at http://www.cs.tau.ac.il/˜assafzar/

MultiCellSeg.zip, it is recommended to read carefully the

README file (http://www.cs.tau.ac.il/˜assafzar/MultiCellSeg_

README) before applying it. In the future, we plan to add

training capabilities to enable specific designated models for

different cell lines and imaging conditions and/or to integrate it

as part of a larger project (e.g., [5,6]).

Wound healing assay is common and is applied by many

research groups, but its analysis is very narrow in the sense that

only a few measures are considered: the healing rate is calculated

Figure 5. HGF/SF accelerates wound healing. (A) Normalized
wound area over time: treated vs. untreated. The wounds are
normalized such that each initial wound is set to 1. It is shown that
the healing rate is linear (r.0.978 for all experiments, p,0.0003 via
Pearson linear correlation coefficient, for all experiment with more than
3 time points). (B) Healing slope: treated vs. untreated. The slope is
calculated based on the wound area change over time. It is shown that
HGF/SF accelerates healing (,2 folds, p,0.016 via Wilcoxon rank sum
test).
doi:10.1371/journal.pone.0027593.g005

Figure 6. Scattered/none scattered examples. (A) Scattered
image. (B) None scattered image.
doi:10.1371/journal.pone.0027593.g006
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over a short period of time. The approach presented here can

become the cornerstone for novel methods to be exploited in

wound healing analysis. To analyze large data sets such as

frequently sampled wound healing assays (acquired by time lapse

microscopy), we suggest to perform manual marking of a few

images to train a classifier that will be used to segment the entire

time-lapse experiment. Producing these high-temporal-resolution

progress graphs may reveal biological processes that are currently

unknown, such as the linearity of the healing process, as described

here.

Another potential corollary is to model the motion patterns of

cells throughout the healing process. This is an open question of

current interest (e.g., [30,31,32]). Modeling cellular motility

patterns under stimulants/inhibitors treatments may facilitate the

understanding of cell motility mechanisms and enable the develop-

ment of new anti-metastatic drugs. A correct, high-throughput,

partitioning to occupied and background regions can be the first

step in developing such an analysis.

An additional application for bright field multi-cellular

segmentation is in cell scatter assay. Image texture histogram of

cellular regions is used to define the degree of scattering in an

inherently different approach than prior attempts that focus on

counting single and clustered cells. Information extracted from

multi-cellular bright field microscopy can thus be used to

distinguish between different molecular-related cellular motility

and morphology phenomena.

Supporting Information

Figure S1 LBP features 6, 7 and 9 for scatter assay
classification. (A) The most prominent features in the LBP

histogram are 6, 7 and 9. Each column represents an image’s 6th,

Figure 7. Application to scatter assay automatic classification. (A) An example of MultiCellSeg’s performance on cell scattering example
image. (B) SVM confidence on scattered/non scattered classification. 100% accurate classification is achieved on the 32 images (p,0.0001 via
Wilcoxon rank sum test) both in leave-one-out cross validation and in repeatedly partitioning the data to equal sized train- and test-set, train a SVM
on the training set and evaluate on the test set. (C) Visualization of the images’ feature space. Each column represents an image’s LBP descriptor
vector, which is a normalized histogram. The first 22 images are none scattered images, while the last 10 are scattered.
doi:10.1371/journal.pone.0027593.g007
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7th and 9th LBP descriptor value. The first 22 images are none

scattered images, while the last 10 are scattered. (B) SVM

confidence on scattered/non scattered classification based on these

3 features. 100% accurate classification is achieved on the 32

images (p,0.036 via Wilcoxon rank sum test) both in leave-one-

out cross validation and in repeatedly partitioning the data to

equal sized train- and test-set, train an SVM on the training set

and evaluate on the test set.

(TIF)

File S1 Supporting information text. Detailed description

of the MultiCellSeg algorithm, Receiver Operating Characteristic

(ROC curve).

(DOCX)

Acknowledgments

The authors are grateful to Arieh Zaritsky for proofreading the manuscript

and for his helpful remarks. This work was performed in partial fulfillment

of the requirements for the PhD degree of Assaf Zaritsky, Blavatnik School

of Computer Science, Tel Aviv University.

Author Contributions

Conceived and designed the experiments: IT SN AZ. Performed the

experiments: SN JH. Analyzed the data: AZ. Contributed reagents/

materials/analysis tools: AZ. Wrote the paper: AZ IT SN LW EB-J IH.

References

1. Geback T, Schulz MM, Koumoutsakos P, Detmar M (2009) TScratch: a novel

and simple software tool for automated analysis of monolayer wound healing

assays. Biotechniques 46: 265–274.
2. Korzynska A, Strojny W, Hoppe A, Wertheim D, Hoser P (2007) Segmentation

of microscope images of living cells. Pattern Analysis and Applications 10:
301–319.

3. Selinummi J, Ruusuvuori P, Podolsky I, Ozinsky A, Gold E, et al. (2009) Bright
Field Microscopy as an Alternative to Whole Cell Fluorescence in Automated

Analysis of Macrophage Images. Plos One 4.

4. Ali R, Gooding M, Christlieb M, Brady M. Advanced phase-based segmentation
of multiple cells from brightfield microscopy images; 2008; Paris. 181–184.

5. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, et al. (2006)
CellProfiler: image analysis software for identifying and quantifying cell

phenotypes. Genome Biol 7: R100.
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