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Abstract
Chemicals, including some systemically administered xenobiotics and their bio-
transformations, can be detected noninvasively using skin swabs and untargeted 
metabolomics analysis. We sought to understand the principal drivers that de-
termine whether a drug taken orally or systemically is likely to be observed on 
the epidermis by using a random forest classifier to predict which drugs would 
be detected on the skin. A variety of molecular descriptors describing calculated 
properties of drugs, such as measures of volume, electronegativity, bond energy, 
and electrotopology, were used to train the classifier. The mean area under the 
receiver operating characteristic curve was 0.71 for predicting drug detection on 
the epidermis, and the SHapley Additive exPlanations (SHAP) model interpreta-
tion technique was used to determine the most relevant molecular descriptors. 
Based on the analysis of 2561 US Food and Drug Administration (FDA)-approved 
drugs, we predict that therapeutic drug classes, such as nervous system drugs, 
are more likely to be detected on the skin. Detecting drugs and other chemicals 
noninvasively on the skin using untargeted metabolomics could be a useful clini-
cal advancement in therapeutic drug monitoring, adherence, and health status.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
A multitude of chemicals that an individual encounters in daily life can be de-
tected on the skin surface using untargeted metabolomic analysis, including topi-
cal and systemically administered xenobiotics.
WHAT QUESTION DID THIS STUDY ADDRESS?
Can machine learning be used to predict whether systemically administered 
drugs are observed on the epidermis and provide insights into the complex un-
derlying biochemical processes?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
Our machine-learning model found relevant molecular descriptors related to vol-
ume, electronegativity, bond energy, and electrotopology to be strong predictors 
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INTRODUCTION

The skin provides a physical and chemical barrier to en-
vironmental insults and supports immunological function 
and thermoregulation. Additionally, the bacteria, viruses, 
and fungi that comprise the skin microbiome provide an 
essential function in protection against microbial patho-
gens, educating the immune system, and breaking down 
products.1 Traditionally, topical formulations of drugs 
are desired in certain medical conditions to either de-
liver drugs from the skin to the systemic circulation (e.g., 
transdermal scopolamine) or to deliver drugs locally to 
the skin and minimize the systemic toxicity of these drugs 
(e.g., topical corticosteroids). Interestingly, a recent study 
demonstrated systemic concentrations above the US Food 
and Drug Administration (FDA) safety threshold of the 
sunscreen compounds avobenzone, oxybenzone, and oc-
tocrylene up to 21  days postadministration, despite the 
widespread assumption that these commonly used topical 
products are considered “safe.”2

Skin permeation by xenobiotics has been investigated 
for many years.3 The majority of drugs permeate across 
the bulk of the epidermis, along a concentration gradi-
ent, in three pathways—intracellular, intercellular, and 
follicular—with the intercellular pathway believed to 
provide the principal route for drug permeation.4 Several 
mechanistic studies have shown that extracellular lacu-
nar domains comprise a pore pathway for penetration 
of polar and nonpolar molecules across the stratum 
corneum. Following penetration across the stratum 
corneum, drugs diffuse across the viable epidermis and 
dermis and are carried away into the bloodstream by the 
capillaries of the dermis. Ideal drug candidates for per-
meation through the skin include those with low mo-
lecular weight, solubility in water and oils to achieve an 
appropriate concentration gradient, an elevated but bal-
anced partition coefficient, and a low melting point for 
solubility purposes.5 Currently, there exist several models 
to predict skin permeability and data resources of exper-
imental skin permeation values and their corresponding 
protocols.6

In contrast, less is known about “inverse penetration”: 
drugs moving from the systemic circulation to the epi-
dermis. Patzelt et al. suggested five possible inverse pen-
etration pathways, consisting of: (i) the intracellular; (ii) 
intercellular; and (iii) follicular pathways, similar to topi-
cally administered substances; and (iv) inverse penetration 
via sweat, or (v) via the desquamation process.7 Based on a 
literature study of 11 systemically administered substances 
and their recovery in the skin, they concluded that lipo-
philic substances predominantly reach the skin surface 
via the sebum, whereas hydrophilic substances utilize 
the sweat for delivery to the skin surface. Inverse cellular 
penetration and desquamation—which occurs on longer 
time scales—are less relevant, although no indication for 
inverse intracellular penetration was found in the liter-
ature. Concentrations on the epidermis of a few systemi-
cally administered compounds have been reported in the 
literature.7,8 For example, the antifungal agent fluconazole 
was detected in significantly higher concentrations in the 
stratum corneum than in plasma and for a longer duration 
after cessation of therapy.9 Similarly, other systemically 
administered antifungal agents were detected in high con-
centrations on the skin and exhibited slow clearance from 
both skin and nails.8

Comprehensive knowledge of the underlying mech-
anisms is relevant in the dermatological field, as a mul-
tiplicity of pharmaceutics are administered systemically 
to address skin disorders, and would enable important 
applications of xenobiotic skin detection using noninva-
sive methods to determine adherence of drugs, for ther-
apeutic drug monitoring, the extent of metabolism, and 
to assess organ and health status. Skin swab samples 
have previously been used to determine individual skin 
chemistry profiles, including topically applied chemicals, 
such as avobenzone, octocrylene, as well as others found 
in soap, lotions, cosmetics, and anti-mosquito sprays and 
lotions.10 Furthermore, we have recently demonstrated 
that systemically administered drugs, such as citalo-
pram, diphenhydramine, and the N-acetyl metabolite of 
sulfamethoxazole, can be detected in skin swab samples 
of the hands, forearm, forehead, and axilla.11 Utilizing 

of drug observance on the epidermis. Our model predicted that certain catego-
ries of drugs, such as those affecting the nervous system, are more likely to be 
observed.
HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR 
TRANSLATIONAL SCIENCE?
Our machine-learning model demonstrated several physicochemical properties 
of drugs that predict detection on noninvasively obtained skin swabs. Using skin 
swabs may be a paradigm shift in how we monitor drugs, measure drug adher-
ence, and monitor health and disease noninvasively.
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untargeted metabolomics and analysis of these data using 
the Global Natural Products Social Molecular Networking 
(GNPS)12 infrastructure, we achieved the detection of 
these compounds on the epidermis of patients that were 
prescribed these drugs, thus concluding that systemically 
administered drugs can be detected on the skin surface. 
Additionally, our recent study in healthy humans demon-
strated a delayed time course between plasma and skin 
concentrations of diphenhydramine and its metabolites 
ranging from 1.5 to 10 h (https://biorx​iv.org/cgi/conte​nt/
short/​2021.11.22.469638v1).

The full mechanism and pathways of chemicals and 
drugs moving from the systemic circulation to the epider-
mis are unknown. Additionally, not all xenobiotics can 
be detected on the skin. A notable example is the immu-
nosuppressive drug tacrolimus, which was not detected 
in our skin swab samples.11 We sought to understand the 
physicochemical and pharmacokinetic properties that 
allow some systemically administered drugs to be detected 
on the epidermis and not others. Using existing skin swab 
data, we trained a random forest classifier that is able to 
accurately predict whether a compound will be observed 
on the epidermis.

METHODS

Data origin

No human subjects were recruited for this study and all 
data were assessed retrospectively. All data were anony-
mous and obtained from open mass spectrometry data 
contained in GNPS and ReDU. GNPS is a public data re-
pository and analysis infrastructure for untargeted metab-
olomics data.12 Analysis tools available on GNPS include 
spectral library searching, molecular networking to com-
pute spectral similarities between tandem mass spectrom-
etry (MS/MS) spectra and detect related compounds,13 
and MASST to query MS/MS spectra against all public 
metabolomics data and associated sample information to 
investigate their context.14 ReDU is an associated system 
to capture metadata of public data in GNPS using vali-
dated controlled vocabularies (redu.ucsd.edu).15

To collect drugs that are observable on the epidermis, 
MS data and associated metadata were selected using ReDU 
(March 24, 2019) by filtering for files that were annotated as 
pertaining to human skin samples using the Uberon ontol-
ogy of anatomy terms16 (Table S1). This resulted in a list of 
5629 files from a heterogeneous set of 20 previously per-
formed studies with data deposited to GNPS (Table S2).

Additionally, prescription records available in conjunc-
tion with data from a previous kidney transplant study11 
were used to define drugs which were prescribed to 

individuals but were not observed in skin samples in that 
study (GNPS/MassIVE dataset identifier MSV000081548). 
Skin samples were obtained from 15 individuals at two 
different clinic visits—without regard to timing with 
their medications—on 10 locations on the body (bilat-
eral collection of the forehead, nasolabial area, axillary, 
backhand, and palm). The subjects of that study were pre-
scribed many (>5) medications simultaneously. Of the 58 
different medications in that study, 50 drugs were previ-
ously not detected in skin samples11 and offer “negative” 
examples for which we have experimental data. Negative 
examples will include both the lack of transport to the 
epidermis, but also the lack of detection due to sample 
preparation (e.g., some drugs might not be detected due to 
the chosen extraction conditions). The eight drugs or drug 
metabolites that were detected in skin swabs in that study 
are part of presumed “positive” compounds that are ob-
served on the epidermis. Further, these particular exam-
ples are supported with experimental data and matching 
prescription records (i.e., the drugs were detected in the 
subjects to whom they were prescribed).11

Data processing

All peak files filtered through ReDU were analyzed using 
MS/MS library searching on GNPS against all available 
public spectral libraries (version 2.0; GNPS task ID: https://
gnps.ucsd.edu/Prote​oSAFe/​status.jsp?task=53e26​5f8f6​994f0​
196bf​9bccd​8d1b513). MS/MS library searching resulted in 
175 drugs that were identified in the human skin files (level 
2 annotation according to the Metabolomics Standards 
Initiative17), filtered using a list of curated drugs and drug 
metabolites as they are recorded in the GNPS MS/MS ref-
erence libraries. Duplicate annotations were removed and 
drugs available in topical formulations were excluded, result-
ing in a final list of 95 compounds. Based on the empirical 
measurement of these drugs or drug metabolites in publicly 
available MS data we presume that these 95 compounds are 
“positive” examples of drugs that appear on the epidermis.

Combined, 145 unique compounds were retained for 
the machine learning, 95 positive examples and 50 nega-
tive examples. The full list of compounds and information 
on whether they were observed on the epidermis or not is 
available in Table S3.

Machine learning epidermis prediction

Feature generation and preprocessing

A random forest classifier was used to predict whether 
drugs are expected to be observed on the epidermis. First, 

https://biorxiv.org/cgi/content/short/2021.11.22.469638v1
https://biorxiv.org/cgi/content/short/2021.11.22.469638v1
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Mordred,18 a cheminformatics software tool to efficiently 
compute a large variety of molecular descriptors, was used 
to generate molecular descriptors for all 145 compounds, 
such as calculated measures of volume, electronegativity, 
bond energy, and electrotopology (see Table  S4 for rele-
vant descriptor examples). Molecular descriptors that were 
missing for one or more drugs were omitted, resulting in a 
feature table consisting of 929 unique descriptors per com-
pound. Next, a classification pipeline was built to predict 
the probability of observing a drug on the epidermis. The 
classification pipeline consisted of preprocessing steps to 
remove irrelevant features and a random forest classifier. 
Preprocessing steps included removing all features whose 
variance was below 0.05 and removing one of the features 
for which their pairwise Pearson correlation exceeded 0.95.

Random forest classifier training and evaluation

A random forest classifier19 using 1000 trees was trained 
to predict the epidermis probability. Evaluation and hy-
perparameter tuning of the classification pipeline were 
done using nested cross-validation. Two levels of strati-
fied shuffle splitting consisting of 100 iterations of random 
splitting in 80% training data and 20% test data were per-
formed. In the inner cross-validation loop, 10 iterations 
of randomized searching were used for hyperparameter 
optimization of the random forest. The following differ-
ent hyperparameters were evaluated: tree depth (i.e., the 
longest path from the root node to the leaf nodes) between 
5 and 9 (inclusive), minimum number of samples per leaf 
node between 1 and 9 (inclusive), and minimum num-
ber of samples to split an internal node between 2 and 
9 (inclusive). The random forest classifier with optimal 
hyperparameters was subsequently evaluated in the outer 
cross-validation loop. The number of features retained 
in the final classification pipeline after removing unin-
formative features was 287, and trees with depth eight, 
minimum two samples per leaf node, and minimum two 
samples to split a node were most frequently found to be 
optimal. For each split, the balanced accuracy, true posi-
tive rate, false positive rate, and precision were computed 
for both the training data and test data. Model perfor-
mance was assessed based on the receiver operating char-
acteristic (ROC) curve and precision–recall curve.

SHapley Additive exPlanations model 
interpretability

Important features for epidermis prediction were deter-
mined using SHapley Additive exPlanations (SHAP),20 a 
model interpretability method founded in game theory. 

Briefly, SHAP explains machine-learning predictions by 
using interpretable local models to approximate a com-
plex black box model. Kernel SHAP was used to explore 
the trained classification pipeline. To determine the im-
portant features, 50 training samples determined by 
K-means clustering, with the cluster centroids weighted 
by the number of samples assigned to them, were used 
as the background dataset. To investigate the features of 
importance of individual compounds, if they were part of 
the training dataset, the random forest classifier with opti-
mal hyperparameters was retrained using a leave-one-out 
strategy prior to SHAP analysis.

FDA-approved drugs and 
biotransformations

Drug names, SMILES representations, and Anatomic 
Therapeutic Chemical (ATC) codes for 2561 FDA-
approved drugs were retrieved from DrugBank (version 
5.1.7)21 on December 23, 2020. Mordred was used to 
generate the same features for these drugs as used dur-
ing model training, and the probability of observing these 
drugs on the epidermis was determined using the trained 
classification pipeline. Additionally, potential biotrans-
formation products of the drugs were generated using 
the BioTransformer tool.22 The human super transformer 
mode, which combines an Enzyme Commission-based 
transformer, a CYP450 (phase I) transformer, a phase 
II transformer, and a human gut microbial transformer 
were used to predict potential biotransformation products 
after a single transformation step. This resulted in 23,693 
putative biotransformation metabolites derived from the 
FDA-approved drugs, for which similarly the probability 
of observing them on the epidermis was predicted using 
the trained classification pipeline.

Code availability

All analyses were performed in Python 3.8. RDKit (ver-
sion 2020.09.3)23 and Mordred (version 1.2.0)18 were used 
to generate molecular descriptors. A GPU-accelerated ver-
sion of the random forest algorithm, available as part of the 
cuML library (version 0.18.0)24 was used in combination 
with Scikit-Learn (version 0.24.1)25 for data preprocessing 
and model evaluation. SHAP (version 0.39.0)20 was used to 
compute the features of importance. BioTransformer (ver-
sion 2.0.1)22 was used to generate biotransformation prod-
ucts. Additionally, NumPy (version 1.20.1),26 SciPy (version 
1.6.0),27 and Pandas (version 1.1.5)28 were used for scientific 
computing, and matplotlib (version 3.3.4)29 and Seaborn 
(version 0.11.1)30 were used for visualization purposes.
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All code is available at https://github.com/bittr​emieu​
x/drugs_epide​rmis as open source under the permissive 
BSD license.

RESULTS

Occurrence of drugs on the epidermis

Based on the rich metadata associated with the MS/MS 
data, we were able to select 5629 MS/MS peak files that 
contain samples collected from human body sites from 20 
publicly available datasets (Table S2). These data originate 
from a variety of studies, including, for example, a 3D mo-
lecular cartography of the human skin study in which 
paired MS and sequencing data was collected to investi-
gate the spatial relationships of human skin with hygiene, 
the microbiota, and the environment (MSV000078556)31; 
a study in which skin samples were obtained from healthy 
human volunteers that were given single doses of caffeine, 
omeprazole, midazolam, and dextromethorphan on 2 sep-
arate days (8 days apart) and a 7-day course of cefprozil 
(MSV000082493)32; and the kidney transplant study de-
scribed in more detail above (MSV000081548).11

For our secondary analysis, we extracted 145 cu-
rated drugs from these data to build a machine-learning 
model to predict whether drugs occur on the epidermis. 
Additionally, based on the Uberon anatomy ontology,16 
these drugs were mapped to the body site on which they 
were detected (Figure 1). The different rates of drug occur-
rence throughout the body suggest that there will be dis-
tinct detection of chemicals and xenobiotics in skin. As an 
example, our previous study showed that the N-acetyl me-
tabolite of sulfamethoxazole was detected in armpit skin 
samples but not in other skin sites sampled, such as fore-
head, palms, and forearm.11 More polar compounds may 
be more likely detected in more aqueous areas of the skin 
where sweat is more concentrated, such as the armpit.

Machine learning to predict whether drugs 
occur on the epidermis

Using a random forest classifier, we were able to predict 
whether drugs will be observed on the epidermis with an 
area under the ROC curve (AUC) obtained during cross-
validation of 0.71 ± 0.10 (Figure 2) and an area under the 
precision–recall curve of 0.82 ± 0.07 (Figure S1). As an ex-
ample, two drugs that were present in our data and which 
were previously reported to be present on the skin, the an-
timycotics fluconazole,9 and ketoconazole,33 are strongly 
predicted to be observed on the skin. This performance 
indicates that machine learning can be used to successfully 

approximate the complex underlying biochemical pro-
cesses leading to drugs being observed on the epidermis. As 
we were constrained by the limited availability of ground 
truth data in this study, we hypothesize that as more train-
ing data becomes available it will be possible to produce 
even more accurate machine learning models (Figure S2).

We tried to gain insight into the molecules’ physical 
properties that result in drugs being present on the epider-
mis. The SHAP model interpretation technique was used 
to determine the most relevant features, consisting of 
molecular descriptors generated by Mordred, for the clas-
sifier performance (Figure  3, Table  S4). The top-ranked 
features are computed measures of volume (ATSC7v), 
electronegativity (PEOE_VSA1, PEOE_VSA9), bond en-
ergy (ATSC6d), and electrotopology (EState_VSA1). By 
investigating the SHAP values for individual features, we 
can derive that in general smaller compounds (Van der 
Waals volume) with a smaller bonding potential (elec-
tronegativity) are more likely to be observed on the epi-
dermis. We can hypothesize that through heterogeneous 
biochemical processes such molecules diffuse faster and 
thus will be secreted to the epidermis.

Additionally, SHAP can be used to interpret predictions 
for individual drugs. The antihistamine drug diphenhydr-
amine was experimentally observed on the epidermis in 
a previous healthy human clinical study (https://biorx​

F I G U R E  1   Body sites of the drugs found through spectral 
library searching. Body sites for the identified drugs were retrieved 
from the Uberon annotations specified in ReDU, and drug counts 
per body site were normalized by the total number of ReDU entries 
for each body site

https://github.com/bittremieux/drugs_epidermis
https://github.com/bittremieux/drugs_epidermis
https://biorxiv.org/cgi/content/short/2021.11.22.469638v1
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iv.org/cgi/conte​nt/short/​2021.11.22.469638v1). Using 
a leave-one-out training strategy to not bias the classi-
fier, it was also strongly predicted to be present on the 
epidermis (Figure  4a). The most relevant features con-
tributing to this prediction are its lack of accessible Van 

der Waals surface area with a low electrotopological 
state (EState_VSA1), a high atomic mass autocorrelation 
(ATSC4m), a small Van der Waals surface area with low 
partial charge (PEOE_VSA1), and a low autocorrelation 
weighted by sigma electrons (ATSC6d, ATSC7d). In con-
trast, although the related compound diphenhydramine 
N-hexose is structurally similar, it is predicted to not ap-
pear on the epidermis (Figure 4b), in part because of its 
increased accessible Van der Waals surface area with a 
low electrotopological state (EState_VSA1), as well as 
its higher autocorrelation weighted by Van der Waals 
volume (ATSC7v), its high autocorrelation weighted 
by ionization potential (ATSC7i), and its high topolog-
ical radius (Radius). This is consistent with our exper-
imental results (https://biorx​iv.org/cgi/conte​nt/short/​
2021.11.22.469638v1). In a previous study,11 citalopram 
was detected in the skin samples of the only subject to 
which it was prescribed. This empirical observation is 
confirmed by the machine-learning model (Figure  4c), 
as citalopram is very strongly predicted to be observed on 
the epidermis due to its lack of accessible Van der Waals 
surface area with a low electrotopological state (EState_
VSA1), its low topological charge (GGI10), and its low au-
tocorrelation weighted by valence electrons (ATSC7dv). 
Conversely, tacrolimus is very strongly predicted to not 
appear on the epidermis (Figure  4d), primarily due to 
its high number of double bonds (nBondsD), its high 
number of Kier–Hall dssC atom types (motif “C(=[*])
([*])[*]”),34 and its high autocorrelation weighted by ion-
ization potential (ATSC5i, ATSC7i, and ATSC8i). This 
prediction matches its absence in the skin samples of 14 
subjects who were prescribed tacrolimus.11 This analy-
sis demonstrates how machine-learning techniques can 
be used to obtain insights into the complex internal bio-
chemical mechanisms that lead systemically adminis-
tered drugs to be observed on the epidermis.

F I G U R E  2   ROC curve indicating 
the performance of the random forest 
classifier to predict whether drugs can be 
observed on the epidermis. The curve is 
the mean ROC curve over 100 random 
stratified training (80% of the data) and 
test (20% of the data) splits. The standard 
deviation over the splits is indicated by the 
shaded area. The mean AUC is 0.707, with 
a standard deviation of 0.095. AUC, area 
under the curve; ROC, receiver operating 
characteristic

F I G U R E  3   SHAP features of importance for the top 20 most 
important Mordred features from the random forest classifier for 
the 145 training compounds. A positive SHAP feature importance 
contributes to drugs predicted to appear on the epidermis, whereas 
a negative SHAP feature importance contributes to drugs predicted 
to not appear on the epidermis. The top-ranked features capture 
information about the volume, electronegativity, bond energy, and 
electrotopology of the molecules. See Table S4 for a full description 
of the Mordred features. SHAP, SHapley Additive exPlanations

https://biorxiv.org/cgi/content/short/2021.11.22.469638v1
https://biorxiv.org/cgi/content/short/2021.11.22.469638v1
https://biorxiv.org/cgi/content/short/2021.11.22.469638v1
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Exploring presence of drugs and related 
biotransformations on the epidermis

To expand our knowledge of the variety of drugs that 
are likely to be observed on the epidermis beyond the 
training data consisting of 145 drugs, we retrieved 2561 
FDA-approved drugs from DrugBank.21 Furthermore, we 
utilized BioTransformer22 to predict potential biotrans-
formation products of the FDA-approved drugs, resulting 
in 23,693 putative biotransformation metabolites. These 
biotransformations include phase I metabolism products 
(e.g., Cytochrome P450), enzyme commission-based me-
tabolism products, phase II metabolism products (e.g., 
Uridine 5′-diphospho-glucuronosyltransferase), and gut 
microbial transformation products, and they cover a num-
ber of different reaction types, including hydrolysis, oxi-
dation and reduction, and conjugation.

The probability of observing the FDA-approved drugs 
and their potential biotransformation products was pre-
dicted using the trained random forest model. To inves-
tigate whether specific types of drugs were more likely 
to occur on the epidermis, we grouped the drugs and the 
corresponding biotransformation products using the ATC 
Classification System (Figure 5). This indicates, for exam-
ple, that hormonal preparations, such as corticosteroids, 
are least likely to be observed on the epidermis, whereas 
nervous system drugs, such as analgesics, antiepileptics, 
antidepressants, and antipsychotics are more likely to be 
detected on skin.

DISCUSSION

So far, little is known about which chemicals and drugs 
move from the systemic circulation to the epidermis. 
Here, we have demonstrated that machine learning can 
be used to gain insights into these complex processes for 
the first time. Using publicly available MS data, we have 
trained a random forest model to predict whether drugs 
will occur on the epidermis. Notably, the classifier cor-
rectly predicted the presence on the skin of the antimy-
cotics fluconazole9 and ketoconazole,33 matching previous 
experimental results.

To obtain insights into the complex processes that un-
derlie reverse penetration of drugs to the epidermis, the 
SHAP model interpretability method was used to inves-
tigate which molecular descriptors are most relevant for 
prediction using the random forest. In general, we observe 
that smaller compounds with a smaller bonding potential 
are more likely to be observed on the epidermis. Although 
further studies are needed to fully understand the under-
lying biochemical processes, we hypothesize that through 
heterogeneous mechanisms such molecules diffuse faster 

and thus will be secreted to the epidermis. Additionally, 
we used SHAP to investigate predictions for drugs with a 
known experimentally derived ground truth. This demon-
strates how detailed and individualized insights for spe-
cific drugs can be obtained to explore whether they will 
appear on the epidermis or not.

Applying our random forest model to over 2500 FDA-
approved drugs and their biotransformations gives insight 
into additional drugs and their metabolites that may be 
detected on the skin surface. For those drugs with a low 
probability of skin detection, we hypothesize that either 
these drugs are fully processed within the body, rather 
than secreted to the epidermis, or their physicochemical 
properties prevent access to the skin surface. For example, 
a high degree of lipophilicity might prevent access to the 
skin surface, as the hydrophilic viable epidermis is a barrier 
to lipophilic substances. Alternatively, highly hydrophilic 
compounds are unlikely to be detected on the skin either, 
as the hydrophobic stratum corneum is a barrier for hydro-
philic substances. The variety of important physicochemi-
cal properties underlying the prediction of drug detection 
on the skin indicates that there is no single process for mov-
ing compounds from the systemic circulation to the epider-
mis, but rather that there are unique interplays between the 
specific drugs and their relevant transport pathways.

Notably, median epidermis prediction values for the 
FDA approved drugs and their biotransformations in 
different ATC drug classes range from ~35% to ~60% of 
drugs in each category. There is substantial variation in 
predicted probability; we speculate that this observation 
reflects that specific physicochemical properties of the 
drugs are the driver of this phenomenon rather than the 
ATC class. Nevertheless, broad generalizations can be 
made; for example, steroid hormones were predicted to 
not be detected on the epidermis, which is consistent with 
our experimental data for budesonide, fludrocortisone, 
prednisone, and prednisolone; whereas amitriptyline, 
citalopram, cyclobenzaprine, escitalopram, gabapentin, 
ketamine, nortriptyline, and venlafaxine were detected in 
our data, consistent with our model prediction for nervous 
system drugs (Table S4).

An important caveat of the current work is that 
there was only a limited amount of heterogeneous data 
available for secondary analysis. Because the data were 
derived from various publicly available untargeted me-
tabolomics studies for secondary analysis, no consistent 
experimental protocol was used. Additionally, prescribed 
drugs might not be detected on the skin due to lack of 
transport from the systemic circulation to the epidermis, 
but also due to incompatibilities with sample preparation. 
Although we achieved encouraging predictive perfor-
mance, the machine-learning performance can be fur-
ther improved upon by obtaining and incorporating more 
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relevant experimental data, as indicated by the learning 
curve. Ideally, this should include a controlled measure-
ment of both positive and negative examples of drugs and 
other xenobiotics that are commonly consumed and their 
status of being observed on the epidermis.

Our machine-learning model is the first attempt to 
predict xenobiotic skin detection using physicochemical 
properties. There will likely be future iterations of this 
model as we advance our understanding of the complex 
processes governing molecular transport from the sys-
temic circulation to the surface of the skin. The use of 
noninvasive skin swabs in clinical medicine could be a 
paradigm shift in how health and disease are monitored. 
Contemporary methods of blood draws and tissue biop-
sies are invasive and inconvenient for patients. In the 

future, we envision the use of noninvasive skin sampling 
to determine adherence of drugs, for therapeutic drug 
monitoring, the extent of metabolism, and to assess organ 
and health status.
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