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Splicing imbalances in basal-
like breast cancer underpin 
perturbation of cell surface and 
oncogenic pathways and are 
associated with patients’ survival
Filipe Gracio1, Brian Burford2, Patrycja Gazinska2,3, Anca Mera4, Aisyah Mohd Noor2, 
Pierfrancesco Marra2, Cheryl Gillett3,5, Anita Grigoriadis2, Sarah Pinder3,5, Andrew Tutt2,6 & 
Emanuele de Rinaldis1,2

Despite advancements in the use of transcriptional information to understand and classify breast 
cancers, the contribution of splicing to the establishment and progression of these tumours has only 
recently starting to emerge. Our work explores this lesser known landscape, with special focus on the 
basal-like breast cancer subtype where limited therapeutic opportunities and no prognostic biomarkers 
are currently available. Using ExonArray analysis of 176 breast cancers and 9 normal breast tissues we 
demonstrate that splicing levels significantly contribute to the diversity of breast cancer molecular 
subtypes and explain much of the differences compared with normal tissues. We identified pathways 
specifically affected by splicing imbalances whose perturbation would be hidden from a conventional 
gene-centric analysis of gene expression. We found that a large fraction of them involve cell-to-cell 
communication, extracellular matrix and transport, as well as oncogenic and immune-related pathways 
transduced by plasma membrane receptors. We identified 247 genes in which splicing imbalances are 
associated with clinical patients’ outcome, whilst no association was detectable at the gene expression 
level. These include the signaling gene TGFBR1, the proto-oncogene MYB as well as many immune-
related genes such as CCR7 and FCRL3, reinforcing evidence for a role of immune components in 
influencing breast cancer patients’ prognosis.

Breast cancer is a heterogeneous disease that comprises tumour subgroups with substantial differences in biology, 
clinical outcomes and responses to treatment. Whilst the debate on the most appropriate definition of breast can-
cer subtypes is still open, it is now accepted that breast cancer consists of at least five different molecular subtypes 
which include - according to the PAM50 classification scheme1 - basal-like, HER2, Luminal A, Luminal B and 
the additional category of Normal-like, made of tumours which transcriptionally resemble normal breast tissue 
samples2. These molecular subtypes have clear, although not complete, correlation with clinically defined tumour 
classes, based on the histological assessment of the oestrogen (ER) and progesterone (PR) receptors and human 
epidermal growth factor receptor 2 (HER2). Basal-like breast cancers overlap to a large degree with clinically 
defined triple-negative tumours (ER-negative, PR-negative and HER2-negative), whilst Luminal A/B and HER2 
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correspond respectively to ER negative and ER-negative/HER2-positive tumours. What makes the discovery and 
exploration of these subtypes relevant is the evidence of their association with different clinical outcomes, ranging 
from the best-prognosis Luminal A tumors to poor prognosis HER-2 and basal-like tumors, as well as underlying 
differences in biology reflected in different patterns of response to therapeutic agents3.

In the last decade, genomics analyses have significantly improved our knowledge of breast cancer. Extensive 
and integrated molecular studies of increasing size and resolution are revealing the existence of additional tumour 
subgroups with distinct molecular properties4–7. However, only limited information is currently available on the 
role of alternative splicing in the establishment and progression of these tumours, and on the contribution of 
splicing to breast cancer heterogeneity and its potential for biomarker development8,9.

Alternative splicing is a key post-transcriptional mechanism affecting more than 90% of human genes and 
is responsible for the generation of protein isoforms with very different biological properties and functions10,11. 
Antagonistic splice variants of genes involved in differentiation, apoptosis, invasion and metastasis often exist in 
a delicate equilibrium that is found to be perturbed in tumours. Indeed, a number of studies have demonstrated 
that changes in splicing during cancer development alter hallmarks of cancer metastases such as cell morphology, 
adhesion, migration, apoptosis and proliferation processes, and that oncogenes are inactivated by alternative 
splicing in normal differentiation12.

To have an insight into the molecular perturbations induced by splicing imbalances in breast cancer we have 
used the Affymetrix GeneChip Exon 1.0 ST platform to analyse a well characterised patient cohort encompassing 
176 samples composed primarily of tumours classified as basal-like according to PAM5013,14. This technology 
allows for expression profiling of individual exons and has already been applied in several cancer studies to assess 
transcriptional splicing variants15–18.

The exon-level resolution allowed for the measurement of the relative abundances of the exons - and therefore 
indirectly of the underlying isoforms - transcribed from each gene, a concept we referred to as gene’s splicing 
balance. Results reveal that an additional layer of transcriptional diversity between tumours and normal breast 
tissues and between different tumour molecular subtypes exists based on genes’ splicing imbalances, which goes 
beyond what has been observed so far in breast cancer by measuring overall gene expression levels2. We have 
attempted to quantify and to qualify this layer, investigating on the pathways affected by splicing imbalances and 
on the use of this information to identify therapeutic targets and clinical prognostic biomarkers.

Results
Samples data and clinical and molecular classification.  The study is based on the analysis of 
Affymetrix GeneChip Exon 1.0 ST data from a set of 176 invasive breast carcinomas extracted from an equiv-
alent number of patients, and an additional group of 9 normal breast tissues (hereby referred to as NBT sam-
ples) extracted from mammary reductions of unrelated individuals. The same cohort was analyzed in previous 
studies by our group13,14. Of the 176 tumours analysed, 148 were immunohistochemically ER-negative, 93 being 
also triple-negative. Molecular characteristics of tumour samples were analysed in association with clinical and 
pathological information (Additional File 1). In addition to the assignment to clinical subgroups based on ER, PR 
and HER2 status, tumour samples were classified according to the five intrinsic molecular subtypes (basal-like, 
luminal A, luminal B, HER2 and normal-like). For this we used the expression of predefined intrinsic gene lists 
according to the PAM50 centroid-based classification method1. In line with our previous analyses on the same 
data set13,14, triple-negative breast cancers were found to correspond mostly with the basal-like tumours (84%) 
while ER-positive lesions corresponded to luminal A and B subtypes (79%) (Additional File 2).

Differential expression and differential splicing across normal tissues and breast cancer molecular  
subtypes.  We compared different breast cancer subtypes between themselves and with respect to NBT samples, 
on the basis of three different measurements: (i) the overall expression of genes (GE), in which multiple probes 
on different exons are summarised into a cumulative expression value for all transcripts of the same gene; (ii) the 
expression of individual exons (EE), inferred from exon-specific probes; (iii) the exon splicing levels, as measured 
by the splicing index (SI) metric (see methods)19. This metric captures the contribution of each exon to the overall 
expression of a gene. Differences in an exon’s SI between two sample groups reflect indeed different inclusion or 
exclusion rates of that exon with respect to the overall gene expression, and thus different splicing balances between 
the two groups (Fig. 1).

First we computed coefficients of determination using the GE/EE/SI values to assess the overall degree of sim-
ilarity among tumours from the same and from different subtypes. As expected, we observed pairwise correlation 
levels to be significantly higher when calculated from within- then from between-subtypes. These differences are 
very high when GE and EE values are used, and lower when using SI values, in keeping with the fact that subtypes 
are defined based on overall gene expression and not splicing information (Additional File 3).

Then we compared tumour subtypes between themselves and with normal breast tissues using GE/EE/SI 
metrics. In this way it was possible to reveal different splicing balances, in the presence or absence of whole-gene 
differential expression, thus adding a layer of resolution to standard gene-centric transcriptional analyses.

By analysing the deviation of the obtained distribution of p-values for each comparison from the distribution 
generated under the null hypothesis of no average differences we could then infer the overall diversity between 
groups, due to each of these measures respectively, along with their statistical significance (see Materials and 
Methods).

The observed pairwise differences are beyond what would be observed by random fluctuations under the null 
hypothesis, thus pointing to their internal statistical significance (Additional File 4).
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Having established the principle that splicing imbalances contribute to overall breast cancer diversity and to the 
differences between tumour and NBT samples, we then tried to quantify and to define the borders between gene 
expression and splicing imbalance effects.

In all comparisons we could identify, along with genes showing both differential expression and splicing bal-
ance (GE and SI overlaps), also genes having differential splicing balances but not overall differential expression 
(GE and SI disjunctions) (Fig. 2). Perturbation of these genes would not have been detected by looking at GE 
values alone. By quantifying GE/SI overlaps and disjunctions we could therefore assess in each comparison the 
GE and SI relative contributions to the overall transcriptional diversity across different sample groups: on one 
extreme is the Luminal A/Luminal B pair, whose differences are mainly explained by GE levels; on the other is 
the basal-like tumours and NBT pair, showing marked differences both in GE and SI levels. Noticeably, whilst 
the absolute number of genes differentially expressed and spliced might differ from pair to pair due to different 
samples sizes, their percentage contribution to the overall set of perturbed genes is stable and independent of both 
sample sizes and the q-value thresholds used for statistical significance.

These results indicate the distinct value of looking at differential splicing in addition to differential expression 
and demonstrate that splicing mechanisms significantly contribute to the diversity across tumour subtypes and to 
their differences with respect to normal breast tissue counterpart.

On this basis we also investigated the value of splicing data for potential application to molecular diagnostics  
and tumour subtype classification. We adopted a decision-tree algorithm of classification, seeking to identify  

Figure 1.  Exon expression, gene expression and splicing balance values of an exemplary three-exons 
gene in two samples. Panel (A): a multi exon gene model. Panel (B): illustration of a case of two samples 
expressing the gene with different balances of exons. Panel (C): Gene and exon level measures of expression. 
In the example, the two samples have equal gene expression (GE), but different splicing balances, as detected 
by different exon-level contributions to the overall gene expression (D): The Splicing Index (SI) metric used 
to quantify splicing imbalances is explained, showing the different contribution of each exon to the total gene 
expression. Note that SI, unlike exon expression, is invariant to total gene expression. This exemplifies how SI 
captures the splicing balance level of information, different than gene or exon expression.
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basal-like tumours, from a pool of basal-like tumour and NBT samples – either by using GE, EE, SI, or using 
SI after having filtered out genes differentially expressed between basal-like tumours and NBT samples  
(see Materials and Methods). Results show that not only GE data but also SI information, used as the sole input 
data, is capable of correctly classifying tumour samples, with a performance of over 90% specificity and 70% sen-
sitivity using 1000 randomly selected genes (Additional File 5, see also Methods). The ability of SI information to 
distinguish between sample types, was also confirmed by unsupervised clustering, based on principal component 
analysis (PCA) (Additional File 6).

Comparative assessment of splicing-level results.  The validity of our results was assessed through 
comparison with three independent studies, respectively on a panel of breast cancer cell lines using exon 
array-based method8, on a small group of triple-negative primary breast cancers using RNA sequencing-based 
technology9 and on a larger RNA sequencing data set of basal-like breast tumours and NBT from The Cancer 
Genome Atlas (TCGA: http://cancergenome.nih.gov/). In all three cases we compared the list of genes found to 
have differential splicing balances in our data (based on differential SI) with the equivalent list in the external 
data set.

Comparison with the array-based cell line study analysis8 showed a significant overlap, with 21 out of 58 genes 
differentially spliced between basal-like vs luminal cell lines confirmed in our study (45% of overlap, Fisher test 
p-value <​ 10−4) (Additional File 7). The second check against the triple-negative (n =​ 6) vs. normal breast tissues 
(n =​ 3) analysis carried out using RNA sequencing technology9 produced also a very significant overlap, with 121 
out the 371 genes identified in this study to be differentially spliced confirmed by our results (32% of overlap, 
Fisher test p-values respectively <​10−6) (Additional File 7).

The third data encompassed 92 basal-like tumours and 133 NBT samples and was used to run a more thor-
ough comparison, where genes were selected for being differentially spliced but not differentially expressed in 
basal-like tumours vs NBT in both data sets. Out of 1.822 identified in the external data set to fulfill these criteria, 
408 were confirmed by our study (22% of overlap, Fisher test p-value <​ 10−12) (Additional File 7).

We also looked for experimental evidences in support of the differential splicing observed in our data set 
between basal-like tumours and NBT samples. The 100 genes with the lowest p-values for differential splicing 
balance between basal-like tumours and NBT samples in our data were selected and used for automated literature 
searches to explore experimental evidences in support of our findings.

Several of them had previously been reported to have breast cancer specific splicing events or differential 
isoform expression. Examples are FANCD2, RAD54, BIRC5 (survivin) and ASF1B20–27. Others amongst our list 
were detected to be differentially spliced in other forms of cancer, or cancer cell lines: FoxM1 CDKN3, ZBTB16, 
AURKB, CHEK1, SGOL1, SULF1, CDC45 and UBE2C28–39. Other cases had been shown to have cell cycle 
dependent isoform expression. These are: KIF18A, NEK2, MKI67 and CCNA240–44. By taking a complementary 
approach and looking at genes previously shown to be differentially spliced in breast cancer we also observed a 
high level of concordance, for example Tenascin C, CD44, CD47, RELA, PTK2, ESR1, SYK, BRCA1, LARP1 and 
ADD39,45–52.

The convergence of our results with these independent genomic studies and experimental evidences pointed 
to the overall reliability of our results and provided the basis for further downstream analyses.

Experimental validation of differential splicing results.  To provide experimental support to our find-
ings, a selection of genes showing differential splicing was assayed on a Bioanalyzer DNA7500 after RT-PCR 
based amplification (Additional File 8). We have selected 11 genes to be either differentially spliced between 
basal-like tumours and normal samples or differentially spliced in basal-like tumours, between patients with 
respectively better and worse outcome. Amplified full length cDNAs from each gene were size separated on a 
Bioanalyzer DNA7500 (see Materials and Methods), allowing comparison between the patterns of transcriptional 

Figure 2.  Pairwise transcriptional differences between tumour subtypes and NBT. Each bar represents 
the results of comparison between two groups of samples. Key: B =​ basal-like, H2 =​ HER2, La =​ LuminalA, 
Lb =​ LuminalB, N =​ Normal like, O =​ Others (non-basal-like rumour), NBT =​ normal breast tissue. The relative 
fractions of genes differentially expressed, with differential splicing balances or both are reported in different 
colours. The absolute numbers of genes falling into each of these categories is also reported.

http://cancergenome.nih.gov/
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isoforms expressed in two groups of tumours. Among the 11 genes selected we could successfully amplify 9 
of them, of which 8 differentially spliced between basal-like tumours and normal samples (AURKA, AURKB, 
BCL2-a, NEK2, RRM2, TGFBR1, UBE2C, ZBTB16) and 2 differentially spliced in basal-like tumours, between 
patients with respectively better and worse outcome (CCR7, TGFBR1). Results obtained for these genes confirm 
differential splicing, with one of more isoforms of each gene showing differential expression between the two 
compared groups (Additional File 8).

The analyses on this small gene panel served as a proof of concept to validate our methodological framework 
for identification of genes undergoing differential splicing, based on the Affymetrix Exon Array 1.0 ST arrays, a 
platform which has also been extensively validated elsewhere18,53–55.

Cell functions and pathways affected at splicing level in basal-like tumours.  We aimed to iden-
tify the cellular functions and pathways altered as a consequence of differential splicing balances in basal-like 
tumours, as compared to NBT samples. We started from the list of genes showing differential splicing balances 
but not differential expression between these two groups and evaluated the affected pathways using gene set 
enrichment and Ingenuity-based analyses56. We observed that in basal-like tumours splicing imbalances deter-
mine, or contribute to the deregulation of many key cancer “hallmarks”57. These include known oncogenes 
(BCL2, BRAF), caspases (CASP6/7), transcription factors (E2F3), cell cycle genes (CDC42, CDK2, CDKN2A), 
cancer related kinases (JAK2/3, MAPK4/6/14) and DNA repair genes (PARP1, RAD50 and BRCA1). Moreover, 
we found a clear enrichment for cell surface and extracellular matrix genes, controlling cellular adhesion and 
cellular motility. Equally striking is the enrichment for oncogenic signaling pathways, mediated by cell surface 
receptors (complete results are listed in Additional File 9). In these cases surface receptors as well as downstream 
intracellular signaling proteins showed splicing level imbalances. Examples are the integrin and paxillin signal-
ling pathways which emerged with highest ranking. These membrane mediated pathways are involved in cellular 
spreading, cell motility and cancer development58 and exert their function by transducing the extracellular signal 
to key oncogenic pathways such as MAPK/ERK, Wnt, Rho, mTOR, PTEN and PI3K/AKT signaling pathways 
(Fig. 3 and Additional File 10).

We also checked whether these pathways would have emerged from standard whole-gene expression levels. To 
this aim we carried out a parallel gene set enrichment analysis of the two gene lists respectively based on differen-
tial gene expression (GE), and differential splicing index (SI) between basal-like breast cancer and NBT samples. 
We found that many of the described perturbations were specifically affected by splicing imbalances and would 
have been missed or largely underestimated had the same samples been analyzed at a whole-gene expression 
perspective. Examples include the integrin signalling pathway mentioned above,  the VEGFR1 pathway and the 
oncogenic MAPK/ERK, mTOR and RAS signaling pathways, which also appear to be perturbed exclusively at the 
splicing level (Fig. 4 and Additional File 11, Additional File 9 for complete results).

We also observed basal-like splicing specific enrichments in other sets of genes related to breast cancer. 
These include a cancer mesenchymal transition signature (“ANASTASSIOU CANCER MESENCHYMAL 
TRANSITION SIGNATURE”), genes up-regulated in metastatic breast cancer (“RAMASWAMY 
METASTASIS UP”) as well as genes found mutated and amplified (“NIKOLSKY MUTATED AND 
AMPLIFIED IN BREAST CANCER”) (Fig. 4). Other interesting enrichments relate to the perturbation of 
immune-related pathways, such as those mediated by CD8, TCR, CDC42 and JNK, as well as sets of genes 
previously found to be perturbed in different types of immune cells (e.g. “CD4 T-CELL VS B-CELL UP”) 
(purple group in Fig. 4).

The same approach was used to explore the differences between tumour molecular subtypes. Despite the 
limited sample size of the non-basal-like groups (resulting into diminished statistical power) we could iden-
tify splicing-specific differences between basal-like and Luminal and HER2 subtypes, with plasma membrane 

Figure 3.  The integrin signalling pathway (Ingenuity® Systems). In purple are genes affected by splicing 
imbalances between basal-like tumours vs NBT, with no evidence of whole-gene differential expression.
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receptors showing up again as specifically deregulated at splicing levels in basal-like tumours (complete results 
are listed in Additional File 9).

Splicing and association with breast cancer survival.  As the next step we explored the possible 
associations between gene splicing balances – as measured by SI - and disease outcome, using patients’ breast 
cancer specific survival as the clinical end point (see Materials and Methods). Keeping the same analytical frame-
work described, we ran parallel and independent analyses using GE, EE and SI data as the predictor variables 
in Cox-regression univariate model, followed by Wald test. We observed that the distributions of the p-values 
obtained from the three analyses significantly deviate from uniform distributions, indicating that – at a general 
level - all these three measures, GE, EE and SI, hold statistically significant prognostic information (Additional 
File 12). External validation of our gene-level survival analysis results came from comparison with a large public 
database of Affymetrix-based tumour gene expression data, herewith referred to as the KMP database59. Out of 
the 204 genes associated with basal-like prognosis in our dataset (q-val <​ 0.1), 168 (83%) had q-val <​ 0.1 in the 
KMP database (Fisher-test p-value of the overlap <​10−20). As a negative control, when we took the 204 genes 
with lowest association with prognosis from our dataset, only 25% had a q-value <​ 0.1 in the KMP database  
(a more extensive description of the comparative validation of our survival results can be found in Additional 
File 13).

Figure 4.  Heatmap of gene sets and pathways specifically perturbed by splicing imbalances. Each column 
represents a pairwise comparison (either at GE or SI level), each row is a gene set or a pathway, and color-coded 
is the significance level of the enrichment. On the left are represented the complete results of the analysis. On 
the right, a selection of specific gene sets and pathways is highlighted showing specific perturbations related to 
cancer, immune system, and transport and membrane. All reported gene sets and pathways are significantly 
enriched in at least one of the three pairwise comparisons illustrated. Gene sets are grouped in five different 
classes as indicated by the side colour bar.
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Interesting patterns emerged from the gene-by-gene comparative analysis of the results obtained by using the 
GE and SI metrics. We found a total number of 344 genes whose respective splicing index values are associated 
with survival. Of these, 97 genes were found to have both GE and SI levels associated with survival (Fig. 5 and 
Additional File 14 for complete results). Examples are CYFIP2, WIPF1 and SLAMF1 (Additional Files 15–17). 
For these genes the overall gene expression levels - comprising the sum of all transcriptional isoforms - is associ-
ated with survival, and at the same time the splicing balance relative to one exon - that is, the contribution to the 
overall gene expression of one particular exon and its related transcript isoforms - is also associated with survival.

A more intriguing pattern is represented by the 247 genes whose overall expression does not show association 
with survival, whilst the splicing balance (as determined by the SI) of one of its exons is. In these cases what drives 
the association with survival is not the expression of a gene as a whole, but instead the relative abundance of the 
transcriptional isoforms containing a given exon. We describe two examples of genes following this pattern: 
CCR7 and TGFBR1 (Fig. 6). Others include proto-oncogenes such as MYB and immune-related genes such as 
FCRL3.

We, as well as others, have shown in previous studies that the percentage of lymphocytic infiltration represents 
an important prognostic factor in basal-like and triple-negative breast cancer13,60,61. In order to assess whether 
the observed associations of genes splicing balance with clinical outcome are prognostic factors independent of 
lymphocytic infiltration we moved to a multivariate Cox-regression model, which included this as an additional 
predictor variable (see Materials and Methods). Our results indicate that if lymphocytic abundance is taken into 
account, the significance for association with survival obtained using GE, EE, and SI gene levels is lost or signif-
icantly reduced for most of the genes (Additional File 18). In other words, transcriptional information does not 
contribute much to the prediction of clinical outcome when lymphocytic abundance is also available.

Taken together these data suggest that genes associated with survival in univariate analysis act in the model as 
a surrogate for the abundance of lymphocytic infiltration, implying that these genes are expressed in lymphocytic 
cells.

To investigate on this hypothesis, we examined in more details genes whose total expression levels or splic-
ing balances were associated with patients’ survival in univariate analysis (respectively 204 and 344 genes). We 
observed that a significant proportion - respectively 28 and 37 - were indeed genes specifically expressed in 
lymphocytes - as determined by using an external transcriptional data set - or annotated to play a role in the 
interaction between epithelial and immune tumour compartments (see Materials and Methods and Additional 
File 18). Notwithstanding, we also identified two (SCGB2A1, SCGB1D1) and seven genes (TGFBR1, CD3E, 
UHRF1BP1L, SBF2, CCDC121, SETD8, NUCB2) whose respectively gene expression (GE) and splicing balance 
(SI) retain prognostic value independently of the level of lymphocytic infiltration (see Additional File 14 for 
complete results). Of note, the transforming growth factor TGFBR1 is a membrane protein receptor involved in 
many cancers and whose polymorphisms were previously observed to be associated with risk for several forms of 
cancer, in particular breast cancer62.

Discussion
In this work we have analyzed exon level expression data of 176 breast cancer tissue and 9 non-tumour breast 
samples, with the aim of detecting splicing imbalances occurring in breast cancer subtypes and inferring their 
functional and prognostic significance.

First, we characterized splicing-driven differences across breast cancer molecular subtypes and in comparison 
with normal breast tissues (NBT).

Parallel analyses of whole-gene and exon-level measurements run across different group pairs showed that 
in addition to largely known differences at gene expression levels, a great proportion of transcriptional pertur-
bations occurring in breast cancer can be ascribed to differences in splicing balance. These perturbations do not 
necessarily affect the overall expression of genes - that is the sum of all their expressed isoforms - but relate to the 

Figure 5.  Association with breast cancer specific survival. Number of genes where GE or SI are associated 
with breast cancer specific survival in basal-like tumour patients.
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balance between the different splicing variants of each gene. Large proportions attributable to splicing differences 
are observed in basal-like tumours when compared to all other subtypes and to NBT samples (Fig. 2). By focusing 
our analyses on the basal-like subtype, we identified genes and pathways that with respect to normal tissues are 
significantly affected by differential splicing balance. These include cancer hallmarks of various types: oncogenes 
(BCL2, BRAF), caspases (CASP6/7), transcription factors (E2F3), cell cycle genes (CDC42, CDK2, CDKN2A), 
cancer related kinases (JAK2/3, MAPK4/6/14) and DNA repair genes (BRCA1, PARP1 and RAD50).

We could also infer information on the pathways that were exclusively affected by splicing imbalances. We 
found a clear enrichment for pathways involving cell surface and extracellular matrix genes, controlling cellular 
adhesion, cellular motility and spreading. Also perturbed specifically at splicing levels are a number of key onco-
genic signaling pathways mediated by cell surface receptors such as the MAPK/ERK, mTOR and RAS signaling 
pathways, as well as pathways related to the immune response. Of note, these pathways would have been com-
pletely overlooked from a gene-centric perspective (using for example Affymetrix 3′​ microarrays), as they are not 

Figure 6.  Gene models and Kaplan–Meier curves. CCR7 and TGFBR1 genes and their association with 
breast cancer specific survival. For each panel, on the top is a schematic representation of the gene model (from 
the UCSC Genome Browser). Highlighted in green are probes where the SI could be associated with survival.
On the bottom are Kaplan-Meier breast cancer specific survival curves for Gene Expression, Exon Expression, 
and Splicing Index. In each plot, the three lines represent the top tertile (red), middle tertile (blue), and lower 
tertile (green) for the value of the variable. q-values for association with survival, and the hazard ratio with 95% 
confidence intervals are reported.
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altered at the overall gene expression level. Relating exon level information extracted from Exon Array data to 
individual splicing isoforms is not straightforward and is complicated by the fact that many times the same exon 
can be shared across several isoforms. Despite this limitation, the general quantification of the volume of splicing 
imbalance events in basal-like cancers, along with the general observation that many of them involve surface 
proteins and oncogenic pathways, has important consequences and might open considerable translational per-
spectives. An example is the development of blood-based molecular assays for the detection of specific isoforms 
to diagnose this specific breast cancer subtype. Surface-specific cell protein isoforms are also attractive candidate 
therapeutic targets for development of monoclonal antibody-based therapies. This point is particularly relevant 
as for this subtype of breast tumours only limited therapeutic options other than systemic chemotherapy are 
currently available.

In the second part of our work we aimed at evaluating the potential of exon-level splicing information as bio-
markers to predict clinical outcome, which represents yet another challenge posed by these tumours.

Previous demonstrations of how clinical outcome can depend on the expression of alternatively spliced iso-
forms in cancer suggest potential for the use of splicing information to predict patients’ prognosis. For example, 
RHAMM and HAS1 genes in bone marrow and TKS5 in lung have isoform imbalances that have been shown to 
be prognostic indicators for multiple myeloma and lung adenocarcinoma, respectively63–65.

Through parallel exon and gene level survival analyses we could disentangle associations between gene expres-
sion and exon splicing levels with clinical outcomes.

We identified 247 genes whose splicing levels were significantly associated with basal-like tumour patients’ 
survival, whilst the same association did not emerge from whole-gene expression analysis. Interestingly, what 
appears to drive the association of these genes with patients’ prognosis is the balance of different transcriptional 
gene isoforms rather than their overall expression levels. Among them are cancer-related genes such as MYB 
and TGFBR1 as well as many immune-related genes such as CCR7 and FCRL3, whose prognostic association 
is likely to reflect the inflammatory process and the presence of lymphocytic cells in the tumour. Indeed, when 
we included the percentage of lymphocytic infiltration in the model we found that the prognostic association of 
many of these genes is lost. Through expression analyses of lymphocytic specific genes we showed that many of 
these splicing variants are in fact expressed in immune cells.

These findings confirm the relevance of immune system related genes in determining tumour control or pro-
gression and extend this notion by showing that the splicing levels of many immune-related genes also hold 
prognostic information. Whether this is a reflection of the engagement of different T- and B-cell types in tumour 
inflammation, each expressing a specific isoform and with different effects on tumour progression and clinical 
outcome, will require further investigation.

We were also able to identify 7 genes whose splicing levels have statistically significant prognostic associa-
tion, independently of the abundance of lymphocytic cells in the tumour. Among these is the TGF beta receptor 
TGFBR1, a membrane protein receptor involved in many cancers and whose non-synonymous single-nucleotide 
polymorphisms were previously observed to be associated with risk for several forms of cancer, including 
breast [8]. We showed that in addition to the identified SNPs TGFBR1 splicing balances also hold prognostic 
information.

Conclusion
This work reveals the role of splicing mechanisms in altering key processes in basal-like breast tumours, involving 
cell surface proteins, immune-related and oncogenic pathways, and provides the basis for the identification of 
novel isoform-specific membrane therapeutic targets. Our findings disclose aspects of breast cancer transcrip-
tional biology that have so far been largely unexplored. We investigated the use of splicing information in relation 
to prognosis and have identified genes whose internal splicing balances are associated with patient clinical out-
come, in absence of an association at the overall gene-level of expression.

These results highlight the relevance of splicing information for translational applications as potential 
prognostic biomarkers and in revealing cancer specific targets for therapy. Whilst conclusive assessment of 
the prognostic value of each of these spliced gene exons will have to await confirmation in larger data sets, our 
study demonstrates the potential of splicing information as a prognostic biomarker and for the discovery of 
isoform-specific therapeutic targets in basal-like breast cancer.

Materials and Methods
All methods were carried out in accordance with the approved guidelines.

Patient characteristics and sample preparation.  This study was based on the same patients’ cohort 
and tumour samples analyzed in previous studies by our group13,14. The clinical endpoint considered here was 
breast cancer specific survival (BCSS), therefore events of death due to other reasons were ignored. In addition, 
9 samples of Normal breast tissue (NBT) were obtained from patients undergoing mammoplasty for aesthetic 
reasons, under protocols approved by the Institutional Review Board and by Guy’s Research Ethics Committee, 
in compliance with the Human Tissue Act. Informed consent was obtained from all subjects from where the 
tissue samples were taken. The tissues were processed as described in ref. 66. Exon-level transcriptional profiles 
were obtained by using the Affymetrix Exon 1.0 ST array platform. Tumour molecular subtypes were assigned as 
described in ref. 13.

Exon-Array data pre-processing.  An overview of the workflow used for Exon-Array data pre-processing 
is given in Additional File 19 following the analytical strategy proposed by Lockstone et al.67. ExonArray data 
pre-processing was performed on the R platform using the “aroma.affymetrix” R package (www.aroma-project.

http://www.aroma-project.org
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org). RMA was used to remove the array signal background, followed by quantile normalisation to correct for 
inter-arrays global differences and by gene level summarisation. For this latter step probe sets were mapped to 
ENSEMBL genes using the mapping file (HuEx-1_0-st-v2, U-Ensembl49, G-Affy.cdf) generated by the aroma.
affymetrix team68. Quality of individual arrays was assessed by visual evaluation of RLE (relative log expression), 
NUSE (normalised unscaled standard error) and hierarchical clustering plots (Additional File 19).

Once expression levels were obtained for each gene and probe set, they were tested for differential expression 
between different sample groups. Tumour samples were annotated according to the PAM50 molecular classifica-
tion and on the basis of the ER, PR and HER2 status1. Gene level expression measures were tested for differential 
expression using the moderated t-test implemented in the Limma package (http://www.bioconductor.org/pack-
ages/release/bioc/html/limma.html) as part of the R/Bioconductor platform69. Likewise, for the exon analysis, the 
expression recorded for each probe set was evaluated and compared in the same way. With the genomic mapping 
of probe sets coordinates of the hg19 genome assembly, they can be mapped on to specific gene and exon loca-
tions. The obtained p values were corrected for multiple hypotheses testing using the Benjamini and Hochberg 
method70 and the resulting corrected values are hereafter referred to as q values. Except where otherwise noted, a 
gene was considered to be differentially expressed when its q value for the test is lower than 0.001.

Splicing Index (SI) values were calculated by dividing expression values captured for each probe by the sum 
of the expression values of all the probes of that gene, as reported elsewhere19. Differential splicing index between 
samples was then tested with the identical procedure: i.e. using the SI as input values to the Limma package to 
calculate p values of as described above. By using the SI metric it is possible that when comparing two groups 
of samples, the average SI of one exon is higher (e.g. due to exon inclusion or to higher expression of an isoform 
containing that exon), and the average SIs for the other exons of the same gene are lower. In this case our analysis 
would detect an overall splicing imbalance for that gene, due to different SI values of the exons in the two samples. 
Splicing imbalances are reported at the gene level; therefore results are not affected if the imbalance is detected 
from one or more exons within the same gene. The p-values were adjusted for multiple hypotheses testing using 
the Benjamini Hochberg method70 and the resulting corrected values are referred to as q values. A gene was 
deemed to have a splicing imbalance between two groups when the q value in one or more of its probes was lower 
than 0.001.

The comparison of multiple pairwise combinations of subtypes needs also to be taken into account as a further 
element for multiple testing correction. However, standard multiple testing procedures assume independence 
of individual tests and our pairwise comparisons violate the assumption of independence (i.e. subtypes of the 
same cancer type cannot be considered independent). We have addressed this problem by using a very stringent 
threshold (q-val <​ 0.001), which accounts also for the multiple pairwise subtypes comparisons (n. of tests =​ 10).

Analysis of p-value distributions from pairwise comparisons.  Distribution of p-values obtained for 
each pairwise comparison were compared against the theoretical distribution under the null hypothesis of dif-
ferential expression as the result of random noise. The latter was modeled in two ways: (i) as the uniform distri-
bution (ii) as the Montecarlo distribution obtained upon permutation of sample labels. In all cases distribution 
of p-values obtained for pairwise comparisons showed clear deviation from the null-hypothesis distribution(s), 
indicating the presence of statistically significant signals in the data.

Overlaps with external data sets.  Lists of genes with differential splicing balances were extracted from 
our data upon pairwise comparisons between TNBC or basal-like tumour samples with luminal tumours or NBT 
samples. These lists were compared with equivalent lists published in refs 8, 9 as described in the results section. A 
third comparison was done against RNA-Seq data downloaded from The Cancer Genome Atlas project (TCGA, 
http://cancergenome.nih.gov/). The data was in the form of “Level 3 data” according to the TCGA nomencla-
ture, which represents gene and isoform level read counts. All samples for which the status of ER, PR and HER2 
receptors was available, annotated as “basal-like” according to the PAM50 molecular classification1 were used 
in the subsequent analysis. Differential gene expression and differential isoform expression between basal-like 
tumour (n =​ 92) and NBT samples (n =​ 133) was calculated using edgeR71. Genes and isoforms with q-value 
lower than 0.001 were considered to be differentially expressed. From that data we compiled a list of genes having 
at least an isoform differentially expressed, but not found to be differentially expressed when analyzed at overall 
gene-level. Similarly, from our data, we selected genes which had one probe indicating differential splicing index 
(q-value <​ 0.001) but not found to be differentially expressed when analyzed at overall gene-level. Considering as 
background population of genes all the gene symbols that could be mapped to isoform names and Ensemble gene 
Ids, we calculated the statistical significance of the overlap of these two gene lists using the hypergeometric test.

Experimental validation of differential splicing results.  We have selected 11 genes in total, to be either 
differentially spliced between basal-like tumours and normal samples (8 genes: AURKA, AURKB, BCL2-a, NEK2, 
RRM2, TGFBR1, UBE2C, ZBTB16) or differentially spliced in basal-like tumours, between patients with respec-
tively better and worse outcome (4 genes: CCR7, RASSF5, PARP12, TGFBR1). Full length cDNAs were prepared 
from intact RNA using Primescript Reverse transcriptase (Clontech), oligo dT and a custom transcript switching 
Oligo (TSO). cDNAs were amplified using semi-nested PCR using the Advantage PCR kit (Clontech) with gene 
specific primers located near the poly adenylation signal and TSO. Amplified full length cDNAs were analysed 
using Bioanalyzer DNA7500 kit to size separate all full length isoforms arising from each gene (Additional File 8).

Analysis of cellular functions and pathways.  We evaluated what cellular functions and pathways 
were affected at the gene splicing balance or gene expression levels. We analyzed separately a number of gene 
lists derived from comparative analyses of differential splicing index (splicing imbalance) and differential gene 

http://www.aroma-project.org
http://www.bioconductor.org/packages/release/bioc/html/limma.html
http://www.bioconductor.org/packages/release/bioc/html/limma.html
http://cancergenome.nih.gov/
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expression, using gene set enrichment analyses based on Fisher-test. The gene sets we used were extracted from 
the Ingenuity (www.ingenuity.com) as well as the MSigDB data base72.

Ingenuity gene sets were used for the analysis of the list of genes differentially spliced (therefore had dif-
ferential splicing index values) but not differentially expressed, between basal-like tumours and breast normal 
tissues. MSigDB was used for all comparative lists. For any gene list the Fisher-test assessed the probability that 
the number of overlapping genes between our gene list and the pre compiled gene set would happen by chance. 
The background population for the test consisted of all genes represented on the Affymetrix GeneChip Exon 1.0 
ST platform.

Classification models.  Classification models were built to assess the diagnostic potential of three different 
levels of information that can be extracted from Exon Array: gene expression, exon expression, and splicing 
index. An additional data type was used consisting of all splicing indexes of the exons of genes not differentially 
expressed between the categories to be classified (i.e. the q value for difference in the expression of that gene was 
greater than 0.01). The classification model was, in all cases, based on decision trees as implemented in the R 
package “tree” (http://cran.r-project.org/web/packages/tree/index.html). For each data type the procedure used 
was the same: (1) n number of variables were selected randomly from the data matrix (for example gene expres-
sion values) (2) we randomly assigned two thirds of biological samples to be the training samples. Those are used 
to calibrate the model using the n variables. (3) the model is then used to classify the remaining third of samples 
(the test samples). For every number n of variables this procedure (steps 1–3) is repeated 1000 iterations always 
randomly selecting the test and training samples, as well as the specific n variables to use. From those classifica-
tions we calculated sensitivity and selectivity associated to each model.

Survival Analysis.  Kaplan-Meier analysis was used for calculation and visualization of survival curves, and 
Cox-regression models followed by Wald test were used to determine the statistical association between the expres-
sion of each GE, EE, SI value and breast cancer specific survival (BCSS). Two different Cox-regression models 
were used, with or without consideration of the percentage of lymphocytic infiltration as an additional covariate.  
To adjust for multiple testing, false discovery rate (FDR) q-values were calculated from the Wald test p-values, 
using Benjamin-Hochberg method. We considered GE, EE, SI to be associated with BCSS using FDR q-value <​ 0.1. 
Distributions of the resulting p-values were compared with random uniform distribution (from 0 to1),  
representing p-values that would be obtained by chance. With all models the obtained p-values were clearly 
deviating from uniform distribution with an overall bias towards low p-values, and therefore deviating from the 
results that would be obtained by chance (Additional File 12). Percentage of lymphocytic infiltration covariate 
was used as a categorical variable, as follows: <​15% =​ “low”, >​=​15% =​ “high”. All analyses were run using R soft-
ware and the ‘survival’ R package (http://cran.r-project.org/web/packages/survival/index.html).

Annotation of Lymphocytic associated Genes.  Genes were annotated as lymphocytic according to 
two criteria: i) expression in lymph node tissues, based on the arbitrary threshold of at least 10 read counts 
from the normalized RNA-Seq data set deposited in the Array Express database, data set E-MTAB-513 (http://
www.ebi.ac.uk/gxa/experiments/E-MTAB-513) ii) the gene was present in any of the following data sets from 
the MSigDb72: “BIOCARTA_BLYMPHOCYTE_PATHWAY”,“REACTOME_IMMUNOREGULATORY_
INTERACTIONS_BETWEEN_A_LYMPHOID_AND_A_NON_LYMPHOID_CELL”,“SIG_PIP3_
SIGNALING_IN_B_LYMPHOCYTES”.“PID_LYMPHANGIOGENESIS_PATHWAY”,“LYMPHOCYTE_
DIFFERENTIATION”,“POSITIVE_REGULATION_OF_LYMPHOCYTE_ACTIVATION”,“REGULATION_
OF_LYMPHOCYTE_ACTIVATION”, “LYMPHOCYTE_ACTIVATION”.

Availability of supporting data.  Patient clinical and pathological information used for the analyses, are 
reported in Table S1 and include the patients’ survival data, age at diagnosis, tumour grade, percentage of lym-
phocytic infiltration, estrogen (ER), progesterone (PR) and human epidermal growth factor receptor 2 (HER2) 
status.

Microarray data have been deposited in GEO public repository with ID GSE40267 (http://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=​GSE40267).
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