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� Bioimaging and gene therapy are of
interest for cancer theranostics.

� Carbon dots (CDs) possess superior
physicochemical properties.

� CDs can be used as imaging-trackable
gene nanocarriers.

� CDs with high transfection efficiency
have been applied for condensing
plasmids.

� Biocompatible CDs presented no
distinct adverse impacts at high
concentration.
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a b s t r a c t

Recently, carbon dots (CDs) have attracted great attention due to their superior properties, such as
biocompatibility, fluorescence, high quantum yield, and uniform distribution. These characteristics make
CDs interesting for bioimaging, therapeutic delivery, optogenetics, and theranostics. Photoluminescence
(PL) properties enable CDs to act as imaging-trackable gene nanocarriers, while cationic CDs with high
transfection efficiency have been applied for plasmid DNA and siRNA delivery. In this review, we have
highlighted the precursors, structure and properties of positively charged CDs to demonstrate the various
applications of these materials for nucleic acid delivery. Additionally, the potential of CDs as trackable
gene delivery systems has been discussed. Although there are several reports on cellular and animal
approaches to investigating the potential clinical applications of these nanomaterials, further systematic
multidisciplinary approaches are required to examine the pharmacokinetic and biodistribution patterns
of CDs for potential clinical applications.
� 2019 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Gene therapy may improve the health of patients with a variety
of inherited and acquired human conditions including cancer,
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diabetes, cardiovascular diseases, and mental disorders. The use of
nucleic acids including pDNA, mRNA, and noncoding RNAs as gene
therapy modalities is rapidly advancing into clinical practice.
Recently, clustered regularly interspaced short palindromic repeat
(CRISPR)–CRISPR associated 9 (Cas9) nucleases mediated by a
specific short guide RNA were shown to be effective for genome
editing [1]. Many additional gene therapy systems are currently
under clinical trials or preclinical evaluation [2].

The success of gene therapy relies on the generation of a carrier
that can effectively and selectively deliver a gene to target cells
with low toxicity. Because of their favourable properties, including
ease of production and chemical characterization, large packaging
capacity, lack of immunogenicity, and potential for tissue speci-
ficity, nanoparticles (NPs) have received significant attention as
non-viral gene transfer vectors, providing an alternative to the
popular viral vectors. Many types of nanomaterials, such as poly-
meric NPs [3,4], noble/transition metal-based NPs, carbon nano-
materials, and biological nanostructures, have been investigated
as non-viral nucleic acid nanocarriers [5–9]. Because many
nanovectors that transfect cells in vitro fail to function or have high
toxicity in vivo, the gene delivery efficiency of the non-viral meth-
ods remains a key barrier to clinical use [10].

Recently, CDs have been identified as a potential material for
nanomedicine applications [11]. Highly fluorescent surface
passivated/functionalized CDs with good stability in physiological
environments have been easily fabricated for trackable cancer-
targeted therapy. Biocompatible CDs are minimally invasive NPs
and are excreted from the body in a reasonable period of timewith-
out obvious side effects. Small-scale CDs possessing low toxicity,
highquantumyield, lowphotobleaching, goodwater solubility, easy
surface modification, and chemical stability are emerging nanocar-
riers for gene delivery applications. Liu et al. in 2012 [12] andWang
et al. in 2014 [13] reported for the first time that CDs could serve as
safe and efficient imaging-trackable nanocarriers for in vitro and
in vivo gene delivery. There are various studies on the potential
use of CDs for the delivery of pDNA [14]. Recently, CDs were also
applied to condensing small interfering RNA (siRNA).
Photoluminescence features of carbon dots

CDs are a novel subset of carbon nanoallotropes that have, due
to their significant PL properties and excellent photostability,
become a potential material for biomedical applications [15]. The
particle size, shape, concentration, composition, and internal struc-
ture can affect the fluorescence emission spectra of the CDs. The
role of precursors in the emission maxima of the CDs was investi-
gated, and emission maxima of k = 435, 535, and 604 nm were cal-
culated for m-CDs, o-CDs, and p-CDs from phenylenediamines
(three isomers: m-phenylenediamine, o-phenylenediamine, and
p-phenylenediamine), respectively [16]. The maximum fluores-
cence emission wavelengths of CDs also vary greatly, from the vis-
ible to the near-infrared region, in various solvent species.

There are various methods by which surface alteration can ele-
vate the PL of CDs, such as hydrothermal carbonization [17] and
microwave synthesis [18]. However, among them, the surface pas-
sivation method is the most beneficial and most common, because
higher PL activity of CDs can be obtained by better surface passiva-
tion [19,20]. In the surface passivation process, the inactivation of
surface defects of CDs could prevent nonirradiative emissions.
Additionally, quantum yields as high as 93% can be achieved by a
single-step process without any post-synthetic treatments [21]. It
has also been shown that the concentration of N and the propor-
tion of CAN and C@N can improve the PL [22]. Polyethylene glycol
(PEG) [23,24] and polyethyleneimine (PEI) [12,25] are the most
commonly used surface passivating agents. Meanwhile,
heteroatom-doped CDs have been prepared for the regulation of
their intrinsic features (Fig. 1).

For example, nitrogen-doped CDs demonstrated superior lumi-
nescence performance and excellent electrochemical function.
Upconversion and IR fluorescent heteroatom-doped CDs are par-
ticularly desirable for live deep-tissue imaging, diagnosis and
therapy [26].

Biocompatibility of carbon dots

Toxicity concerns continue to be one of the largest obstacles
to the clinical translation of NPs [27]. Semiconductor QDs, which
are fluorescent NPs, are used for different applications, particu-
larly for bioimaging [28]. Cadmium-containing QDs are more
beneficial than conventional organic dyes, but the toxicity of
QDs is their most challenging drawback [29,30]. These QDs are
toxic even at low levels and can accumulate in organs and tis-
sues [31]. Acute toxicity and prothrombotic impacts have been
demonstrated as drawbacks of QDs in mice; however, biocom-
patibility is one of the most important properties for bench-to-
bedside translation of QDs [32]. The development of
photoluminescent nanoprobes that do not contain heavy metals
was introduced in the pursuit of biocompatibility by Xu and
coworkers in 2004 [33]. Importantly they are not toxic to the
environment and have high solubility in water with long-
lasting colloidal durability, which makes them good substitutions
for semiconductor QDs (Fig. 2) [34].

Due to the promise of the applications of CDs in nanomedicine,
concerns about their safety have drawn increasing attention
recently [35], and extensive studies on the cytotoxicity of lumines-
cent CDs have been reported. In vitro studies have demonstrated
that CDs are usually safe for numerous cell lines. Several in vivo
studies showed that CDs could be found in various organs, but
the amount of accumulation was remarkably low. No meaningful
toxicity, clinical symptoms, death or even remarkable body weight
drops have been reported [36].

Furthermore, histopathological investigations of treated mice
presented no obvious impairment at the high CD concentrations
required for PL bioimaging; the structures of the organs from the
treated mice were ordinary, almost identical to those of the control
group. Biochemical analysis showed no significant alterations in
most of the measured biochemical parameters in the tissues and
serum, except for a slight reduction in the albumin level in serum,
as well as AChE activity in the liver and kidneys. Recently, Hong
et al. [35] provided deep insights into the toxicity of CDs in vivo
by 1H NMR-based metabolomics. They reported that CDs affect
the immune system, cell membranes and normal liver clearance.
Due to fast, high uptake in the reticuloendothelial system, NPs with
large particle sizes (>10 nm) have provoked increased long-term
toxicity concerns. Accordingly, biodegradable larger NPs and
renal-clearable ultra-small NPs have been explored for biologically
safe theranostic nanomedicine [27].

CDs are efficiently and rapidly excreted from the body after
intravenous (iv), intramuscular (im), and subcutaneous (sc) injec-
tion [37]. The injection route affects the rate of blood and urine
clearance, the biodistribution of CDs in major organs and tissues,
and tumour uptake over time. The clearance rate of CDs is ranked
as intravenous (iv) > intramuscular (im) > subcutaneous (sc). In
clinical applications, various injection routes can be applied for
various purposes, such as tumour targeting, long circulation, or
ease of use by the physician. These characteristics make CD-
based nanoprobes as viable candidates for clinical translation [38].

Recently, Licciardello et al. [39] reported that the behaviour of
CDs is dictated by their surface features. For example, with bio-
compatible PEG conjugates, gadolinium metallofullerene
nanocrystalline (GFNCs)–CDs–PEG nanocarbon becomes highly



Fig. 1. Heteroatom-containing compounds as precursors to produce heteroatom-doped CDs.

Fig. 2. CDs are suitable nanocarriers for nucleic acid delivery.
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stable in physiological environments and is excreted from the body
in a reasonable period of time without obvious side effects [40].
Preparation methods for carbon dots

Spherical-like CDs with a size of 10 nm are easily produced
using many precursors, such as natural and synthetic molecules
and polymers [41]. ‘‘Top-down” and ‘‘bottom-up” methods
(Table 1) have been used to synthesize three types of CDs, namely,
graphene quantum dots (GQDs), carbon nanodots (CNDs), and
polymer dots (PDs) [42].
Table 1
Methodologies for the preparation of CDs.

Strategies Methods Advantages

Bottom-up Microwave synthesis Easily controllable size, uniform size d
Thermal decomposition Large-scale generation, low cost, easy o
Hydrothermal treatment Lack of toxicity, low cost, superior qua

Top-down Laser ablation Morphology and size control
Electrochemical oxidation High purity and yield, size control
Chemical oxidation Large-scale generation, easy process w
Ultrasonic treatment Easy process
Hydrothermal carbonization, pyrolysis or thermal decomposi-
tion, and microwave irradiation are among the preparation
methodologies (Fig. 3). Recently, Meng et al. [55] produced a
high level of CDs with an inexpensive method that does not
require exterior warming or supplementary energy input.

Precursors and surface passivation agents to prepare cationic
carbon dots

The structure of nucleic acid materials including DNA, con-
sists of negatively charged phosphate groups. The electrostatic
interaction between nucleic acids and positively charged materi-
als such as cationic compounds results in the formation of par-
ticles in sizes ranging from nanometres to micrometres. These
positively charged structures can interact with the negatively
charged components of the cell membrane, including proteogly-
cans. The interaction between particles and cell membranes
leads to adsorptive endocytosis, resulting in the formation of
endosomes [56]. Because of the abundance of amines on the sur-
face of the materials used for the formation of these positively
charged structures, the proton sponge effect leads to early
escape of the particles from endo/lysosomal vesicles before
enzyme degradation begins inside the compartments. In other
words, the nucleic acid materials may be released into the cyto-
sol prior to the activation of degrading enzymes. These proper-
ties make the particles appropriate carriers for transferring
various nucleic acid materials into different cells [57].

Positively charged compounds or polycations have been used for
the synthesis and surface passivationof cationic CDs. Due to thepos-
itive fragments on the surface of the CDs, these structures are also
able to interact with DNA to create a complex through electrostatic
attraction. Significant attention has been directed to synthetic poly-
mers containing amines, including PEI, chitosan, poly-L-lysine (PLL),
and poly(amidoamine) (PAMAM) (Fig. 4).
Disadvantages Refs

istribution, short reaction time High energy cost [43–46]
peration Broad size distribution [47,48]
ntum efficiency Low yield [49,50]

High cost, sophisticated process [51]
Sophisticated process [52,53]

ith simple tools Broad size distribution [48]
High energy cost [54]



Fig. 3. Devices to produce CDs.

Fig. 4. Cationic materials to produce positively charged CDs.
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Polyethylenimine

Several polycationic compounds have been used for gene and
drug delivery. PEI can be considered the gold standard for non-
viral gene delivery by polycations [58]. The high positive charge
density on the PEI surface enables the molecule to interact with
negatively charged macromolecules such as pDNA or siRNA [59].
The polymer contains primary, secondary and tertiary amines.
Since the primary and secondary amines are oriented towards
the exterior of the molecule, it could be postulated that these ami-
nes are primarily responsible for nucleic acid condensation,
whereas the tertiary amines oriented towards the interior of the
molecule are primarily responsible for protonation in acidic envi-
ronments (e.g., endo/lysosomal vesicles) and induction of the pro-
ton sponge effect. In other words, the primary and secondary
amines condense nucleic acids and form polyplexes, and the ter-
tiary amines induce early escape from endosomes [60,61]. The
cooperative behaviour of various amines in PEI molecules makes
the polymer a powerful candidate for gene delivery [62]. The con-
siderable transfection efficiency of PEI is dependent on the molec-
ular weight and charge density of the polymer; however these
factors are also the major causes of its remarkable cytotoxicity.
Therefore, charge modulation could be a promising strategy for
improved viability and transfection efficiency [63]. One of the best
recognized modifications of the PEI structure is the conjugation of
a hydrophilic moiety such as PEG to modulate the charge and
improve the biophysical properties of the polymer, as well as to
ameliorate its cytotoxic effects [64].
Poly(amido amine)

Poly (amidoamine) (PAMAM) is a dendrimer with a highly
branched spherical structure, well-defined diameter, low polydis-
persity, and several amino groups in its structure [65]. PAMAM is
extensively applied for biosensing, drug and gene delivery as well
as imaging [66]. Divergent and convergent methods or a mixture of
these strategies can be applied for PAMAM synthesis [67]. The abil-
ity of PAMAM to pass through the cell membrane makes it a suit-
able drug delivery vehicle [68]. Dendrimers have been reported to
enter Caco-2 cell monolayers via the paracellular pathway in an
energy-dependent manner; however their intracellular destination
is not clear. The manner of the cell internalization of PAMAMs is
influenced by their size and surface charge. Furthermore, PAMAM
dendrimers demonstrated high efficiency in transferring genetic
materials into different cells and organs [69].

Chitosan

Chitosan, a polymer with cationic features has shown a remark-
able ability to act as a gene delivery vector. Protonation of the pri-
mary amines of chitosan at low pH leads to interaction with
negatively charged macromolecules [70]. The application of chi-
tosan as a non-viral gene delivery system for plasmid transfer
was first introduced in 1995 [71]. Additionally, various studies
have led to the successful application of chitosan and its deriva-
tives for DNA delivery. Furthermore, chitosan has been applied to
the condensation of siRNA since 2006 [72]. Recently, cystic fibrosis
cells have been treated with chitosan/miRNA complexes [73]. Var-
ious attempts have been made to demonstrate the impact of the
degree of deacetylation and the level of polymerization on the bio-
physical properties of chitosan-based systems and their biological
action. In addition, several studies show relationships of the salt
form and pH to the pDNA delivery capability and intracellular traf-
ficking pathways [74].

Ethylenediamine

Ethylenediamine (EDA) (ANCH2CH2NA) has been widely used
in metal complexes. These complexes are considered significant
anticancer compounds due to their redox chemistry and simple
modification. Metal complexes containing EDA can stimulate cyto-
toxic function in various cancer cell lines [75]. However, it is nec-
essary to develop novel EDA-type ligands as chemotherapeutic
agents. In addition, EDA-type ligands have shown antimicrobial,
antifungal, antibacterial, antituberculosis, antimalarial, antileish-
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manial and antihistamine activities [76], and EDA has been applied
as a surface passivation compound to synthesize N-doped CDs [77].

Polyamines

Polyamines contain at least three amino groups. Low-
molecular-weight linear polyamines are found in biological sys-
tems. The most studied natural polyamines are spermidine and
spermine, which are structurally and biosynthetically related to
the diamines putrescine and cadaverine. Polyamines have been
used for the synthesis of supercationic (f-potential ca. +45 mV)
CDs and are rich in nitrogen. CDs produced by the direct pyrolysis
of spermidine (Spd) powder exhibit much higher solubility and
yield than those from putrescine and spermine [78].

Positively charged amino acids

It has been reported that cationic amino acids including argi-
nine and lysine, can be conjugated to PAMAM dendrimers to ame-
liorate the transfection ability of unmodified dendrimers. The
addition of arginine and lysine to the PAMAMs ameliorated the
DNA condensation ability via increased charge density on the sur-
face of dendrimers [79]. Furthermore, the guanidium group of argi-
nine has a positive charge and demonstrates superior interaction
with the phosphate in DNA to that of ammonium. In addition,
the guanidium group of arginine has a remarkable affinity for cell
membranes via hydrogen bonding and ionic pairing. Due to these
features, dendrimers modified with arginine and lysine have supe-
rior properties for use as carriers for pDNA and siRNA [80,81]. His-
tidine modification can also be used to ameliorate the transfection
ability of cationic PAMAM dendrimers. The histidine-modified
dendrimers are serum resistant due to the static nature of the imi-
dazole group; in addition, the conjugation of histidine into den-
drimers improves the pH-buffering capacity of the dendrimers. In
addition, guanidium and imidazolium-modified dendrimers
demonstrate elevated transfection ability [82]. Another reason for
the increased transfection ability of cationic polymers is the gener-
ation of an equilibrium between the charged and hydrophobic con-
tent of the polymer. Hydrophobic amino acids such as
phenylalanine and leucine have been shown to increase the trans-
fection ability. In addition, these conjugates of polycationic poly-
mers transfer siRNA more efficiently than the unmodified parent
polymers [83–85]. A mixture of arginine, histidine and phenylala-
nine was also shown to have an increased impact on the gene
delivery efficacy of PAMAM dendrimers [86].
Applications of carbon dots as trackable gene delivery systems

Bioimaging and gene therapy are interesting for the diagnosis
and therapy of various diseases, but there are few approaches that
achieve both purposes at the same time. In recent years, multifunc-
tional CDs, such as fluorescent nanoprobes have been successfully
used for in vitro and in vivo intracellular imaging and cancer ther-
anostics. Transferrin-[87], RGD peptide-[88], folic acid (FA)-[89],
and hyaluronic acid-conjugated [90] CDs have been applied as flu-
orescent probes for accurate tumour diagnosis and targeting ther-
apy [91,92]. Zhang et al. [93] reported that after the conjugation of
FA to green luminescent CDs, the photostable FA-CDs selectively
entered HepG2 cancer cells via folate receptor (FR)-mediated endo-
cytosis. The FA-CDs could accurately recognize FR-positive cancer
cells in various cell mixtures [94]. Recently, Li et al. [95] demon-
strated visualized tumour therapy by emancipating stable
FA-modified N-doped CDs (FN-CDs) from autophagy vesicles. The
method achieved a strong therapeutic effect in vitro and in vivo.
The combination of FN-CDs and autophagy inhibitors caused rapid
inhibition of tumour cell growth (within 24 h) and efficient killing
effects (killing rate: 63. 63–76. 19% in 4 d) in up to 26 different
tumour cell lines. Animal model experiments showed that the
30-d survival rate of the method was up to 98%, much higher than
that of traditional chemotherapy (68%). Accordingly, stable
surface-modified CDs have been used for noninvasive real-time
image-guided targeting tumour therapy.

In addition, the encapsulation of CDs with liposomal formula-
tions can be used for tumour angiogenesis imaging [96]. Recently,
Wu et al. [97] developed CDs to encapsulate siRNA for imaging-
guided lung cancer therapy. The theranostic CDs absorb at
360 nm and emit at 460 nm, the wavelength of blue light. In the
diagnostic modality of the theranostic CDs, the highest PL appeared
at 460 nm, and in the therapeutic segment, apoptotic cell death
occurred.

CDs have great potential for use in live-cell and in vivo bioimag-
ing due to their attractive luminescence properties and resistance
to photobleaching. However, CDs mostly show intense emissions
at short blue or green wavelengths, and the inefficient excitation
and emission of CDs in both near-infrared (NIR-I and NIR-II) win-
dows remain an issue [98,99,100]. Solving this problem would
yield a significant improvement in the tissue-penetration depth
for in vivo bioimaging with CDs [101,102]. The surface treatment
of CDs with molecules rich in sulfoxide/carbonyl groups can thus
be considered a universal method for developing NIR imaging
agents and realizing CD applications in in vivo NIR fluorescence
imaging. Recently, Li et al. [101] provided a rational design
approach to develop surface-modified CDs with poly(vinylpyrroli-
done) in aqueous solution that was successfully applied for the
in vivo NIR fluorescence imaging of the stomach of a living mouse.
The poly(vinylpyrrolidone) groups, which were bound to the outer
layers and the edges of the CDs, influence the optical bandgap and
promote electron transitions under NIR excitation. The study rep-
resented the realization of both NIR-I excitation and emission
and the two-photon- and three-photon-induced fluorescence of
CDs excited in an NIR-II window for clinical applications of CD-
based NIR imaging agents. In another study, Lu et al. [102] fabri-
cated NIR-emissive polymer CNDs, which had a uniform dispersion
and an average diameter of �7.8 nm with two-photon fluores-
cence. They demonstrated in vivo bioimaging based on low-cost,
biocompatible CDs.

In the field of gene therapy, genetic materials or silencing
nucleic acids (e.g., siRNA) are introduced into cells to affect specific
signalling pathways and certain targets, resulting in the slowed or
reversed progression of disease. The basic concept of gene therapy
is the transfer of genetic material to a patient’s cellular nucleus to
increase gene expression or produce a target protein by RNA trans-
fection [103]. Diseases such as cancer, Parkinson’s disease, AIDS
and cardiovascular ailments can be treated by gene therapy. There
are two gene carrier classifications: viral and non-viral vectors. It is
more difficult for non-viral vectors to diffuse in the targeted tissue,
due to the lack of anterograde and retrograde transportation. The
greatest challenge in overcoming the concern of diffusion for gene
delivery is the promotion of intracellular transport ability. It is
important that the vectors used in gene therapy have low toxicity,
high stability and a prolonged circulation time in the bloodstream
[104,105].

Biocompatibility, inexpensive fabrication techniques, the ability
to bind to inorganic and organic molecules, low toxicity, nano size
for in vivo cellular uptake, high water solubility and different
routes of administration (nasal, oral, parental and pulmonary)
make CDs better choices for gene delivery than other non-viral
vectors. Cationic polymers such as PEI have been used in the gene
delivery field but have caused cell necrosis due to the aggregation
of PEI clusters in cell membranes and undesirable effects on blood
components. Multifunctional nanodelivery systems can respond to
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several exogenous or endogenous stimuli, such as pH, temperature,
redox conditions, and magnetic or ultrasound fields [106]. Stimuli-
triggered release is a promising approach for nucleic acid delivery
with spatiotemporal and dosage control [107]. Recently, Wong
et al. [108] synthesized stimuli-responsive NPs composed of catio-
nic b-cyclodextrin-modified polyethyleneimine (CDP), tetronic
polyrotaxane end-capped with adamantane (Tet-PRX-Ad) and
CD-RGD to package microRNA (miRNA) and pDNA. The self-
assembled NPs disassembled at endosomal pH, allowing the
release of aCD molecules to induce endosomal rupture and render
the plasmids available for nuclear transport.

CDs have desirable properties such as low toxicity, chemical
stability, biocompatibility, easy surface modification and good
water solubility [109–111], low photobleaching and the potential
for widespread applications in bioimaging fields that make them
appropriate nanomaterials for in vivo imaging compared to other
NPs [3]. CDs, which usually have a size < 10 nm, have been shown
to have superior properties and to qualify as a functional nanoma-
terial. In comparison with other fluorescent carbon NPs, they are
superior due to their quantum yield, aqueous solubility, facile syn-
thesis, physicochemical properties and photochemical stability
[112]. PEI and amine compounds such as EDA, spermine, and argi-
nine have been used for the surface coating of CDs. CDs with catio-
nic charge can efficiently transfect the therapeutic plasmid into
cells. Because of their positive charge, cationic polymers can bind
to negatively charged DNA and facilitate intracellular transfection.
Citric acid- and PEI-derived CDs containing survivin siRNA demon-
strated an inhibitory effect on the development of human gastric
cancer cells MGC-803 and acted as an imaging agent [13]. In addi-
tion, higher gene expression ability and lower cytotoxicity have
been reported for CDs containing vectors than for the polymer
alone [12]. CDs exhibit fluorescent properties and gene delivery
functions that can greatly benefit gene transfection procedures
(Table 2).

CDs can also be used as carriers for drugs, mostly anticancer
drugs such as doxorubicin that can conjugate to CDs derived from
citric acid and urea via carboxyl groups. Due to the photolumines-
cent property of CDs, drug release at the tumour site can be mon-
itored [112].

Plasmid delivery

One of the best strategies for gene delivery is the use of CD-
compressed pDNA, which can enhance gene transfection up to
104-fold over naked DNA delivery [25]. Generally, in a simple
method for preparing pDNA loaded CDs, plasmids are amplified
and purified before vector loading, and the CDs/pDNA are prepared
by pipetting two separated CDs and a pDNA solution (at defined
concentrations) and then incubating the mixture [114].

Chen et al. [113] studied the use of gene therapy for ectodermal
mesenchymal stem cells with CDs. The CDs were derived from por-
phyra polysaccharide, coated with EDA (acting as a passivation
agent) and finally loaded with the optimal combination of tran-
scription factors Ascl1 and Brn2. The results showed more efficient
neuronal differentiation of the EMSCs with CDs/pDNA NPs than
with the all-trans retinoic acid-containing induction medium.
Cao et al. [114] successfully used CDs for the delivery of plasmid
SOX9 (pSOX9) into mouse embryonic fibroblast cells. They sur-
veyed the toxicity of CDs/pSOX9 with the MTT assay and its
immunogenicity by the intravenous (IV) injection of mice, and
the results demonstrated the biosecurity and low toxicity of CDs.
In addition, an in vitro study indicated that CDs/pSOX9 had high
gene transfection efficiency and enabled the intracellular tracking
of the delivered molecules. Furthermore, photoluminescent
cationic CDs provided dual functions, self-imaging and effective
non-viral gene delivery. Ghafary et al. [122] synthesized
CDs/MPG-2H1 with DNA loading to obtain green and red emission,
endosomal escape and targeting of the cellular nucleus. The
CD/MPG-2H1s increased the plasmid-refuging firefly luciferase
gene internalization of HEK 293T cells, showing that this carrier
has high potential for increasing nuclear internalization increases.
Another study by Zhou et al. [119] synthesized CDs using alginate
and showed the use of CDs for the delivery of the plasmid TGF-b1
(pTGF-b1) into 3T6 cells. The results of this study showed that CDs
had a strong capacity to condense pDNA, with suitable biocompat-
ibility, low toxicity and high transfection efficiency. More exam-
ples of pDNA delivery by CDs are shown in Fig. 5.

siRNA delivery

Noncoding RNAs (ncRNAs) refer to RNA molecules that do not
encode a protein. However, ncRNAs, including miRNA, intronic
RNA, repetitive RNA and long noncoding RNA, can modulate gen-
ome transcriptional output [123–125]. Endogenous noncoding
RNAs (miRNAs) and chemically synthesized siRNAs have shown
great potential for use in nucleic acid therapeutics [91]. siRNA is
a type of double-stranded RNA (dsRNA) molecule 20–25 base pairs
in length that has specific RNAi-triggering actions, such as cleaving
the mRNA before translation [13,126].

The delivery of siRNA is one of the best therapeutic candidates
for treating incurable diseases and has remained an interesting
issue for gene delivery researchers due to its high efficiency of
intracellular delivery [127]. siRNA is a rigid molecule due to the
packing of strong cationic agents and is thus difficult to condense.
Obstacles to the use of siRNA macromolecules include difficulty in
traversing the membrane and in escaping from endosomes into
the cytosol. To overcome this problem, some cationic lipid- or
polymer-based transfection reagents have been investigated in
in vitro experiments. The nanocarriers used to deliver siRNA thera-
peutics can be modified with specific ligands (i.e., FA, hyaluronic
acid) to deliver therapeutic agents to specific cells [95]. Wang,
et al. [13] demonstrated that siRNA molecules can interact with
the Alkyl/PEI2k/CDs surface. They studied the treatment of gastric
cancer cells MCG-803 using CDs/siRNA and determined character-
istics such as the efficacy of gene transfection, siRNA delivery into
cells, and the influence of CDs/siRNA on biological processes. The
results indicated that siRNA can attach to the surface of CDS and
that the use of CDs/siRNA notably enhanced the gene delivery effi-
ciency. Additionally, Wu et al. [97] investigated the treatment of
lung cancer by folate-conjugated reducible PEI-passivated CD
(fc/rPEI/CD) NPs with EGFR and cyclin B1 as two types of siRNA.
These fc/rPEI/CDs/siRNA NPs can accumulate in cancer cells and
improve the gene silencing and cancer treatment effects of the
siRNA. Moreover, Dong et al. [128] studied poly(L-lactide)(PLA)
and PEG-grafted GQDs as nanocomposites for simultaneous gene
delivery usage and intracellular miRNA bioimaging. The results
showed that the functionalization of GQDs with PEG and PLA pro-
vides the nanocomposite with super-physiological stability, with
low cytotoxicity induced by different concentrations (14, 28, 70,
140 lg/mL). The functionalized GQD nanocomposite had stable PL
over a broad pH range. These results suggest that this nanocompos-
ite has high potential in biomedical use for diagnosis and therapy.

Pierrat et al. [118] studied cationic CDs/siRNA and its biocom-
patibility and performance for in vivo transfection by intranasal
administration into mice. The results indicated that 55% of the
gene was silenced at a CD/siRNA weight ratio of 12, and when
the weight ratio was increased to 50–100, the gene knockdown
reached 85%. However, at higher ratios, the cell viability decreased.
Kim et al. [127] used highly fluorescent PEI/CDs for the delivery of
siRNA and for bioimaging (Fig. 6).

For example, dsRNA was tested with three NPs, namely, chi-
tosan, silica and CDs, to target SNF7 and SRC (as mosquito genes)



Table 2
Application of CDs for image-guided gene therapy.

Precursors and surface
passivation

Synthesis
method

Properties Zeta potential Cargo Cell lines/animal Major outcomes Ref

Porphyra polysaccharide –
EDA

Hydrothermal Size: <10 nm, QY: 56.3% 23.54 ± 1.4 mV pDNA encoding
transcription
factors Asc11, Brn2
and Sox2

EMSCs Differentiation of stem cells to neural cells with
CDs achieved faster and more efficiently than
with all-trans retinoic acid, low cytotoxicity

[113]

PEI and folic acid (FA) Hydrothermal Size: 2–9 nm, QY: 42%,
uniform dispersion

+23.5 mV Enhanced green
fluorescent protein
DNA plasmid
(pEGFP)

293 T, HeLa Low cytotoxicity, bioimaging, targeted gene
delivery

[110]

Arginine and glucose Microwave Size: 1–7 nm, QY: 12.7%,
high solubility, tuneable
fluorescence

25.4 ± 0.3 mV Gene plasmid SOX9 MEFs Obvious chondogenic differentiation, low
cytotoxicity, biocompatibility

[114]

Glycerol and PEI, folate-
conjugated reducible PEI

Microwave Size: 9.0 ± 1.1 4.4 ± 1.7 mV siRNA (EGFR and
cyclin B1)

H460, 3T3, animal Biocompatibility, sustained gene silencing,
stimulus-responsive property

[97]

Citric acid (CA), 1,2-EDA,
polycation-b-
polyzwitterion copolymer
(PDMAEMA-b-PMPDSAH)

Microwave Size: 2.2 ± 0.3 nm, QY:
41.5%

Depended on polymer/DNA
weight ratio: from +10 mv to
+35 mV

pDNA COS-7 High transfection efficiency, bioimaging, high
haemocompatibility

[115]

Tetrafluoroterephthalic acid,
branched-PEI

Solvothermal Size: 4.8 ± 0.5 nm 12.6 ± 0.3 mV pDNA HEK 293 T, NIH 3T3,
COS-7, HepG2, B16F10,
A549, Primary 3T3-L1,
mESCs

Low cytotoxicity, efficient transfection,
enhanced affinity of encapsulated DNA to
cytomembrane

[14]

Low molecular weight
amphiphilic PEI (Alkyl-
PEI2k)

Laser ablation Size: 10 nm, monodisperse 17.33 ± 1.97 mV siRNA and pDNA 4T1-luc, 4T1 cells,
animal

Low toxicity and good gene transfection effect
in vitro and in vivo

[86]

PEI, 2-((dodecyloxy)methyl)
oxirane

Hydrothermal Size: 3–7 nm +35.4 ± 1.5 mV EGFP, siRNA, pDNA,
doxorubicin (DOX)

A549 Low cytotoxicity, high transfection efficiency,
early cell apoptosis, good drug loading ability

[116]

Glycerol with PEI Microwave Size: 5–10 nm, maximum
emission: 465 nm

Approximately +30 mV pDNA HeLa, PC-3 High cell viability of CD-PEI/Au-PEI carrier,
high transfection efficiency (the appropriate
size of the complex might facilitate cellular
uptake)

[117]

PEI, 2,2,3,3,4,4-hexafluoro-
1,5-pentanediol diglycidyl
ether

Hydrothermal Size: 1.5–3.5 nm, QY: 5. 6% From +30 to 40 mV Cy5-labelled pDNA HepG2, HeLa, 7702,
A549

High transfection efficiency and cellular
uptake, good cell imaging capability under
single-wavelength excitation, minimal
cytotoxicity

[101]

Glycerol and branched PEI Microwave QY: depended on
microwave irradiation
time

From 0 to +25 mV pDNA COS-7, HepG2 Low cytotoxicity, high transfection efficiency [12]

Citric acid and branched PEI Microwave Size: depended on pH At pH 1, 4 and 8, the zeta
potential was +36.5 ± 6.2 mV,
+51.8 ± 4.8 mV and +2.7 ± 4.4,
respectively.

pDNA and siRNA A549, A549-Luc, animal High transfection rate, cell viability was
dwindling by increasing concentration of
carrier

[118]

Alginate Hydrothermal Size: 5–10 nm, QY: 12.7% +25 mV Plasmid TGF-b1 3T6 Exhibited strong and stable fluorescence,
water-dispersible, high transfection efficiency,
negligible toxicity

[119]

Citric acid and tryptophan
(Trp)- PEI-adsorbed CD NPs
(CDs@PEI)

Microwave Size: 3.9 ± 0.3 nm, QY:
20.6%

+26.6 ± 1.6 mV Survivin siRNA MGC-803 Superior water solubility, excellent
biocompatibility, enhanced gene delivery
efficiency, induced efficient gene knockdown

[13]

HA and PEI Microwave Size and QY: depended on
microwave irradiation
time

Increase from �5 mV to +44 mV
as the weight ratio of CDs/DNA
increased

pDNA HeLa Low cytotoxicity, high transfection efficiency,
strong blue fluorescence under UV light, good
intracellular imaging ability

[34]
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for the control of Aedes aegypti larvae. Based on the evaluation of
mortality caused by dsRNA targeting of each carrier on three differ-
ent days, the CDs/dsRNA, showed the most efficient target-gene
knockdown among the vectors, with mortality from 38% and 32%
for CDs/dsAaSRC and CDs/dsAaSNF7 on the third day to 53% and
75% by the seventh day. For chitosan NPs, after seven days, the
mortality for the dsAaSRC and dsAaSNF7 treatments reached
27 and 47%, respectively, and amine-functionalized silica
NPs/dsAaSRC caused no mortality or efficacy [121].

For siRNA delivery, the dissociation of the nucleic acid from the
carrier is important because the molecules are smaller than plas-
mid DNA and their association with the carrier might be stronger.
In these cases, looser nano complexes have shown higher transfec-
tion efficiencies than stronger complexes. Hence, balancing associ-
ation/dissociation affinity is a key point in the design of an efficient
siRNA carrier.
How carbon dots enter cells to deliver nucleic acids

NPs are able to enter cells via different pathways. The possible
internalization pathways of NPs include phagocytosis,
macropinocytosis, and endocytosis [129]. Receptor-mediated
endocytosis (RME) is known to be a major uptake pathway for
NPs. RME may involve the participation of clathrin-coated vesicles,
caveolae internalization, or other lesser-known mechanisms [130].
Clathrin- and caveolin-dependent endocytosis involves complex
biochemical signalling cascades. The size, shape and other physic-
ochemical properties of NPs are correlated with the rate and quan-
tity of NP cellular uptake [131]. The incubation of CDs with
different mammalian cell lines showed that small-scale carbon-
based materials could readily penetrate the cell membrane and
exhibit favourable biocompatibility. The internalization mecha-
nisms of CDs/pDNA nanocomplexes have been investigated by
employing four cellular uptake inhibitors: filipin III, glucose, 5-
(N,N-dimethyl)-amiloride (DMA), and chlorpromazine hydrochlo-
ride (CPZ). The results showed that no fluorescence was emitted
by cells when they were cultivated with filipin III, glucose, and
CPZ, whereas cells treated with DMA exhibited strong fluorescent
intensity [114,132,133].

Accordingly, CDs/pDNA NPs could be internalized via both
caveolae- and clathrin-mediated endocytosis and could enter the
nuclei to achieve effective gene expression, whereas macropinocy-
tosis plays a minimal role (Fig. 7).

The internalized CDs are located mainly within endo-lysosomal
structures and the Golgi apparatus, and a portion of them enter the
nucleus; they can also be actively transported to the cell periphery
and exocytosed.
Conclusions and future perspectives

It appears that the balance between the positive charge of the
carrier and the induced toxicity plays a crucial role in polymer-
based nano delivery systems. In other words, a positive charge is
necessary for interactions between the nucleic acid material and
the vehicle. This process is called vector packaging and occurs out-
side the cells, leading to the formation of NPs and protection of the
nucleic acid against degradation. However, nucleic acid materials
must be able to dissociate from the vehicle inside the cells. There-
fore, vector unpackaging (dissociation) can be considered a major
step in successful gene delivery. CDs developed through several
inexpensive, eco-friendly and facile routes have exhibited fine bio-
compatibility, high quantum yield and stable fluorescence. The
positive charge of CDs led to excellent DNA condensation, high
transfection efficiency and negligible toxicity. CDs as non-viral
gene vectors are shedding light on gene therapy via the delivery



Fig. 6. Bioluminescent imaging of luciferase inhibition after fc/rPEI/CDs delivery in luciferase-expressing H460 lung carcinoma. The image of the lungs at the time of
treatment (A), after 7 days (B) and after 10 days (C). Accumulation at lung region of the fc/rPEI/CDs/pooled siRNA after aerosol delivery (D), PBS as a control sample (E). (F)
Gene silencing after delivery of fc/rPEI/CDs/pooled siRNA, fc/rPEI/CDs/single siRNA, and pooled siRNA in H460 for 12 h, 24 h, and 48 h. Reprinted by permission from Nature,
Scientific Reports [97], Copyright 2016. Bioimaging of tumour treatment by free Cy5-siGFP and the Cy5-siGFP/PEI/CDs (G). The tumour volumes measuring after intravenous
administration of PBS, PEI/CDs, free siVEGF, and siVEGF/PEI/CDs (H). Reprinted by permission from Springer, Nano Research [127], Copyright 2017.

Fig. 5. (a1) Imaging of drug accumulation after PPD@HPAP-CDs/pDNA topical injection and IV administration after 8 h. (a2) quantitative distribution analysis and tumour
imaging after treating by IV injection of PBS, HPAP/CDs/pDNA, and PPD/HPAP/CDs/pDNA. Reprinted with permission from [101]. Copyright 2018 American Chemical Society.
(b1) negative control (COS-7 cells without transfection) and (b2) samples (COS-7 cells after CD-PDMA80-PMPD40/pDNA transfection). (b3) COS-7 cells enumeration test of
cell mixed with CD/PDMA80/pDNA and CD/PDMA80/PMPD40/pDNA samples. Reprinted with permission from [115]. Copyright 2014 American Chemical Society.
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Fig. 7. Internalization mechanisms of CDs/pDNA nanocomplexes.
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of plasmids and noncoding RNAs. The PL properties of CDs also per-
mit easy tracking of cellular uptake. Taken together, the evidence
shows that cationic CDs hold great potential in theranostics and
image-guided gene delivery, due to their dual role as efficient
non-viral gene vectors and bioimaging probes. Based on their
interesting properties, CDs have great potential as nucleic acid
nanocarriers in preclinical and clinical studies that will hopefully
result in the bench-to-bedside translation of biocompatible CDs.
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