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Abstract. One recent hypothesis for the mechanism of 
chromosome movement during mitosis predicts that a 
continual, uniform, poleward flow or "treadmilling" 
of microtubules occurs within the half-spindle be- 
tween the chromosomes and the poles during mitosis 
(Margolis, R. L., and L. Wilson, 1981, Nature (Lond.), 
293:705-711). We have tested this treadmilling hy- 
pothesis using fluorescent analog cytochemistry and 
measurements of fluorescence redistribution after 
photobleaching to examine microtubule behavior dur- 
ing metaphase of mitosis. Mitotic BSC 1 mammalian 
tissue culture cells or newt lung epithelial cells were 
microinjected with brain tubulin labeled with 5-(4,6- 
dichlorotriazin-2-yl) amino fluorescein (DTAF) to 
provide a fluorescent tracer of the endogenous tubulin 
pool. Using a laser microbeam, fluorescence in the 
half-spindle was photobleached in either a narrow 1.6 

#m wide bar pattern across the half-spingle or in a 
circular area of 2.8 or 4.5 #m diameter. Fluorescence 
recovery in the spindle fibers, measured using video 
microscopy or photometric techniques, occurs as 
bleached DTAF-tubulin subunits within the microtu- 
bules are exchanged for unbleached DTAF-tubulin in 
the cytosol by steady-state microtubule assembly- 
disassembly pathways. Recovery of 75% of the 
bleached fluorescence follows first-order kinetics and 
has an average half-time of 37 sec, at 31-33°C. No 
translocation of the bleached bar region could be de- 
tected during fluorescence recovery, and the rate of 
recovery was independent of the size of the bleached 
spot. These results reveal that, for 75% of the half- 
spindle microtubules, FRAP does not occur by a syn- 
chronous treadmilling mechanism. 

T 
HE dynamic non-steady-state behavior of spindle mi- 
crotubules in living cells has been clearly demonstrated 
by a variety of experimental approaches. For example, 

the majority of spindle fiber birefringence can be rapidly and 
reversibly abolished by cold, high-pressure, or anti-mitotic 
drugs (28). Spindle birefringence disappears uniformly 
throughout the half-spindle, primarily due to the depolymer- 
ization of non-kinetochore microtubules. Kinetochore micro- 
tubules, usually a small fraction of the total number of micro- 
tubules in the half-spindle, are differentially stable to such 
treatments (3, 25, 30). 

More recently, the steady-state behavior of spindle micro- 
tubules has been studied using the techniques of fluorescence 
analog cytochemistry (40) and fluorescence redistribution 
after photobleaching (FRAP) j (1, 12, 14, 43). These studies 
have demonstrated that steady-state tubulin subunit exchange 
with the majority of spindle microtubules is remarkably rapid. 
In these experiments, mitotic tissue culture cells or sea urchin 
embryos were microinjected with fluorescein-labeled tubulin 
(13, 16, 42) to serve as a tracer of the endogenous tubulin 

A bbrevialions used in this paper: ARBs, areas of reduced birefringence; DTAF, 
5-(4,6-dichlorotfiazin-2-yl) amino fluorescein; FRAP, fluorescence redistribu- 
tion after photobleaching. 

pool. Fluorescent tubulin incorporated into spindle fibers 
rapidly, uniformly, and to near steady-state levels within 60 s 
(8, 33, 34). When a brief, intense pulse of laser light was then 
used to irradiate a restricted, defined area in a fluorescent 
half-spindle, the fluorophores bound to tubulin in that region 
were permanently bleached (33, 34). Recovery of fluorescence 
was observed as unbleached 5-(4,6-dichlorotriazin-2-yl) 
amino fluorescein (DTAF)-tubulin molecules within the cy- 
tosol exchanged with bleached molecules in spindle fibers, at 
steady-state. The recovery of fluorescence in circular spot 
bleaches in the half-spindle was rapid, apparently uniform, 
exponential (half-time = 10-24 s), and nearly complete at 
physiological temperatures (33, 34). Mitosis continued nor- 
mally (33, 34). The use of DTAF-tubulin as a probe for 
tubulin incorporation into microtubule polymer in vivo and 
the absence of detectable microtubule destruction by laser 
photobleaching have been recently demonstrated (for review 
see references 16, 21, 33, 34). Results of control experiments 
include the following: (a) DTAF-tubulin assembles only onto 
the ends of axonemal microtubules and does not bind to the 
axonemal wall (16); (b) fluorescence of the spindle fibers 
changes concurrently with the assembly of microtubules dur- 
ing mitosis and spindle fluorescence disappears when cells are 
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treated with microtubule-depolymerizing agents (33, 34); (c) 
photobleaching does not alter spindle birefringence (33); (d) 
the distribution of interphase microtubules is not altered by 
photobleaching (34); and (e) progress through mitosis is not 
affected even after multiple bleaches (33, 34). Thus, photo- 
bleaching of DTAF-tubulin (16) caused no detectable changes 
in the structure of spindle fibers. The recovery of fluorescence 
in a photobleached area, then, requires that non-irradiated, 
unbleached DTAF-tubulin molecules exchange with 
bleached subunits in the spindle fiber microtubules by steady- 
state assembly/disassembly pathways. 

In the experiments reported here, we have used the FRAP 
technique to test the major prediction of the treadmilling 
model for mitosis. The treadmilling model is based on the 
opposite-end assembly and disassembly of microtubules mea- 
sured in vitro (18). The model predicted that microtubules in 
each half-spindle, both kinetochore and nonkinetochore, 
would be of uniform polarity (2): plus (+) ends distal to the 
spindle pole and minus ( - )  ends proximal to the spindle pole, 
which has been verified experimentally (5, 41). Furthermore, 
the model suggested that subunits continually assemble into 
microtubules at the (+) ends while disassembling at an equal 
rate from the ( - )  ends. Where nonkinetochore microtubules 
from opposite spindle poles overlap, they would interact 
laterally to generate poleward movement of microtubules in 
order to balance the net rate of assembly and convert tubulin 
subunit flux into work. Thus, all microtubules in each half- 
spindle would flow continuously poleward during all stages 
of mitosis. At the onset of anaphase, subunit association was 
assumed to be blocked at the kinetochore while continued 
disassembly of microtubules at the pole would result in a net 
shortening of the kinetochore fiber as the microtubules flow 
poleward (19, 20). 

Two types of FRAP experiments were designed in an 
attempt to detect a uniform, poleward flow of spindle micro- 
tubules during mitosis. In the first of these experiments, the 
laser light was focused through a cylindrical lens, restricting 
the bleach to a narrow bar pattern that extended completely 
across the half-spindle of metaphase spindles of BSC 1 or 
newt lung epithelial cells. Time-lapse video micrographs of 
fluorescence recovery were examined to determine if the 
bleached region was translocated poleward as predicted by 
the treadmilling hypothesis. In the second type of experiment, 
the treadmilling model was tested by measuring FRAP in 
metaphase half-spindles of BSC 1 cells for circular bleach 
patterns of two different diameters. If FRAP is produced by 
a poleward flow of tubulin subunits within half-spindle mi- 
crotubules, then the recovery curves will display a sigmoid 
shape and the rate of recovery should be inversely propor- 
tional to the beam diameter. 

Materials and Methods 

Protein Preparation 
Microtubule protein was prepared from porcine brains (37, 38) and labeled 
with DTAF as described by Leslie et ai. (16) with several minor modifications. 
The tubulin assembly buffer consisted of 0.1 M Pipes, 1 mM MgSO4, 2 mM 
EGTA, and 0.5 mM GTP, pH 6.9. After labeling with DTAF, tubulin was 
purified by five assembly/disassembly cycles in 1 M Na-glutamate, 0.5 mM 
MgSO4, 1 mM EGTA, and 0.2 mM GTP, pH 6.9. After the final assembly 
step, the DTAF-tubulin pellet was resuspended in injection buffer (20 mM Na- 
glutamate, 0.5 mM MgSO4, 2 mM EGTA) and was frozen in liquid nitrogen 
at a protein concentration of 50-80 uM and stored at -80"C. 

Cell Culture 
All reagents for tissue culture were obtained from Gibco (Grand Island, NY). 
BSC 1 cells (generous gift of B. Neighbors, University of Colorado at Boulder) 
were grown on 22-mm square coverslips in Dulbecco's modified Eagle's me- 
dium with 20 mM Hepes, pH 7.3, at 37°C. Primary cultures of newt (Taricha 
granulosa) lung epithelial cells were grown in 0.6 X Leibovitz's medium 
supplemented with 10% fetal bovine serum, 5% whole egg ultrafiltrate, and 
antibiotics, pH 7.25, at 25°C. Small lung fragments (~2 mm 2) were rinsed three 
times in 0.6 X Tyrodes' salt solution and held in media for 24-48 h before 
culturing in Rose chambers (26, 27). Cells were fed at 5-d intervals. For 
microinjection, the coverslips containing the explanted cells were removed 
from the Rose chambers and the dialysis membranes were carefully peeled 
away. 

Microinjection 
Cells were pressure microinjected essentially as described by Graessmann et al. 
(7). Microneedles were pulled from Omega dot capillary tubing (Glass Company 
of America, Bargaintown, N J) on a Narishige micropipette puller. Needles were 
back-loaded using a 10-ul Hamilton syringe; the outer diameter of the needle 
tip was -0.5-1.0 urn. Cells on coverslips were injected at room temperature in 
culture media in 25-mm petri dishes on a Leitz Diavert microscope using a 
Brinkman MM 33 Compact Micromanipulator and returned to the incubator 
(37*(: for BSC 1 cells, 25"C for newt cells) to equilibrate after injection. For the 
experiments reported here, coverslips containing injected cells were mounted 
in Rose chambers (27) for observation. Experimental temperature was main- 
mined at 31 _ 2"C using a Sage model 279 air curtain incubator for all of the 
experiments with BSC 1 cells. Experiments using newt cells were performed at 
room temperature, usually 22"C. 

Fluorescence Microscopy, Photobleaching and 
Video Recording 
All of the experiments reported here were performed on an inverted optical 
bench microscope (9) equipped as described below. For epifluorescence, a Zeiss 
4 FL epi-illuminator, 100-W Hg burner, and DC-regulated power supply 
provided the illumination, and Zeiss fluorescein excitation and barrier filters 
(#487709) were used. Cells were imaged using a Zeiss 63X/1.4 NA plan 
apochromat. The bar bleach pattern (~ 1.6 um wide) was produced by focusing 
a 488-nm laser beam at the field diaphragm plane of the epi-illuminator through 
a cylindrical lens (18-mm focal length). Bleaching was produced by a 0.1-s 
pulse of laser light as described below. Fluot~cence images were obtained with 
a Venus DV2 camera and recorded by 35-mm photography of the video 
monitor (32). Electronic shutters (Uniblitz; Vincent Associates, Rochester, NY) 
limited epi-illumination during photographic exposures to 0.5 s to prevent 
photobleaching during recovery. 

Photometric Recording of FRAP 
Fluorescence excitation and bleaching were produced by a 488-nm laser micro- 
beam (Spectra-physics model 164), which had a circular Gaussian profile, by 
initially focusing the laser beam on to the field diaphragm plane of the epi- 
illuminator (32) using a spherical focusing lens (17.5-mm focal length). The 
beam cross section was constant through the spindle along the optic axis (34). 
The diameter of the beam at its point of focus on the specimen was determined 
from the relationship: D = I/e (maximum intensity of the laser beam) (1). A 
25x PH Zeiss Neofluor objective produced a 4.5-~m diameter beam and a 40x 
PH Zeiss Neofluor produced a 2.8-urn diameter beam through the specimen. 
For bleaching, the laser beam power was 100 roW, attenuated by 1.80D using 
neutral density filters. During the measurement phase, the laser was further 
attenuated by a factor of 5 x 104 compared with the bleaching intensity by an 
electronic shutter (12). In control experiments, the attenuated laser beam alone 
did not cause detectable photobleaching. However, to ensure that the attenuated 
laser beam did not cause damage to living cells, the fluorescence after photo- 
bleaching was measured intermittently, not continually, using a manual shutter. 
Spindle fluorescence was bleached by 40-60% within a 0.1-s exposure to the 
unattenuated laser beam. The fluorescence image was projected through a 
pinhole (14) in the image plane to an EM19863A photomultiplier. The number 
of photon counts was recorded every 0.5 s using a C-10 photon counter (EMI) 
and an Apple II Plus computer to sample, store, and plot the data. A total of 
768 data points were recorded. Five initial fluorescence values were used to 
normalize the fluorescence data before plotting the graphs of F(t). 

Data Analysis 
The photometric data, obtained from BSC 1 spindles, for the incorporation 
phase of fluorescence recovery was analyzed using the first-order, perturbation- 
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relaxation function (33, 34): F(t) = F® - IF® - Iv(o)] e -~. Exponential regression 
analysis of the data was performed using the Apple II Plus computer by plotting 
In IV® - Iv(t) vs. time after photobleaching, where IV. = average fluorescence at 
-225 s after bleaching. For fluorescence recovery, which we found to have a 
half-time of ~40 s at 32"C, recovery is expected to be 97% complete 200 s after 
bleaching. A straight line was fit by linear regression through the data points 
recorded over approximately the first 80 s after bleaching. This line was used 
to calculate the following parameters: k, the first-order rate constant, was 
obtained from the slope of the line; and lr(o), the fluorescence in the spindle 
fibers just after bleaching, was determined from the value of [it® _ Iv(t)] on the 
straight line at the time of bleaching (t = O); and %R (percent recovery) = [IV® 
- 1~(o)]/[1 ~_ - r(o)], where IV- = average fluorescence before bleaching. From 
the calculated values of IV®, Iv(o), and k, the exponential regression curve was 
plotted from Eq. 1 through the F(t) data. Graphs, generated by the Apple II 
Plus computer, were plotted on an Epson MX 80 printer. 

Results 

Incorporation o f  DTAF-Tubulin into Spindle Fibers 

For the experiments reported here pro-metaphase and meta- 
phase cells were microinjected with 5-10% of the cell volume 
of DTAF-tubulin at a concentration of ~60 uM. After injec- 
tion, cells were allowed to equilibrate at 32-37°C for 10 min 
and were then located in the fluorescence microscope. Within 
this period, steady-state tubulin incorporation into the spindle 
fibers was nearly complete as determined by the following 
photometric measurements. At 10 min post-injection, the 
intensity of fluorescence in the central region of a metaphase 
half-spindle was measured at 32°C using a laser beam diameter 
of 2.8 urn. Typically, spindle fluorescence was 6,000 pps 
compared with 1,500 pps in the adjacent cytoplasm. Next, 
the cells were cooled to 4oc for l0 min to induce microtubule 
disassembly. The cells were then rewarmed to 37°C for 10 
min to reassemble spindle microtubules from the cytoplasmic 
pool of unlabeled and DTAF-labeled subunits. The fluores- 
cence in the half-spindle was again measured and compared 
with the fluorescence intensity measured before cooling and 
re-warming. The value measured 10 min post-injection was 
on average 86 + / -  9% (n = 8) of the value obtained after 
cooling and re-warming. These experiments confirm that 
incorporation of fluorescent tubulin into spindle fibers is rapid 
(8, 33, 34) and demonstrate that incorporation throughout 
the spindle fiber microtubules occurs to near steady-state 
levels within l0 min. 

Bleached Bar Patterns Do Not Translocate 
during FRAP 

A major prediction of the treadmilling model for mitosis is 
that microtubules in each half-spindle continually flow or 
treadmill poleward. This treadmilling action would result 
from assembly of microtubules at the equatorial region of the 
spindle and disassembly, at an equal rate, at the spindle poles 
(19, 20). We have tested this prediction by photobleaching a 
narrow bar pattern across half-spindles in cells previously 
injected with fluorescent tubulin. Cells were positioned so 
that the bleach pattern was perpendicular to the pole-to-pole 
spindle axis. If a treadmiUing mechanism operates during 
mitosis, then one would expect a translocation of the bleached 
region poleward, as diagrammed in Fig. 1. 

The result of a typical bar pattern bleach experiment is 
illustrated in Fig. 2. At the start of the experiment, the 
metaphase BSC 1 spindle (average pole-to-pole length = 22.5 
urn) appears uniformly fluorescent (Fig. 2a). Immediately 
after bleaching (Fig. 2 b), an. area of reduced fluorescence is 
observed across the half-spindle. In most cells, recovery of 
fluorescence is substantially complete within 2 rain (Fig. 2, 
c-e). In addition, because the bar bleach pattern extended 
completely across the half-spindle, recovery of fluorescence 
could not occur by lateral displacement of adjacent, un- 
bleached microtubules into the bleached area. Out of a total 
of 38 experiments with BSC 1 cells, no translocations of the 
1.6-urn-wide bar bleach pattern were detected during fluores- 
cence recovery as described in Fig. 1. 

In several experiments using BSC 1 cells, a faint image of 
the bleached region could be seen for ~300 s after bleaching. 
This observation suggested that FRAP in metaphase spindles 
was incomplete. This "persistent" bleached fluorescence (on 
average 25% of the total bleached fluorescence, see below), 
which we attribute to the differentially stable kinetochore 
fiber microtubules (3, 25, 30), also appeared stationary during 
this time. 

We also used newt lung epithelial cells in the bar bleach 
experiment. Because of their large spindle size (average pole- 
to-pole length = 30 urn), translocations of the bar bleach 
pattern during FRAP would be easier to detect in these 
spindles. In addition, the average half-time for fluorescence 
recovery in these cells is longer than in BSC 1 cells (75 s vs. 
37 s) (Wadsworth, P., and E. D. Salmon, unpublished obser- 

Figure 1. Behavior of bar bleach 
pattern as predicted by the tread- 
mill ing model .  Ar rows  m a r k  the 
sites o f t u b u l i n  subuni t  addit ion to 
microtubules as proposed in the 
treadmilling model. The bleached 
region is represented by the 
hatched box. With time, the 
bleached region is translocated 
poleward by tubulin treadmilling 
through the microtubules. 
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Figure 2. Fluorescence recovery after photobleaching ofa metaphase BSC 1 cell microinjected with DTAF-tubulin. Spindles were photobleached 
in a region midway between the chromosomes and the pole for 100 ms using the 488-nm line from an argon ion laser. The bar bleach pattern 
(1.6-um width) was produced by focusing the laser beam at the field diaphragm plane of the epi-illuminator through a cylindrical lens (see 
Materials and Methods for instrumentation details). Cell before bleaching (a), immediately after bleaching (b), and after 73 (c), 200 (d), and 
271 (e) s of recovery. Arrows mark the position of the bleached region. Bar, 10 ~tm. 

Figure 3. Fluorescence recovery after photobleaching of a metaphase newt lung epithelial cell. Experimental details as in Fig. 2. Cell before 
pholobleaching (a), immediately after pholobleaching (b), and after 23 (c), 53 (d), and 146 (e) s of recovery. A faint, stationary line can be seen 
in all frames, above the bar bleach pattern. This line is due to a defect in the video camera and is not produced by photobleaching. Arrows 
mark the position of the bleached region. Bar, 10 urn. 

vation), increasing the temporal resolution of  these experi- 
ments, As seen in Fig. 3, however, fluorescence recovery 
occurs in the bleached region with no detectable translocation 
of  the bar bleached pattern either toward or away from the 
spindle pole. 

How much poleward translation of  the bar bleach pattern 
would be expected if a treadmilling mechanism was respon- 
sible for FRAP? If treadmilling were to occur at the rate of  
anaphase chromosome movement (19, 20) for BSC 1 cells 
(~1.5 ~m/min at 32"C) or newt lung epithelial cells (~1 ~m/  
min at 23"C), then the extent of  the lransloction of  the 
bleached region after photobleaching would be a function of  
the time after bleaching. For example, at 120 s after bleaching, 
the interval during which the majority of  FRAP occurs, a 2-  
3-~m translocation would have occurred (2 m i n x  1-1.5 #m/  
min). This distance is 1.5-2 times the width of  our 1.6-urn 
bar bleach pattern and would be apparent in our photographs. 

Rate o f  FRAP Is Independent o f  the Size o f  the 
Bleached Region 

Photometric measurements of  FRAP in circular bleached 
regions of the half-spindle were next used to determine more 
accurately the rate and extent of FRAP in BSC 1 cells. In 
addition, such photometric measurements can be used to 
determine if flow occurs during recovery by comparing the 
rate of  FRAP in circular bleached regions of  two different 
diameters. I fFRAP is produced by a poleward flow oftubulin 
subunits within half-spindle microtubules, then the recovery 
curves will display a sigmoid shape as the circular bleached 
region translates out of  the circular measuring beam and the 
rate of  fluorescence recovery will be inversely proportional to 
the beam diameter (14). 

Typical computer records of  FRAP obtained by photomet- 
ric measurements are shown in Fig. 4. The rapid recovery of  
fluorescence occurred in at least two phases (33). The first 

phase is due to tubulin diffusion in the cytosol, in the spindle 
and cytoplasm along the optical path of  the laser beam 
through the cell (29, 32). It is complete within a few seconds 
after bleaching. This diffusion phase is a minor component 
of  FRAP in these flat cells and is not apparent using the time 
scale shown in Fig. 4. Similar rates of  FRAP due to tubulin 
diffusion have also been independently measured by bleach- 
ing the cytoplasm outside of  the microtubule-containing spin- 
die region and measuring FRAP using photometric (data not 
shown) or video techniques (32). 

The major portion of  the second phase of  fluorescence 
recovery closely followed an exponential function, and is 
referred to as the fast incorporation phase of  recovery (Fig. 
4). In BSC 1 metaphase spindles this fast incorporation phase 
had a first order rate constant, k, of  ~0.0195 and a correspond- 
ing half-time of  fluorescence recovery of ~37 s (Table I). This 
fast incorporation phase appeared complete by 225 s. Fluo- 
rescence recovery of  the fast incorporation phase accounted 
for ~75% of the initial bleached spindle fluorescence. The 
remaining 25% of the initial bleached fluorescence recovered 
relatively slowly, if at all, over the time course of  these 
experiments (see Fig. 4). These observations suggest that two 
different rates of  spindle fiber incorporation can occur in 
these cells, with the faster phase accounting for the majority 
of  the fluorescence recovery (see Fig. 4). A minor portion of  
the half-spindle microtubules exchange subunits much more 
slowly than the majority of half-spindle microtubules. The 
slower incorporation phase has not been included in the rate 
calculations presented here and has not been analyzed beyond 
the 385-s sampling period. 

A schematic representation of  FRAP experiments using 
two different bleach spot diameters is shown in Fig. 5 and the 
results of  these photometric measurements are presented in 
Fig. 4 and Table I. For bleach spot diameters of  2.8 and 4.5 
urn, the kinetics of  FRAP were identical: (a) the fast incor- 
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Figure 4. Computer  records of  FRAP for metaphase BSC 1 spindles obtained by photometric measurements. (a) Record of FRAP obtained 
with a bleach spot diameter of 4.5 zm. The half-time for recovery was 33 s and the percentage of bleached fluorescence recovered at 225 s was 
68%. (b) Record of FRAP obtained with a bleach spot diameter of 2.8 zm. The half-time for recovery was 32 s and the percentage of bleached 
fluorescence at 225 s was 74%. F_ average initial fluorescence; F® average fluorescence at 225 satier bleaching. The line through the data points 
was generated as described in Materials and Methods. 

Table L FRAP as a Function of Bleach Spot Diameter ~,~ / . , .  
__.__~" /,,,i 

Spot Diameter k (sec- 1)* iv,* %R* n 

2.8 ~m 0.019 _+ .004 39 _+ 9 76 ___ 16 8 / I \ \ ~ "  
4.5 um 0.020 _+ .004 36 ± 7 75 + 15 9 / ~\\"~\\ Figure 5. Diagram, approximately to scale for 

* De_termin_ed by exponential regression analysis of recovery curves by plotting //[ [ i ~ [  ~ an average BSC 1 spindle, of the two spot size 
In [Fe~ - F(t)] vs. time after photobleaching, as described in Materials and experiment. The bleaching beam diameters are 
Methods. 2.8 and 4.5 urn. Bleaches were made in the half- 

spindle midway between the chromosomes and 
poration phase of fluorescence recovery was always exponen- I I [ ~ l l ]  pole and recovery was measured photometri- 
tial, not sigmoidal; (b) the half-times of  the fast incorporation . ~ ~ ! ] ; /  cally. 
phase were the same; and (c) the percentage of bleached 
fluorescence recovered was also the same. 

,I / Discussion -----/1~" 
The major conclusion of  the experiments presented here is 
that a uniform, poleward flow of  tubulin subunits is not the 
mechanism responsible for fluorescence recovery in the ma- 
jority of half-spindle microtubules in metaphase BSC 1 and 
newt lung epithelial cells. Because the treadmilling model 
predicts that all the microtubules in the half-spindle treadmill 
poleward (19, 20), our results are inconsistent with such a 
model. Rather the exponential recovery process observed here 

(Fig. 4), which is independent of  bleach spot diameter (Table 
I), suggests that FRAP occurs by association--diassociation 
reactions between spindle microtubules and tubulin subunits 
that occur throughout the spindle at steady-state. 

Our conclusions, however, are limited to that fraction of 
spindle microtubules which recover fluorescence during the 
time course of our experiments. As seen in Table I, only 
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-75% of the original fluorescence is recovered in 385 s at 31- 
33"C. Our interpretation of this incomplete recovery of fluo- 
rescence is that a minor fraction of the microtubules in the 
half-spindle are much more stable than the majority of mi- 
crotubules. Previous work on a variety of spindle types has 
shown that kinetochore fiber microtubules are differentially 
stable to physical and chemical agents that promote micro- 
tubule depolymerization (3, 25, 30). The incomplete FRAP 
observed here, along with the indication of fast and slow rates 
of fluorescence incorporation during recovery (Fig. 4), suggest 
that the more stable kinetochore fiber microtubules may 
recover fluorescence more slowly than the nonkinetochore 
microtubules. Furthermore, we have been unable to detect 
any translocation of that fraction of bleached fluorescence 
which is not recovered during these experiments. 

While a continual, uniform flow of subunits toward the 
spindle pole in the majority of half-spindle microtubules is 
not supported by the results presented here, several modifi- 
cations of the treadmilling model can be considered. First, 
the fraction of differentially stable microtubule polymer may 
treadmill. Although we have not been able to detect any 
translocation of the "persistent" bleached fluorescence, this 
behavior would be difficult to detect against the majority of 
nontreadmilling polymer in the half-spindle. Secondly, micro- 
tubules may treadmill asynchronously, not uniformly. 
Thirdly, microtubule treadmilling may occur only at certain 
stages of mitosis, such as during anaphase. At present, we 
cannot exclude any of these possibilities. Additional experi- 
ments, which can resolve the behavior of individual micro- 
tubules during all stages of mitosis, are necessary to clarify 
these issues. 

The results of other recent FRAP experiments also support 
the conclusion that uniform treadmilling of microtubules is 
not the mechanism responsible for fluorescence recovery. 
Circular bleach patterns on interphase microtubule arrays, 
using either DTAF-tubulin or fluorescein-labeled microtu- 
bule-associated proteins as the fluorescent probe molecule, 
recover fluorescence uniformly, without a translocation of the 
bleached region (34, 35). Video FRAP analysis of circular 
bleaches in mitotic spindles of sea urchin embryos and PtKj 
cells also show a uniform recovery of fluorescence (33, 34). 

In the experiments presented here, we have measured tub- 
ulin exchange with microtubule polymer at metaphase when 
the amount of microtubule polymer remains constant. Fur- 
thermore, a variety of control experiments demonstrate that 
the FRAP technique does not destroy microtubule structure 
(33, 34). This is in contrast to the UV microbeam technique 
used by Forer (6) to create areas of reduced birefringence 
(ARBs) on spindle fibers. In Forer's experiments, poleward 
movements of the ARBs along kinetochore fibers were re- 
ported to occur during both metaphase and anaphase in insect 
spermatocytes. Because a UV microbeam can cause micro- 
tubule destruction (15), the UV microbeam experiments are 
not steady-state measurements of tubulin-microtubule ex- 
change. At present, the molecular mechanism responsible for 
the apparent poleward movement of ARBs is not known, but 
the nature of the technique suggests the possibility that repo- 
lymerization or repair may be involved. 

If  FRAP does not occur by synchronous treadmilling, what 
alternative mechanism might be responsible for the rapid 
tubulin exchange with the majority of spindle microtubules 

at steady-state? Simple equilibrium exchange of tubulin sub- 
units at only the ends of steady-state microtubules (24) is not 
sufficiently rapid to account for the rate of FRAP measured 
in this and previous studies of mitotic microtubules (33, 34; 
see also reference 31 for discussion). Alternatively, exchange 
sites could occur all along the length of half-spindle microtu- 
bules, as originally suggested in the Inou6 dynamic equilib- 
rium model (10, 11) and more recently from images obtained 
using cryo-electron microscopy (17). Alternatively, microtu- 
bules could be rapidly breaking and rcannealing. 

Recently, however, Soltys and Borisy (39) have observed 
that incorporation of fluorescent tubulin into individual cy- 
toplasmic microtubules occurred primarily by growth at the 
ends of pre-existing microtubules and by the polymerization 
of new microtubules from the centrosome. Areas of fluores- 
cence were not observed at multiple sites along the length of 
the microtubules. These observations do not provide direct 
information on the dynamics of spindle microtubules, but do 
suggest that the primary sites for tubulin assembly and disas- 
sembly are at the ends of microtubules as observed in vitro. 
One possible means to reconcile the very dynamic behavior 
of microtubules in living cells with end-dependent growth is 
that microtubules can rapidly assemble and then disappear in 
an asynchronous manner. Such a phenomenon, termed "Dy- 
namic Instability," has been described recently by Mitchison 
and Kirschner for microtubule-associated protein-free micro- 
tubules assembled in vitro (22, 23). Rapid asynchronous 
microtubule elongation and depolymerization, for the major- 
ity of half-spindle microtubules, would be in accord with the 
rapid rate of tubulin turnover measured in spindle fibers of 
living mitotic cells using FRAP. In addition, a stochastic 
process would not result in a uniform, directional recovery 
process, in accord with the results presented here. This model 
does provide a mechanism whereby end-dependent events are 
sufficiently rapid to account for in vivo observations providing 
that the rate of microtubule elongation is sufficiently rapid 
(29, 31). Recently, we have analyzed the rate and pattern of 
non-steady-state depolymerization of individual astral micro- 
tubules in human monocytes by blocking assembly with 
nocodazole (4). In these cells, the behavior of each individual 
microtubule can be quantitated, using immunofluorescence 
techniques. Our results demonstrate that individual microtu- 
bule behavior in living cells can be both rapid and asynchro- 
nous as predicted by the Dynamic Instability model. 

In conclusion, our experiments demonstrate that the ma- 
jority of microtubules in a metaphase half-spindle do not 
synchronously treadmill poleward. Our results are compatible 
with both the Dynamic Equilibrium model (10, 11), in which 
the site of assembly is not restricted to the microtubule ends, 
or the Dynamic Instability model (22, 23), in which assembly 
of some microtubules and disassembly of others occurs sto- 
chastically throughout the microtubule array. Analysis of 
individual spindle microtubules will be necessary to elucidate 
the mechanism of microtubule assembly in vivo. 
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