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Abstract

Background: Drug repositioning, finding new indications for existing drugs, has gained much recent attention as a
potentially efficient and economical strategy for accelerating new therapies into the clinic. Although improvement
in the sensitivity of computational drug repositioning methods has identified numerous credible repositioning
opportunities, few have been progressed. Arguably the “black box” nature of drug action in a new indication is one
of the main blocks to progression, highlighting the need for methods that inform on the broader target
mechanism in the disease context.

Results: We demonstrate that the analysis of co-expressed genes may be a critical first step towards illumination of
both disease pathology and mode of drug action. We achieve this using a novel framework, co-expressed gene-set
enrichment analysis (cogena) for co-expression analysis of gene expression signatures and gene set enrichment
analysis of co-expressed genes. The cogena framework enables simultaneous, pathway driven, disease and drug
repositioning analysis. Cogena can be used to illuminate coordinated changes within disease transcriptomes and
identify drugs acting mechanistically within this framework. We illustrate this using a psoriatic skin transcriptome, as an
exemplar, and recover two widely used Psoriasis drugs (Methotrexate and Ciclosporin) with distinct modes of action.
Cogena out-performs the results of Connectivity Map and NFFinder webservers in similar disease transcriptome
analyses. Furthermore, we investigated the literature support for the other top-ranked compounds to treat psoriasis
and showed how the outputs of cogena analysis can contribute new insight to support the progression of drugs into
the clinic. We have made cogena freely available within Bioconductor or https://github.com/zhilongjia/cogena.

Conclusions: In conclusion, by targeting co-expressed genes within disease transcriptomes, cogena offers novel
biological insight, which can be effectively harnessed for drug discovery and repositioning, allowing the grouping and
prioritisation of drug repositioning candidates on the basis of putative mode of action.
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Background
The well documented challenges of novel drug develop-
ment have made the repositioning (or repurposing) of
existing drugs to new indications, an attractive and effi-
cient economic prospect for translation of drugs into the

clinic [1–3]. Historically, drug repurposing has often
been a serendipitous process during drug development
where a previously unrecognized on-target or off-target ef-
fect is identified and subsequently developed as a new indi-
cation (such as sildenafil [1]). Today a rapidly accumulating
public corpus of omics data related to disease mechanism
and drug action makes complex drug repositioning quite
feasible in silico. Public databases such as the NCBI Gene
Expression Omnibus (GEO) [4], the Connectivity Map
(CMap) project [5] and the Library of Integrated Cellular
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Signatures (LINCS) project (www.lincsproject.org) [6],
make systematic computational drug repositioning a cred-
ible proposition. One of the basic hypotheses behind CMap
is that the drug-induced gene expression should to some
degree inversely correlate with the disease-induced gene ex-
pression, thus reversing or antagonising the disease process.
Other tools have been developed on a similar premise. For
example, NFFinder uses transcriptomic data to discover re-
lationships between drugs, diseases or a phenotype of inter-
est [7]. Cheng et al. identified drug-indication pairs via a
new similarity scoring algorithm, XSum, of gene expression
profiles [8]. These methods have been very widely applied
[9, 10], but are still showing limited translation to the clinic.
We would argue, that the failure to translate lies partly in

the “black box” nature of such drug repositioning efforts –
at a transcriptome wide level it is difficult to separate cause
and effect in a disease process among thousands of differ-
entially expressed transcripts. Thus, this approach does
little to disclose the mode of action (MoA) of a drug in a
specific disease, much less Mechanism of action (MOA).
As the recent struggles of the pharmaceutical industry
attest [11], a good understanding of both disease mechan-
ism and drug MoA as well as MOA, and importantly how
the two align, is a critical component of the target valid-
ation required for successful drug development.
Co-expressed genes often work in concert in biological

processes, under tight regulatory control, thus conferring
an advantage in adaptive evolution [12]. Good evidence
supports this. For example, over 22,000 paired co-
expression partners were shown to be profoundly con-
served between yeast, worm and human [13]. Subsequent
studies by the ENCODE consortium have extended the
view of conserved complex co-expression modules further
and also identified lineage specific co-expression modules
[14]. Genes in co-expression modules have been shown to
be involved in the same biological pathways [13] and of
high disease prognostic value [15]. Cluster analysis, as the
backbone of co-expression analysis, is a powerful strategy
for the exploration of expression data in the absence of a-
priori hypotheses, using results as a classifier [16]. For
example gene sets can be extracted from co-expressed
clusters and subjected to gene set enrichment analysis.
We hypothesize that genes which are both differen-

tially expressed and co-regulated in a biological state,
are more likely to be drivers of the underlying biology
and thus co-expression is a critical layer of informa-
tion to include in pathway analysis. Usually gene set
enrichment analysis is performed on a ranked list of
expressed genes, or a subset of differentially expressed
(DE) genes based on a statistical threshold. Other
tools such as WGCNA [17], Human gene correlation
analysis (HGCA) [18], STARNET [19], GeneFriends
[20] and CoExpress [21] allow the study of co-
expressed genes using a weighted correlation network

allowing network construction based on a soft threshold-
ing of the correlation coefficient. Tools such as WGCNA
are widely used, but most require the user to export ana-
lyses into gene set enrichment tools, such as DAVID [22]
and Enrichr [23], or commercial tools such as Ingenuity
Pathway Analysis (QIAGEN, Redwood City). We have
sought to maximise the utility of cogena, by refining the
input to include information both on co-expression and
differential expression, using a hard threshold for the lat-
ter, and feeding the results directly into gene set enrich-
ment. Thus cogena offers an integrated analysis suite,
which we show can be complementary, and often more
informative than other approaches.
Pathways can bridge the gaps between diseases and

drugs, especially when the knowledge concerning drugs,
targets, genes and diseases is scarce or unknown. Bayes-
ian matrix factorisation has been used to identify path-
ways perturbed by drugs and the inferred pathway
correlation has been used to reveal the relationship be-
tween the underlying pathways perturbed by drugs and
disease pathology [24]. Pathways perturbed by sixteen
drugs were evaluated based on their targets and used for
exposing the indications of drugs [25]. In another study,
a link map between small molecules and pathways was
constructed using gene expression profiles of cancer,
KEGG pathway and CMap data and molecules that sig-
nificantly affected the same pathways tended to treat the
same diseases [26]. Others have used linear models to
infer drug mechanism of action at a pathway level from
differentially expressed genes and their predicted targets
[27]. Causal inference has also been used in a layered
drug-target-pathway-gene-disease network to repurpose
drugs using statistical learning [28]. Although the above
approaches are effective in the discovery of new indica-
tions for drugs, their outputs rarely focus on the core
genes linking disease and drug mechanism.
Based upon the above considerations, we propose a

novel framework for co-expressed gene-set enrichment
analysis (cogena). We hypothesize that highly correlated
events may be of great mechanistic relevance to disease
and drug action. Accordingly, we have constructed a
drug repositioning and drug MoA discovery pipeline
based on the cogena framework using a pathway gene
set and the CMap gene set. Other gene sets could easily
be incorporated by the user. A psoriatic skin transcrip-
tome dataset is used as an exemplar to show the power
of cogena. In this case we recovered two approved drugs
for psoriasis with different MoA, and identified several
novel drugs with potential for repositioning to this dis-
ease. Similar results are obtained by cogena using an-
other dataset. In conclusion, by leveraging co-expressed
gene profiles in a disease state, cogena offers a powerful
tool for studying disease pathology, which can be used
to inform drug repositioning and MoA discovery.
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Implementation
Overview of cogena
The drug repositioning workflow, implemented within the
cogena framework, has three steps (Fig. 1). Firstly, co-
expression analysis, using a variety of clustering methods
(See below), is performed on the expression of genes
showing differential expression in the disease state. Then
based on hypergeometric test, pathway analysis and drug
repositioning analysis for the co-expressed gene groups
are performed respectively. Finally, the putative drug MoA
in the disease state can be inferred from the pathway ana-
lysis and the known MoA of drug in the same cluster. Col-
lectively, the outputs of the analysis can be used to inform
drug discovery and repositioning as discussed below. On
the other hand, cogena can identify drugs with similar MoA
when the input is drug related gene expression profile. As a
tool, cogena has several optional parameters with default
values, making it convenient and flexible to use for inex-
perienced users, with full configurability for advanced users.

Clustering methods
Cogena leverages various clustering methods based on
components of the clValid R package [29] with enhance-
ments for parallel processing. In total there are ten cluster-
ing methods available in cogena, Hierarchical Clustering,
Agnes, Diana, K-means, Fanny, SOM, Model, SOTA, PAM

and CLARA. A detailed description of these methods can
be found in the clValid package vignette.
Because all the above clustering methods will request

a number to assign the number of clusters to generate,
users are able to assign a vector to this parameter, as
used in clValid. To speed up the calculation, enhancing
the original clValid package, this process is run in paral-
lel with the doParallel package [30].
Different distance metrics have distinct effects upon the

clustering methods, therefore we supply a range of met-
rics. The following distance metrics can be run: Euclidean,
Pearson, absolute Pearson, correlation (centred Pearson),
absolute correlation, Spearman and biweight correlations
(biwt) via the packages amap [31] and biwt [32] respectively.
For distance metric parameters, some clustering methods

cannot use all the distance metrics, while Hierarchical Clus-
tering, Diana, Fanny, PAM and Agnes can. K-means can use
all except biwt and will change it to correlation automatically.
CLARA uses Manhattan or Euclidean, other metrics will be
changed as Euclidean. SOTA uses correlation or Euclidean,
other metrics will be changed as correlation. The Model
method uses its own metric and SOM uses Euclidean only.
As there are no automatic ways to select clustering

methods and the number of clusters, the user needs to
apply some basic principles to select the most appropri-
ate cluster method and cluster number. For example, an

Fig. 1 The workflow of cogena for drug repositioning. 0. Differential expression analysis of a disease or compound (drug) dataset. Cogena requires the
gene expression signature of differentially expressed genes as an input. 1. Co-expression analysis on the expression profile of differentially expressed
genes. Ten clustering methods are available in cogena. 2.1 Pathway Analysis. Hypergeometric test and KEGG gene sets are used for the pathway
analysis for each co-expressed gene cluster. 2.2 Drug repositioning. The same test and CMap gene set from Connectivity Map are used for drug
repositioning for each co-expressed gene cluster. The pathways enriched for a gene cluster may imply the MoA of drugs enriched for the same gene
cluster. The main steps are outlined in the circles, methods in ellipses, while data streams are described in the rectangles
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optimal clustering configuration should cluster a specific
gene set or pathway across as few clusters as possible,
ideally one cluster. Distribution of a gene set across mul-
tiple clusters may indicate that too many clusters have
been selected for analysis. Unrelated gene sets should be
separately enriched among different clusters. Addition-
ally, the number of genes in a cluster should be at a
minimum to provide an optimal maximum enrichment
score.

The gene sets
The cogena framework is modular and can be configured
to address a range of functions, depending on the gene
sets leveraged. For this analysis, we have pre-packaged
some of the gene sets from the Molecular Signatures
Database (MSigDB), such as the canonical pathways, Gene
Ontology (GO) biological process and KEGG gene sets
[33]. To launch drug repositioning analysis, we extracted
the top 100 and bottom 100 DE genes to generate two
gene-set libraries from CMap [5], one for the up-regulated
genes and the other for the down-regulated genes for each
condition. We selected the top 100 genes, representing
the most significant gene group, rather than a statistical
threshold to enable consistent comparison across different
drugs in similar manner to that employed by other tools,
such as Enrichr [23]. Each set is associated with a com-
pound name, cell-type, concentration and instance num-
ber, which makes it convenient to merge different
instances of a compound based on different conditions.
Additionally, cogena can also load user-defined gene sets
in Gene Matrix Transposed (gmt) format.

The hypergeometric test of enrichment analysis
We apply a hypergeometric test for gene set enrich-
ment analysis. The null hypothesis is that there is no
relationship between a gene list in a cluster containing
n genes and a given gene set containing m genes. We
can model the number of significant genes using a
hypergeometric distribution. If there are k significant
genes in the gene set category, we simply compute the
probability of seeing k or more significant genes in n
draws, without replacement, from the reference back-
ground gene lists containing N genes. Then the prob-
ability is given by formula (1). Finally, Benjamini &
Hochberg correction for multiple hypothesis testing is
applied to the p values.

P x≥kf g ¼
X∞
x¼k

m
x

� �
N−m
n−x

� �
=

N
n

� �
ð1Þ

Visualization of co-expressed gene set enrichment
Heatmaps are used to visualise co-expressed gene set
enrichment. Firstly, a gene expression heatmap, with

numbered clusters, is used to represent the differential
gene expression. The up-regulated and down-
regulated genes are identified by a coloured bar on the
far left of the heatmap and individual clusters are
highlighted by coloured and numbered blocks. The
genes contained in the numbered clusters are sub-
jected to gene set enrichment analysis and the results
are reported in another heatmap showing the negative
log2 false discovery rate (FDR) as an enrichment score
for the gene sets. The enrichment scores can be
ranked by various conditions, the “mean” and “max”
rank by mean or max of the clusters and all DE genes,
respectively, while “all” ranks by the enrichment score
of all the DE genes. At a more granular level, “up” and
“down” rank based on the up- or down-regulated
genes respectively. Finally clusters can be ranked by a
number i representing the i-th cluster. It should be
noted that the rank of enriched gene sets is likely to
be more informative than their absolute scores [34].
Multi-instance CMap drugs with enrichment score
above a threshold, such as –log2 (0.05), can be merged
based on different conditions (such as cell-type) and
visualised by another heatmap.

Results and Discussion
In the following, we describe an example of co-expression
analysis, intra-cluster protein-protein interaction analysis,
pathway analysis and drug repositioning analysis using
cogena. Finally, putative drug mode of action is illustrated
by aligning the pathway analysis and drug repositioning
analysis.

Cogena analysis exemplar
We use a psoriatic skin transcriptome dataset (GSE13355)
from NCBI GEO to demonstrate the utility of cogena.
Transcriptome expression in psoriasis lesions and non-
lesional skin from 58 psoriasis affected individuals was
profiled on Affymetrix Human Genome U133 Plus 2.0 mi-
croarrays [35]. The raw data were normalised using rma
[36] and non-expressed and non-informative genes were
filtered using the MetaDE package [37]. The limma pack-
age [38] was used to identify DE genes with the thresholds
of FDR less than 0.05 and absolute logFC more than 1. All
code used to produce the results in this paper are available
within https://github.com/zhilongjia/psoriasis.

Co-expression analysis
Firstly, co-expression analysis was performed using the
coExp function. After differential expression analysis of the
dataset, cogena used all the implemented clustering
methods, using clusters ranging from 2 to 20 and the “cor-
relation” distance metric to analyse DE genes. In the exem-
plar analysis, the PAM method and 10 clusters were chosen
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based on these principles and pathway analysis below (See
Implementation and Additional file 1: Figure S1).

Co-expressed genes are enriched for intra-cluster
interactions
Cogena was developed on the assumption that co-
expressed genes may interact biologically more at an
intra-cluster level than an inter-cluster level. We specific-
ally investigated the extent of protein-protein interactions
among genes in clusters based on a protein-protein inter-
action database, STRING [39] (See Table 1). The expected
interaction and p value are calculated based on a random
background model that preserves the degree distribution
of the input proteins [39, 40], implemented via the get_-
summary function in the STRINGdb package.
The results demonstrate that co-expressed genes in

cluster 1, 3, 5, 7, 9, up or down-regulated genes and all
DE genes are highly connected, while genes in other
clusters are less connected. Furthermore, based on the
ratio of actual interaction and expected interaction, the
connectivity between genes in cluster 3 (with ratio value
9), 5 (23.18), 7 (11.58) and 9 (3.69) is higher than those
in other clusters. Consequently, we propose that clusters
with such properties may be more biologically relevant
to the disease phenotype and consequently more tract-
able to drug intervention.

KEGG pathway analysis
After co-expression analysis, pathway analysis was per-
formed using the clEnrich function based on KEGG gene
sets. The pathogenesis of psoriasis resembles in many as-
pects an adaptive immune reaction that initiates an

abnormal regenerative response of the skin leading to
plaque formation [41]. The results of pathway analysis ob-
tained with cogena were compared with Gene Set Enrich-
ment Analysis (GSEA) [42] and WGCNA. For GSEA, the
RMA-normalised expression data were queried using the
default parameters. For WGCNA, all expressed genes were
used with the default parameters and soft thresholds
(power) equal 7 based on the scale-free topology fit indices.
For the purposes of direct comparison of cogena and
WGCNA, co-expressed genes obtained from WGCNA
were fed into the cogena pipeline using custom scripts.
We compared the top 20 enriched pathways identi-

fied by cogena, WGCNA and GSEA (Fig. 2, Additional
file 2: Figure S2 and Additional file 3: Table S1). The
top 20 enriched pathways by each method were also
each compared against a benchmark of pathways rele-
vant to psoriasis based on a “psoriasis” keyword query
of the Comparative Toxicogenomics Database (CTD)
(see Additional file 3: Table S1). In a head to head com-
parison of each method analysing a psoriatic skin tran-
scriptome (GSE13355), 14/20 pathways identified by
cogena were ranked by the CTD benchmark, 13/20
were ranked by WGCNA, 13/20 were ranked by GSEA.
Two pathways were common between cogena and
WGCNA only, 5 were common between cogena and
GSEA only, 3 were common between WGCNA and
GSEA only. One pathway, “natural killer cell mediated
cytotoxicity” was ranked by all three methods. Despite
similar recovery of pathways from the CTD benchmark,
qualitatively cogena identified the strongest, disease
relevant enrichments in the smaller co-expressed gene
clusters, often limited to a single cluster. By contrast

Table 1 Summary of interactions within clusters for GSE13355

#gene in cluster #protein in STRING #interaction #expected interaction Ratio (#interaction/#expected interaction) p value

Cluster 1 158 152 109 42 2.60 0

Cluster 2 65 62 15 7 2.14 0.0079

Cluster 3 38 36 72 8 9 0

Cluster 4 92 91 19 15 1.27 0.25

Cluster 5 50 49 255 11 23.18 0

Cluster 6 67 65 22 5 4.40 0.0000002

Cluster 7 63 61 463 40 11.58 0

Cluster 8 94 90 19 11 1.73 0.034

Cluster 9 61 61 59 16 3.69 0

Cluster 10 18 18 3 0 NA 0.0048

Up 468 453 1616 633 2.55 0

Down 238 231 235 112 2.10 0

All DE genes 706 684 2407 1274 1.89 0

STRING interactions are shown for each cluster, up or down-regulated genes and all DE genes, how many genes (#gene in cluster), how many proteins (#protein
in STRING), how many interactions (#interaction), how many expected interactions (#expected interaction), the ratio of #interactions and #expected interactions,
together with the p value to get such a number of interactions by chance
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WGCNA identified strongest enrichment among a
small number of large gene sets, including a cluster of
3568 genes.
Four biologically related groups of pathways, which have

an established role in psoriasis, are highlighted in clusters 3,
5, 7 and 9 shown in Fig. 2. Both clusters 3 and 5 are
immune-related. In cluster 3, the co-expressed genes are
up-regulated and the enriched pathways are consistent with
known psoriasis pathology based on the CTD benchmark.
The chemokine signaling pathway and cytokine-cytokine
receptor interaction pathway, including the IL-23–IL-17
immune axis, play important roles in the pathogenesis of
psoriasis and have been targeted by biologic drugs for the
treatment of psoriasis with some success [43, 44]. These
two pathways were not identified by WGCNA or GSEA.
Co-expressed genes in cluster 5 are related to the RIG-I like
receptor signalling pathway, cytosolic DNA sensing path-
way and toll-like receptor signalling pathway (See Fig. 2).
All three pathways are involved in immune response and
identified in the CTD psoriasis benchmark, while none is
enriched by WGCNA, they are also detected by GSEA.
Cluster 7 captures 5 pathways that are broadly related to
the cell cycle. Three pathways are also captured in the CTD
benchmark, while WGCNA and GSEA only capture one of
the five (cell cycle and oocyte meiosis respectively). Though
enriched in cogena, CTD and GSEA (ranked 20th, see
Additional file 3: Table S1), the oocyte meiosis pathway is
likely to represent an overlap with the observed cell cycle
enrichment. Both the cell cycle and p53 signaling pathways

are highly relevant to the psoriasis, characterized by hyper-
proliferation and abnormal differentiation of keratinocytes
[45]. And the downstream signals of p53 result in apop-
tosis, senescence and cell cycle arrest. Genes in cluster 9
are down-regulated and show enrichment for the Peroxi-
some proliferator-activated receptors (PPAR) signaling
pathway, only enriched in the results of cogena and CTD.
PPAR signalling has an important effect in keratinocyte
homeostasis of skin [46]. There are some cases showing the
comorbidity of psoriasis and dilated cardiomyopathy, al-
though not Hypertrophic cardiomyopathy (HCM). The cal-
cium signaling pathway was highly ranked by GSEA but
not cogena. This may be relevant, as some investigators
have speculated that psoriatic keratinocytes may have an in-
born error in calcium metabolism [47]. In summary, many
more pathways related with psoriasis are discovered by
cogena, than by the current state of the art, GSEA and
WGCNA methods.

Drug repositioning based on pathway-guided co-
expression analysis
Drug repositioning analysis was performed on the same
co-expressed gene clusters analysed by pathway analysis
using the clEnrich function based on the CMap gene
sets, with the specific aim of aligning pathway and drug
mechanism. Furthermore, for the purposes of drug repo-
sitioning, the CMap down-regulated gene set should be
used to investigate clusters containing up-regulated
genes, while the CMap up-regulated gene set should be

Fig. 2 KEGG pathway analysis results by cogena for GSE13355. The enrichment scores are shown based on different clusters, up-regulated,
down-regulated and DE genes. And the score is correlated with the depth of colour. In the x axis, the up-regulated clusters are coloured
red, while down-regulated clusters are coloured green and cluster containing all DE genes is coloured blue. The ranked pathways are
shown in the y axis
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used for clusters containing down-regulated genes (un-
less the user is interested in drugs which may induce the
disease phenotype under study, perhaps as a side effect).
Drug repositioning results generated by cogena were
compared with those of CMap and NFFinder webservers
using all the DE genes obtained before. As a general
accepted approach, the performance comparison is
benchmarked using the approved drugs for psoriasis
present in the CMap database, resulting in three drugs,
Methotrexate, Ciclosporin and Betamethasone [48].
We focus our repositioning analysis on clusters 3, 5, 7

and 9, described above. Cluster 3, which is highly enriched
for chemokine and cytokine receptor interaction, identifies
relatively few drug profile enrichments (See Additional file
4: Figure S3). This may not be surprising considering the
historical challenges of drug discovery at chemokine and
cytokine receptors [49]. Also it is notable that the path-
ways represented in cluster 3 are now the focus of biologic
therapies in psoriasis [50–52], perhaps in response to the
lack of efficacy of small molecule therapies in these path-
ways. Cluster 5 also showed enrichment for immune re-
lated pathways, and by contrast identifies several drugs
with known efficacy in psoriasis (See Fig. 3). Two cortico-
steroids are identified. Beclometasone, ranked 3rd, though
efficacious in clearing plaque, is avoided in the treatment

of psoriasis due to the risk of rebound on withdrawal.
Prednisone, ranked 17th, is an immunosuppressant drug
that can clear psoriasis quickly but also with the risk of
rebound. An FDA-approved drug for psoriasis, Ciclos-
porin, is captured and ranked 9th by cogena. Notably,
Ciclosporin also has substantial risk of rebound. The 5th
drug, Chloropyramine, can be used as a treatment of some
allergic conditions, such as allergic conjunctivitis, sharing
some clinical similarity with psoriasis. Additionally, Tetra-
misole, used to treat parasitic worm infections, is an im-
munomodulator. Drugs identified in cluster 5, for
example Beclometasone, Prednisone and Ciclosporin are
all effective treatments for psoriasis, but their systemic use
has been widely replaced in the clinic by biologics, due to
a shared adverse event risk, namely risk of rebound after
treatment withdrawal. This emphasises that shared prop-
erties of drugs enriched in a given cluster can be used to
predict both MoA and possible side effects of a reposi-
tioning opportunity. Thus systemic use of drugs identified
with action on cluster 5 should probably be avoided, due
to risk of rebound, although they could still potentially be
used topically.
Thirdly, we investigated CMap drug signatures

matching cluster 7, including cell cycle and p53 sig-
naling pathways (See Fig. 4). Some drugs within this

Fig. 3 Drug repositioning based on cluster 5 for GSE13355. Enriched drugs with the cell line, dose and instance number are shown on the y axis
based on the immune-related cluster obtained by pathway analysis shown in Fig. 2. Ciclosporin, an FDA approved drug for psoriasis, is
ranked 9th
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cluster have high enrichment scores across multiple
instances (representing consistency of action in differ-
ent cell lines and at different drug doses), suggesting
particularly robust association. Methotrexate, a first-
line drug for psoriasis, is ranked 7th by cogena. Eto-
poside is a cytotoxic anticancer drug which belongs
to the topoisomerase inhibitor drug class [53]. As a
protein synthesis inhibitor, Ciclopirox can decrease
DNA replication, protein synthesis, and RNA replica-
tion [54] and it is used for topical dermatologic treat-
ment of scalp psoriasis. Monobenzone is used as a
topical drug for medical depigmentation. Trifluridine
is a nucleoside analogue, whose metabolite inhibits
thymidylate synthase and then DNA synthesis [55].
While Methotrexate is in regular clinical use, several
of these drugs have previously been considered as
candidate drugs for psoriasis, including Resveratrol in
the results of CMap analysis as well as in previous
works of others [56, 57] and Etoposide [58]. In sum-
mary, most of the drugs acting on cluster 7 act at the
level of the cell cycle reflecting the pathway enrich-
ment seen for this cluster.
Fourthly, drugs for cluster 9 are analysed (See Additional

file 5: Figure S4). Diclofenac is a nonsteroidal anti-
inflammatory drug (NSAID), used for the treatment of
psoriatic arthritis. As an antineoplastic agent, Mitoxan-
trone, is a topoisomerase II inhibitor. The types of drugs in

this cluster are slightly disordered, though a possible role of
PPAR agonists in the management of psoriasis have been
suggested [59].
In the results of CMap analysis (See Additional file 6:

Table S2), among drugs with negative enrichment scores,
Methotrexate is ranked 12th, while Ciclosporin ranked
out of top 20 (172th). The ranks of these drugs are rela-
tively lower compared with ranks of drugs in cluster 5
and 7, and importantly it is impossible for CMap itself
to link drug to MoA. Concerning the enriched drugs,
the results are strikingly consistent with an independent
transcriptome-based psoriasis drug repositioning study
[57]. In the results of NFFinder based on the CMap
database (See Additional file 6: Table S2), both Metho-
trexate and Ciclosporin are not enriched. In summary,
based on the approved drugs for psoriasis comparison,
cogena outperformed CMap and NFFinder in this
dataset.

Drawbacks and future development of cogena
There are some drawbacks of the cogena approach,
which we are actively seeking to address. Firstly, we are
aware that the requirement for manual intervention to
select clustering methods and the number of clusters is
limiting, and also excludes the possibility of offering
cogena as a web service. We also accept that users of
cogena benefit from some underlying knowledge of

Fig. 4 Drug repositioning based on cluster 7 for GSE13355. Enriched drugs with the cell line, dose and instance number are shown on the y axis
based on the cell cycle-related cluster obtained by pathway analysis previously. Methotrexate, ranked 7th, is a first-line drug for psoriasis
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pathways relevant to the disease process under study.
The gene sets used by cogena are also important, as they
determine not only the type of analysis but also the qual-
ity of analysis using cogena. We recognise that there is a
need for improved gene sets [60]. As more drug signa-
ture data sets become available, we also plan to integrate
new data, such as the gene sets abstracted from the new
LINCS project. Finally, we emphasise the limitations of
computational methods, such as cogena and the gen-
omic data underlying them, in the disclosure of specific
drug MOA. However, cogena can certainly highlight
pathways which are impacted by drug action, illuminat-
ing putative MoA. From this point further studies can
be formulated to more specifically investigate drug
mechanism in more detail. Additionally, as a flexible
framework, cogena can be flexibly applied to many other
types of analysis, such as transcription factor and micro-
RNA binding analysis, which we are also investigating.

Conclusions
Cogena is a fully configurable framework for co-expressed
gene set enrichment analysis. We show an application of
the cogena framework for pathway analysis, drug reposi-
tioning and drug MoA discovery using psoriasis as an
exemplar. By combining pathway analysis and drug repo-
sitioning analysis, cogena provides a unique approach to
imply the drug mode of action in a disease context, which
is important to the translational development of computa-
tionally repositioned drugs. In conclusion, cogena is a
powerful tool for co-expressed gene set enrichment ana-
lysis, including pathway analysis and drug repositioning.
Cogena is freely available at Bioconductor or https://
github.com/zhilongjia/cogena.
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