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GRAPHICAL ABSTRACT
PUBLIC SUMMARY

- This is a real-world population based panel study using multi-omics technology

- Link between PM2.5 and microbiota gut-brain axis is reported for the first time

- PM2.5 affected gut microbiota, tryptophan metabolism, and inflammatory factors

- Important hormones of the HPA axis increased with PM2.5 exposure

- PM2.5 was associated with nervous and cardiovascular outcomes
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Recent studies have shown that PM2.5 may activate the hypothalamus-pitui-
tary-adrenal (HPA) axis by inducing hormonal changes, potentially explaining
the increase in neurological and cardiovascular risks. In addition, an associ-
ation between PM2.5 and gut microbiota and metabolites was established.
The above evidence represents crucial parts of the gut-brain axis (GBA). In
view of this evidence, we proposed a hypothesis that PM2.5 exposure may
affect the HPA axis through the gastrointestinal tract microbiota pathway
(GBA mechanism), leading to an increased risk of neurological and cardio-
vascular diseases. We conducted a real-world prospective repeated panel
study in Jinan, China. At each visit, we measured real-time personal PM2.5

and collected fecal and blood samples. A linear mixed-effects model was
used to analyze the association between PM2.5 and serum biomarkers, gut
microbiota, and metabolites. We found that PM2.5 was associated with
increased serum levels of hormones, especially the adrenocorticotropic hor-
mone (ACTH) and cortisol, which are reliable hormones of the HPA axis. Gut
microbiota and tryptophan metabolites and inflammation, which are impor-
tant components of the GBA, were significantly associated with PM2.5. We
also found links between PM2.5 and changes in the nervous and cardiovascu-
lar outcomes, e.g., increases of 19.77% (95% CI: �36.44, 125.69) in anxiety,
1.19% (95% CI: 0.65, 1.74) in fasting blood glucose (FBG), 2.09% (95% CI:
1.48, 2.70) in total cholesterol (TCHOL), and 0.93% (95% CI: 0.14, 1.72) in tri-
glycerides (TG), were associated with 10 mg/m3 increase in PM2.5 at the lag
0–72 h, which represent themain effects of GBA. This study indicated the link
between PM2.5 and the microbiota GBA for the first time, providing evidence
of the potential mechanism for PM2.5 with neurological and cardiovascular
system dysfunction.

INTRODUCTION
The effects of fine particulatematter (PM2.5) have become an important global

public health concern. Ambient PM2.5 pollution has contributed tomore than 1.42
million deaths in China, accounting for 34.3% of the total disease burden world-
wide.1 Extensive scientific evidence has shown that exposure to PM2.5 has
adverse health effect associations with cardiopulmonary diseases.2–6 However,
the biological mechanisms responsible for the health effects of PM2.5 have
not yet been fully elucidated. Systemic inflammation, oxidative stress, and epige-
netic modifications are the main potential mechanisms reported in previous
studies.7–9 In recent years, emerging epidemiological evidence of the relationship
between PM2.5 and nervous system disease has received extensive atten-
tion.10–12 The most recent relevant epidemiological studies have suggested a
newmechanism involving PM2.5-induced hormone alterations that are consistent
with hypothalamus-pituitary-adrenal (HPA) axis activation, potentially explaining
the increase in neurological and cardiovascular risk.13,14

Given the established link between PM2.5 and HPA-related stress hormones,
the question of how PM2.5 induces such a neuroendocrine response arises.
Studies have explored that PM2.5 is inhaled into the respiratory tract to activate
sensory nerves and to transmit signals to central nervous system regions that
can lead to the stimulation of the HPA stress axis.15–17 Beyond the activation
of sensory nerves, whether other tracts are involved in the mechanism linking
PM2.5 and the HPA axis is still not clear. Most PM2.5 (approximately 95%) is
inhaled from the air through the mouth and nose and then passes through the
ll
blood barrier of the lungs, and the remainder (approximately 5%) is absorbed
via the gastrointestinal tract.18 Emerging animal experimental studies have
shown that PM2.5 may affect the gut microbiome by the gastrointestinal
tract.19–22 Epidemiological studies also proved that PM2.5 can change the
composition of gut microbiota.23,24 The results of PM2.5 dosing in humans and
the latest studies on the link between PM2.5 and gut microbiota have suggested
the possibility that PM2.5 exposure may affect the HPA axis through the gastro-
intestinal tract microbiota pathway (gut-brain axis [GBA] mechanism).
Recent studies have started to apply omics approaches such as nontargeted

metabolomics, gutmicrobiome, and transcriptomeanalyses to explore themech-
anisms linking PM2.5 and disease, providing powerful tools for comprehensively
understanding the biological pathways linking PM2.5 and health effects.25–31

Here, we conducted a prospective panel study of biomarkers and air pollutant
exposure in healthy, elderly Chinese individuals (the China BAPE study) through
analyses of the gut microbiome, untargeted serum metabolome, etc., to assess
the changes in functional indications, biomarkers, metabolomics, and gut micro-
biome. We attempt to provide evidence of linking between PM2.5 exposure and
themicrobiota GBA related to the progression of neurological and cardiovascular
diseases.
METHODS
Study design and participants

The China BAPE study was performed according to a repeated-measurement panel

design in Jinan, the capital city of Shandong Province. It was conducted from September

10, 2018, to January 19, 2019. We recruited participants from the Dianliu community of

Jinan, in the proximity of a fixed-site monitoring station (approximately 1.5 km), and there

were no factories within at least 5 km.

In the study, 76 healthy, elderly participants were recruited and participated. The partici-

pant exclusion criteria included the following: (1) diagnosis with chronic or acute disease;

(2) any use of antibiotics, hormones, anti-inflammatory agents, or other medications in the

past month; and (3) any detectable individual-level risk factors. More details are provided

in the supplemental information. All participants were scheduled to participate in 5 repeated

visits atmonthly intervals fromSeptember 2018 to January 2019. Participantswere asked to

complete a detailed questionnaire including basic family information, personal information,

and time-activity patterns.

The study protocol was approved by the Ethical Review Committee of the National Insti-

tute of Environmental Health, Chinese Center for Disease Control and Prevention (no.

201816). All participants provided written informed consent at enrollment.
Air pollution exposure measurements
WeusedMicroPEMsensors (v3.2, RTI, Research Triangle Park, NC, USA) tomeasure real-

time personal PM2.5 exposure continuously for 3 days for each visit. Participants were

required to wear the sampler at all times. Real-time PM2.5 concentrations were recorded

every 10 s. The MicroPEM sensor measured the average concentration of personal PM2.5

over 1 min and then stopped sampling for 3 min. The hourly average concentration of per-

sonal PM2.5 was calculated on the basis of R75% effective data within 1 h (otherwise not

available [NA]). All participants maintained their normal activities during the 3-day sampling

period before the health check. We examined exposure to PM2.5 inmultiple, separate lag pe-

riods before the day of the health examinations, including 0–6, 0–12, 0–24, 0–36, 0–48, and
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Table 1. Characteristics of the study population, PM2.5, temperature, and relative humidity (mean ± SD or number [%])

Variable Total (N = 76)
Visit 1: 2018.09
(N = 65)

Visit 2: 2018.10
(N = 73)

Visit 3: 2018.11
(N = 70)

Visit 4: 2018.12
(N = 71)

Visit 5: 2019.01
(N = 71)

Age 64.5 (4.5) 64.4 (4.7) 64.9 (2.9) 64.9 (2.8) 64.9 (2.9) 65.0 (2.9)

BMI, kg/m2 25.1 (2.5) 24.8 (2.5) 25.1 (2.5) 25.1 (2.3) 25.1 (2.3) 25.0 (2.4)

Height, cm 162.5 (7.9) 161.9 (7.7) 162.5 (7.8) 162.9 (8.0) 162.5 (8.0) 162.8 (7.9)

Weight, kg 66.3 (9.1) 65.2 (8.8) 66.4 (9.1) 66.8 (9.3) 66.5 (8.9) 66.5 (9.1)

Income, wan yuan 10.0 (6.7) 10.4 (6.9) 9.8 (6.7) 10.3 (6.8) 10.1 (6.6) 10.4 (6.7)

Cotinine, mg/L 0.6 (2.4) 0.4 (0.1) 0.6 (2.5) 0.6 (3.4) 1.3 (5.0) 2.3 (10.9)

Gender

Male 37 (48.7) 29 (44.6) 35 (47.9) 35 (50.0) 34 (47.9) 37 (52.1)

Female 39 (51.3) 36 (55.4) 38 (52.1) 35 (50.0) 37 (52.1) 34 (47.9)

Education

Below primary school 5 (6.6) 5 (7.7) 5 (6.9) 4 (5.7) 5 (7.0) 5 (7.0)

Primary school 3 (4.0) 2 (3.1) 3 (4.1) 2 (2.9) 2 (2.8) 1 (1.4)

Junior high school 21 (27.6) 17 (26.2) 21 (28.8) 19 (27.2) 19 (26.8) 20 (28.2)

Senior high school 33 (43.4) 29 (44.6) 32 (43.8) 31 (44.3) 31 (43.7) 31 (43.7)

University 14 (18.4) 15 (23.1) 12 (16.4) 14 (20.0) 14 (19.7) 14 (19.7)

Drink

Yes 2 (2.6) 1 (1.5) 2 (2.7) 3 (4.3) 1 (1.4) 1 (1.4)

No 74 (97.4) 64 (98.5) 71 (97.3) 67 (95.7) 70 (98.6) 70 (98.6)

Cook

Yes 65 (85.5) 54 (83.1) 62 (84.9) 61 (87.1) 64 (90.1) 63 (88.7)

No 11 (14.5) 11 (16.9) 11 (15.1) 9 (12.9) 7 (9.9) 8 (11.3)

Anxiety

Yes 3 (3.9) 3 (4.6) 2 (2.7) 9 (12.9) 0 (0) 0 (0)

No 73 (96.1) 62 (95.4) 71 (97.3) 61 (87.1) 71 (100) 71 (100)

Sleep disorder

Yes 14 (18.4) 14 (21.5) 9 (12.7) 9 (12.9) 15 (21.1) 14 (19.7)

No 62 (81.6) 51 (78.5) 64 (87.3) 61 (87.1) 56 (78.9) 57 (80.3)

PM2.5, mg/m
3 57.1 (44.9) 54.03 (30.6) 32.4 (16.1) 57.9 (16.9) 51.0 (28.4) 90.7 (78.4)

Temperature, �C 21.7 (3.4) 26.3 (3.3) 20.9 (1.64) 21.6 (2.25) 20.1 (2.6) 19.9 (2.3)

Relative humidity, % 45.7 (12.9) 63.3 (13.1) 44.6 (7.45) 46.3 (8.02) 37.3 (7.3) 38.0 (8.5)
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0–72 h. Personal temperature and relative humidity data were also recorded by the

MicroPEM system.

Clinical and biomarker measurements
We collected fecal samples to evaluate distinct 16S rRNA gene regions, including 16S V4,

16SV3-V4, and16SV4-V5. PhusionHigh-Fidelity PCRMasterMix (NewEngland Biolabs, Ips-

wich, MA, USA) was used to carry out all PCR assays. We added index codes as recommen-

ded by the manufacturer and used the TruSeq DNA-PCR-Free Sample Preparation Kit (Illu-

mina, San Diego, CA, USA) to generate sequencing libraries. We used the Illumina HiSeq

2500 platform to sequence the library, and 250 bp paired-end reads were generated. UP-

ARSE software (UPARSE v.7.0.1001, http://drive5.com/uparse/) was used to perform

sequence analysis, and sequences withR97% similarity were assigned to the same opera-

tional taxonomic units (OTUs). A standard sequence number corresponding to the sample

with the fewest sequences was used to normalize the OTU abundance information.

We collected blood samples for untargeted metabolomic profiling studies. The auto-

mated Micro-Lab STAR system from the Hamilton Company (Reno, NV, USA) was used

to prepare samples and ultrahigh-performance liquid chromatography-mass spectrometry
2 The Innovation 3(2): 100213, March 29, 2022
(UPLC-MS) was used to analyze samples. Ion peaks from UPLC-MS were annotated with

the HumanMetabolome Database (HMDB), and the Discovery HD4Metabolomics Platform

and peakswere quantifiedusing the areaunder the curve. The identification ofmetabolites in

samples requires strict matching of three criteria between experimental data and library en-

try to ensure that the identification of all metabolites is highly reliable: (1) narrow window

retention time, (2) accurate mass with variation less than 10 ppm, and (3) tandem MS

(MS/MS) spectra with high forward and reverse searching scores. We performed a data

normalization step to correct variation resulting from instrument tuning differences for

studies spanning multiple days.

We used the Merck MILLIPLEX Human Cardiovascular Disease (Acute Phase) panel to

measure serum biomarkers, including hormones and inflammatory, neural, and cardiovas-

cular biomarkers. We performed all tests according to the manufacturer’s instructions.

During the physical examination of all subjects, fasting venous blood samples were

collected and routinely tested at AnkangClinical Hospital. We used a Roche Cobas c702 sys-

tem (Santa Clara, CA, USA) from Dian Diagnostics (Hangzhou, China) to measure blood

biochemical indicators, including fasting blood glucose (FBG), total cholesterol (TCHOL),

and triglycerides (TG).
www.cell.com/the-innovation
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Table 2. Descriptive statistics of biomarkers for the study participants (N = 350)

Variable Mean (SD) Variables Mean (SD)

Hormones Neurokines

ACTH, pg/mL 8.3 (21.0) ApoE4, pg/mL 172,025.4
(399,525.6)

AGRP, pg/mL 20.7 (43.4) ferritin, pg/mL 344,590.1
(153,675.9)

C.Peptide, pg/mL 740.8 (335.7) neurogranin, pg/mL 105.7 (125.3)

Cortisol, ng/mL 49 (16.3) PRNP, pg/mL 29,767.4
(29,393.3)

GIP, pg/mL 36.9 (21.5) cardiovascular biomarkers

Leptin, pg/mL 4,018.7
(3,742.8)

AGP, ng/mL 1,456.2 (538.9)

T3, ng/mL 1.5 (1.0) CRP, ng/mL 8.5 (17.6)

T4, ng/mL 45.4 (13) Fetuin-A, ng/mL 203.5 (55.6)

TSH, uiu/mL 5.0 (4.3) haptoglobin, ng/mL 1,112.8 (1,096.3)

Inflammations SAP, ng/mL 7.6 (3.2)

IL.10, pg/mL 8.5 (46.2) cardiovascular functional factors

IL.23, pg/mL 307 (756.2) FBG, mmol/L 6.5 (1.5)

IL.4, pg/mL 218.3 (165.5) TCHOL, mmol/L 5.8 (1.3)

IL.13, pg/mL 3.9 (3.4) TG, mmol/L 1.6 (0.5)

MIP.3.alpha, pg/mL 15.9 (55.5)

TNF.alpha, pg/mL 3.7 (1.4)

Report
Functional scale questionnaire
We used the Generalized Anxiety Disorder scale (GAD7) and the Pittsburgh Sleep Quality

Index (PSQI) to investigate whether participants had anxiety and/or sleep disorders. All inter-

viewers received training andused electronic questionnaires to conduct face-to-face surveys

with respondents in the hospital. Electronic questionnaires are cheap and convenient and

make it easy to achieve quality control in data validation and logic verification, and data

can be easily merged and exported. The GAD7 represents an anxiety measure based on

seven items scored from zero to three. The whole-scale scores %4 represent no anxiety,

and scores>4 indicate anxiety symptoms. The PSQI is composed of 19 questions, reflecting

seven main components. An overall score of <5 indicates “good” sleep quality, and R5 in-

dicates “bad” sleep quality.
Statistical analysis
Weapplied a linearmixed-effects (LME)model to estimate the association between PM2.5

and biomarkers, the gut microbiota, and metabolomics data. A generalized linear mixed-ef-

fects model with logistic regression was used to estimate the association between PM2.5

and anxiety and sleep disorders. Before statistical analysis, a logarithmic transformation

was performed on the biomarkers that did not show a normal distribution. We included

several covariates in the models: (1) age, sex, BMI, and annual income; (2) education status

andcooking anddrinking habits; (3) bloodcotinine level; (4) day of theweek; and (5) a natural-

spline function of personal temperature and relative humidity, both with 3 degrees of

freedom. The Benjamini-Hochberg false discovery rate (FDRB-H) method was used to ac-

count for multiple testing to adjust the probability of type I error (p) value.32 If the test statis-

tics (or p values) are independently distributed or the joint distribution of the test statistics is

dependent on the positive regression distribution (PRDS) of each subset of the true null hy-

pothesis or are in the family of all pairwise comparisons of means in a balanced one-way

layout with normal errors, FDRB-H can control the FDR of level a.33 It has been shown

that FDRB-H has excellent power to detect real differences, where FDRB-H <0.05 was

consideredstatistically significant. Sensitivity analysiswas conducted to examine the robust-

ness of our results to remove or replace these covariates (Table S1). We reported the effect

estimates as a percentage change in biomarkers per increase in 10 mg/m3 of the PM2.5

concentration.

All analyses were performed using R v.3.6.1 (R Development Core Team, 2006) with the

lme4 package.
ll
RESULTS
Descriptive analysis
The descriptive statistics of the 76 participants and the average PM2.5 concen-

trations measured for 3 days before health examinations conducted during five
visits are summarized in Table 1. Although all subjects were nonsmokers, the
average level of plasma cotinine, a reliable biomarker of smoking, was 0.6 (2.4)
mg/L. The average personal PM2.5 concentration measured during the 3 days
before the health examinations was 57.1 mg/m3. The descriptive statistics of
the examined biomarkers are provided in Table 2. We also presented the average
personal PM2.5 concentrations, temperature, and humidity measured before the
health examinations in different lag periods (0–6, 0–12, 0–24, 0–48, and 0–72 h)
(Table S2). The biomarkersmeasured and behavioral risk factors recorded during
the five visits are also presented (Table S3).

Gut microbiota and tryptophan metabolism
According to species annotation, we obtained the relative abundance of 516

species of the gut microbiota. A total of 20 significant gut microbiota, including
both beneficial and harmful bacteria, were associated with PM2.5 exposure
(Figure 1). Untargeted metabolomics profiling revealed 601 metabolites with
unique HumanMetabolome Database IDs, and 253metabolites showed a statis-
tically significant (FDRB-H < 0.05) association with PM2.5 exposure. Using
MetaboAnalyst, we identified the characteristic GBA-tryptophan metabolic
pathway. We found 4 significant tryptophan metabolites associated with PM2.5

exposure. As shown in Figure 2, each 10 mg/m3 increase in the PM2.5 exposure
level was associated with a 0.85% (95% CI: 0.14, 1.56) increase in 3-indoxyl
sulfate, a 0.63% (95% CI: �0.15, 1.42) increase in anthranilate, a 0.27% (95% CI:
�0.15, 0.70) increase in N-acetyltryptophan, and a �0.23% (95% CI: �0.42,
�0.04) decrease in tryptophan in the 0–72 h lag.

Inflammation
We found that 6 inflammatory markers were significantly associated with

10 mg/m3 increases in PM2.5 (Figure 2). A 10 mg/m3 increment in PM2.5 expo-
sure level at lag 0–72 h was associated with a �1.85% (95% CI: �3.57, �0.11)
reduction in interleukin-4 (IL-4); a �2.18% (95% CI: �3.60, �0.75) reduction in
IL-10; a �0.69% (95% CI: �3.06, �1.73) reduction in IL-13; and a �2.98%
(95% CI: �4.97, �1.24) reduction in IL-23. The corresponding reduction in tumor
necrosis factor alpha (TNF-a) was �1.94% (95% CI: �2.72, �1.15). Although
macrophage inflammatory protein-3a (MIP3-a) and PM2.5 were not significantly
associated with PM2.5, MIP3-a was positively correlated with PM2.5. As shown
in the sensitivity analyses, the overall observed associations remained robust
(Table S4).

Hormones
We found 9 hormones that were associated with PM2.5 exposure (Figure 2).

Elevated levels of the adrenocorticotropic hormone (ACTH) were associated
with each 10 mg/m3 increase in PM2.5 exposure, of which the most significant in-
creasewas 3.15% (95%CI: 1.56, 4.77). Significant increases in cortisol levelswere
also observed in association with exposure to PM2.5. We have found positive as-
sociations of 10 mg/m3 increase in PM2.5 with a 0.69% (95% CI: 0.13, 1.24) in-
crease in cortisol. Seven hormones (agouti gene-related protein [AGRP], C-pep-
tide, gastric inhibitory peptide [GIP], leptin, thyroid-stimulating hormone [TSH],
three iodine thyroids [T3], and thyroxin [T4]) related to the HPA axis were also
associated with PM2.5 exposure, although some presented no significant effect.
As shown in the sensitivity analyses, the overall observed associations remained
robust (Table S4).

Neurokines and nerve-related outcomes
Four neurokines were associated with PM2.5 exposure. Each 10 mg/m3 in-

crease inPM2.5was associatedwith a 2.40% (95%CI: 0.62, 4.21) increase in apoli-
poprotein E (ApoE4) and a 0.75% (95% CI: �0.39, 1.91) increase in prion protein
(PRNP). Significant decreases in ferritin (�1.40%, 95%CI:�2.41,�0.38) and neu-
rogranin (�2.14%, 95% CI:�0.08,�4.16) were also observed in association with
PM2.5 (Figure 2). Results showed an increased risk of anxiety of 19.77% [95% CI:
�36.44, 125.69] for each 10 mg/m3PM2.5 increase at lag 0–72 h.The risk of sleep
disorder increased significantly, by 4.82% (95% CI:�3.59, 13.96), for each 10 mg/
m3 PM2.5 increase at lag 0–24 h (Figure 2). Sensitivity analyses showed that the
overall associations observed remained robust (Table S4).
The Innovation 3(2): 100213, March 29, 2022 3



Figure 1. All gut microbiota components associated with PM2.5 Cells are shaded according to the strength (i.e., p value and excess risk (ER)) of the association between each of the
gut microbiota members associated with each single PM2.5 lag.
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Cardiovascular biomarkers and cardiovascular functional factors
Several cardiovascular biomarkers, including C-reactive protein (CRP), fetuin-A,

a-acid glycoprotein (AGP), serum amyloid protein (SAP), and haptoglobin, were
increased in association with PM2.5 exposure. At the 0–72 h lag, each 10 mg/
m3 increase in the PM2.5 exposure level was correlated with increases of
1.33% (95% CI: �1.90, 4.67) in CRP; 0.26% (95% CI: �0.48, 1.01) in fetuin-A;
0.20% (95% CI: �0.78, 1.20) in AGP; 0.018% (95% CI: �0.97, 1.02) in SAP; and
1.17% (95% CI: �1.33, 3.73) in haptoglobin. Similar increases were observed
for cardiovascular functional factors. Increases of 1.19% (95% CI: 0.65, 1.74) in
FBG, 2.09% (95% CI: 1.48, 2.70) in TCHOL, and 0.93% (95% CI: 0.14, 1.72) in TG
were correlated with 10 mg/m3 increase in PM2.5 at the 0–72 h lag (Figure 2).
Sensitivity analyses showed that the overall associations observed remained
robust (Table S4).

DISCUSSION
To our knowledge, this is the first study to systematically explore the effect of

PM2.5 exposure on changes in functional indications, biomarkers, metabolomics,
and microorganisms related to neurological and cardiovascular health effects
and to simultaneously perform gut microbial sequencing and an integrated
metaomics analysis of the untargeted metabolome to study the underlying
4 The Innovation 3(2): 100213, March 29, 2022
mechanism linking PM2.5 and GBA. In this real-world panel study, we found sig-
nificant changes in the gut microbiota, tryptophan metabolism, inflammation,
and hormone biomarkers that were consistent with GBA activation. We also
found significant changes in neurokines, cardiovascular biomarkers, and func-
tional factors related to PM2.5 exposure. Based on these findings, we speculate
that PM2.5 exposure may activate GBA by affecting gut microbiota, tryptophan
metabolism, inflammatory factors, and important hormones of the HPA axis,
leading to neurological and cardiovascular system dysfunction (Figure 3).
Hormones increased with PM2.5 exposure, which may imply the activation of

the HPA axis. Previous studies showed that short-term exposure to PM2.5 may
induce HPA axis activation.13,14,16,17,34 Inhalation of PM2.5 will promote the
release of corticotropin-releasing hormone (CRH) and ACTH from the hypothala-
mus and stimulate the synthesis and release of cortisol, a reliable hormone of the
HPAstress axis.35 A studywith a randomized, double-blind, crossover designwas
the first-ever epidemiological study to use a metabolomics approach to show
that PM2.5 may induce metabolic alterations that are consistent with HPA axis
activation.13 The observed increases in cortisol, ACTH, and CRH were related
to PM2.5 exposure. We found that PM2.5 exposurewas associated with increased
serum levels of ACTHandcortisol, which is consistentwith thefindings of the pre-
vious studies.13,14,16,17 We also found significant changes in other hormones,
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Figure 2. Percentage changes and 95% confidence intervals of biomarkers with each 10 mg/m3 increase in PM2.5 exposure.
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especially AGRP and leptin, related to the HPA axis, which have had very few pre-
vious studies reported. An animal study showed that leptin reduced HPA axis ac-
tivity to normal levels in diabetic mice.36 Leptin acts via receptors on neurons in
the hypothalamus. By inhibiting the expression of AGRP, it inhibits food intake and
increases energymetabolism.37,38 The significant changes in ACTH, cortisol, and
other hormones related to PM2.5 exposure observed in our study are presumably
indicative of HPA stress axis activation.

We found significant changes in 20members of the gutmicrobiota associated
with PM2.5 exposure, providing new insights into the relationship between PM2.5
ll
exposure and the gut microbiota. An animal experimental study demonstrated
that PM2.5 may affect the gut microbiota via the gastrointestinal tract; it showed
that approximately 5% of the particulate matter taken in through the mouth and
nose enters the gastrointestinal tract and significantly increases gut microbial di-
versity.39 Liu et al. reported that the mice exposed to PM2.5 exhibited increased
proportions of the phyla Candidatus Saccharibacteria, Proteobacteria, and Fuso-
bacteria and decreased proportions of the phyla Gemmatimonadetes, Acidobac-
teria, and Deferribacteres in the gut.22 Li et al. also showed that ultrafine-particle-
exposed mice presented an increase in Verrocomicrobia but a decrease in the
The Innovation 3(2): 100213, March 29, 2022 5



Figure 3. Summary of the GBA mechanism of this study Solid line represents the mechanism pathways discovered in this study, and dotted line represents the pathways that have
been confirmed in previous studies.
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phyla Cyanobacteria, Actinobacteria, and Firmicutes as well as reduced diversity
in themicrobiome.21 In addition, an animal experimental study demonstrated that
inhalation of diesel exhaust particles changed the composition of gut microbiota
and resulted in colonic epithelial damage, accompanied by inflammatory cell infil-
tration and mucus consumption.40 In contrast to the toxicologic studies on this
topic, only two epidemiological studies have reported the correlations between
gut microbiota and PM2.5; these studies showed negative associations with all
four a-diversity indices of the gut microbiota, while PM2.5 is related to changes
in the gut microbial phyla Firmicutes, Proteobacteria, Verrucomicrobia, and
Bacteroidetes.23,24

Our study is the first to show that PM2.5 exposure is significantly related to
changes in tryptophan metabolism, which suggests potential GBA activation.
Numerous published studies have proven that metabolomics can reflect internal
metabolic disorders after exposure to PM2.5.

5,41,42 Most studies have shown that
PM2.5 is related to changes in antioxidant pathways and metabolic products
related to oxidative stress and inflammation. However, no previous study has re-
ported a significant relationship between PM2.5 and tryptophan metabolites.
Epidemiological and toxicological studies have shown that tryptophan meta-
bolism, which produces neuroactive metabolites, is an important component of
GBA.43–46 Studies have also shown that gutmicrobesmay reduce the production
of microbial metabolites (referred to as “neuroactive metabolites”) through tryp-
tophanmetabolism, which in turn affects the function of the central and intestinal
nervous systems.47,48 Tryptophan can be converted to 5-hydroxytryptophan
(5-HTP) by tryptophan hydroxylase, and 5-hydroxytryptamine (5-HT), the precur-
sor of 5-HTP, is a key neurotransmitter involved in the regulation of mood at the
level of the central nervous system (CNS).49 Our study also provided evidence
that PM2.5 altered the gut microbiota composition and function. In summary, it
can be speculated that PM2.5 may cause an imbalance in the gut microbiome,
resulting in changes in tryptophan metabolism and thereby activating GBA.

Our panel study suggested that short-term exposure to PM2.5 resulted in sig-
nificant changes in inflammatory factors in the blood, providing evidence of
significant changes in both serum anti-inflammatory cytokines and pro-
inflammatory cytokines. The limited epidemiological and toxicological studies
conducted to date provide some evidence that systemic inflammation may
play a role in PM2.5-induced HPA axis activation, which is also an important char-
acteristic of GBA.50–52 The existing evidence indicates that inhalation of PM2.5

may result in respiratory tract inflammation and oxidative stress.53 Inflammatory
biomarkers may enter the circulatory system and result in lung inflammation
and systemic inflammation. Furthermore, the balance between the brain and
the gut can be modulated by the immune system.54 Mutlu et al. showed that
gut exposure to PM2.5 may contribute to increases in gut permeability through
epithelial barrier disruption.55 Increases in gut permeability have been linked
with intestinal inflammation in several studies.20,56 Therefore, a gut microbiota
6 The Innovation 3(2): 100213, March 29, 2022
imbalance may also lead to systemic inflammation, which would affect the
CNS and participate in the development of brain diseases. Based on the evi-
dence of a relationship of PM2.5 with gut microbiota found in this study, we
may infer that the observed PM2.5-related inflammation is a potential manifesta-
tion of the complex mechanisms resulting from the exposure of multiple tracts.
These biological changes may support the hypothesis that PM2.5 activates GBA
via inflammation.
Significant changes in GBA mainly cause related changes in the nervous and

cardiovascular systems.50,57,58 Our study observed the association between
PM2.5 and neurokines, nerve-related outcomes, cardiovascular biomarkers, and
cardiovascular functional factors, which are consistent with the main effects of
GBA. There is not enough evidence toprove the effect of PM2.5 on the level of neu-
rokines, and the available evidence is mainly related to neurological diseases
such as anxiety and depression.11,50,59 In the present study, we found changes
in anxiety and sleep disorders, which are consistent with previous studies.60,61

We also found significant changes in ApoE4, PRNP, ferritin, and neurogranin;
changes in these biomarkers may indicate the existence of neurological dis-
eases.62–64 Several studies have reported that PM2.5 can increase neurological
and cardiovascular risk. CRP, haptoglobin, SAP, fetuin-A, and AGP are markers
of systemic inflammation and oxidation associated with cardiovascular dis-
eases.65–67 Moreover, previous studies have shown that FBG, TCHOL, and TG
are associated with PM2.5, which is consistent with the findings of our
study.67–69

Our study has several strengths. First, it is an epidemiological study based on
real-world, population-level studies exploring potentially relevant mechanisms.
The examined PM2.5 exposure range is very wide, reflecting the actual exposure
of the study subjects themselves. Second, our study used a combination of
metaomics and multi-indicator technology and explored the important hypothe-
sis that PM2.5 stimulates GBA via gut microbes, the HPA axis, tryptophan meta-
bolism, and immune pathways, which was not found in previous studies. Third,
the prospective repeated-measurement study design means that each partici-
pant can serve as their own control, providing better control over the potential in-
teractions between individual exposure and other confounding factors. Fourth,
we performed an accurate personal PM2.5 exposure assessment, whichmay bet-
ter reflect the actual exposure of the research subjects.
In addition, our study has some limitations. First, we conducted this study in a

unique population of healthy older people, which may introduce selection bias.
However, we applied a rigorous screening process and review procedures to
ensure that the subjectsmet our study standards to the greatest degree possible.
Second, nutrition and diet effects cannot be fully controlled, considering the long-
term effects. Third, for untargeted metabolomics profiling, targeted metabolo-
mics analysis could further confirm the screened tryptophan metabolites. In
our untargeted metabolomics analysis, the metabolites were identified by
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searching an in-house library generated from commercial standards instead of
searching any online metabolite database, so we believe that our untargetedme-
tabolomic analysis may be solid and reliable. Fourth, there may be five different
communication routes between the gut microbiota and the brain. We explored
only some of the pathways within the GBA axis due to technological limitations.
In addition, our study is an observational, prospective, epidemiological study and
provides only mechanistic implications for a link between PM2.5 exposure and
GBA in humans; further studies are needed to prove a causal relationship. Finally,
we have only explored the relevant mechanisms of PM2.5 mass exposure that
activate the GBA axis, which leads to an increased risk of cardiovascular and
neurological diseases, without considering the role of PM2.5 components. In
the future, using the strategy of exposome to further explore the mechanism be-
tween PM2.5 components and cardiovascular and neurological diseases is highly
recommended.70
CONCLUSIONS
Inhalation of PM2.5 increased serum levels of hormones to the active HPA

stress axis, which represent crucial parts of the GBA. PM2.5 also altered the gut
microbiota composition and function, and gut microbes may change tryptophan
metabolism, thereby activatingGBA. Short-termexposure toPM2.5 resulted in sig-
nificant changes in inflammatory factors in the blood, which may support the hy-
pothesis that PM2.5 activates GBA via inflammation. Links between PM2.5 and
changes in the nervous and cardiovascular outcomes represent themain effects
of GBA. Therefore, our results support the hypothesis that PM2.5 exposure may
activate GBA by affecting gut microbiota, tryptophan metabolism, inflammatory
factors, and important hormones of theHPA axis, leading to neurological and car-
diovascular system dysfunction.
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