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Abstract
The pathophysiology of schizophrenia involves abnormal reward processing, thought to be due to disrupted striatal and 
dopaminergic function. Consistent with this hypothesis, functional magnetic resonance imaging (fMRI) studies using the 
monetary incentive delay (MID) task report hypoactivation in the striatum during reward anticipation in schizophrenia. 
Dopamine neuron activity is modulated by striatal GABAergic interneurons. GABAergic interneuron firing rates, in turn, are 
related to conductances in voltage-gated potassium 3.1 (Kv3.1) and 3.2 (Kv3.2) channels, suggesting that targeting Kv3.1/3.2 
could augment striatal function during reward processing. Here, we studied the effect of a novel potassium Kv3.1/3.2 channel 
modulator, AUT00206, on striatal activation in patients with schizophrenia, using the MID task. Each participant completed 
the MID during fMRI scanning on two occasions: once at baseline, and again following either 4 weeks of AUT00206 or 
placebo treatment. We found a significant inverse relationship at baseline between symptom severity and reward anticipation-
related neural activation in the right associative striatum (r = -0.461, p = 0.035). Following treatment with AUT00206, there 
was a significant increase in reward anticipation-related activation in the left associative striatum  (t(13) = 4.23, peak-level 
p(FWE) < 0.05)), but no significant effect in the ventral striatum. This provides preliminary evidence that the Kv3.1/3.2 
potassium channel modulator, AUT00206, may address reward-related striatal abnormalities in schizophrenia.
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Introduction

Schizophrenia has a lifetime prevalence of approximately 
1% (McCutcheon et al. 2020) and affects over 21 million 
people worldwide (Charlson et al. 2018). Current treatments 
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act predominantly as dopamine-2 receptor antagonists (Kaar 
et al. 2020), yet these are poorly tolerated or ineffective for 
many patients (Lally et al. 2016; Demjaha et al. 2017) and 
have limited benefit for negative symptoms, highlighting the 
need for new treatment approaches (Howes & Kaar 2018).

Motivational impairment contributes to the negative 
symptoms seen in schizophrenia (Foussias and Remington 
2010; Bègue et al. 2020) and has been linked to abnormalities 
in the neural processing of rewards and other environmental 
cues (Gold et al. 2008; Winton-Brown et al. 2014). The mon-
etary incentive delay (MID) task indexes reward processing 
and, in particular, reward anticipation (Oldham et al. 2018). 
In the task, participants are presented with cues which differ-
entially predict monetary outcomes. When the task is studied 
in conjunction with functional neuroimaging, anticipation of 
reward following cue presentation leads to activation  in both 
the ventral striatum, including the nucleus accumbens, and 
the dorsal/associative striatum including the putamen and 
caudate (Oldham et al. 2018; Wilson et al. 2018; Jauhar et al. 
2021). Striatal activation is thought to represent a reward pre-
diction signal (Diekhof et al. 2012) that guides value-based 
decision-making and subsequent updating of cue values fol-
lowing outcomes (Koscik et al. 2020; Filimon et al. 2020).

A large meta-analysis of fMRI studies using the MID task 
found that patients with schizophrenia show bilateral hypo-
activation in the ventral striatum during reward anticipation 
relative to controls (Radua et al. 2015). Further evidence for 
striatal involvement in schizophrenia comes from molecular 
imaging studies showing dysregulated dopamine synthesis 
and release capacity in schizophrenia (Brugger et al. 2020), 
which is most marked in a part of the dorsal striatum termed 
the associative striatum because it receives projections from 
frontal and other associative cortical regions (McCutcheon 
et al. 2018, 2021). Hypoactivation of the dorsal striatum, 
in particular the associative striatum, has also been found 
during the MID fMRI task in patients with schizophrenia 
(Mucci et al. 2015; Li et al. 2018). Moreover, lower activa-
tion in associative striatal regions has been associated with 
greater symptom severity, particularly the severity of avoli-
tion (Mucci et al. 2015), and poorer subsequent response to 
antipsychotic treatment (Nielsen et al. 2018).

Activity of mesostriatal dopamine neurons is central 
to reward processing (Schultz et al. 1997) and the firing 
of mesostriatal dopamine neurons is regulated by striatal 
GABAergic output neurons (Groenewegen 2003), pre-
dominantly in the form of medium spiny neurons (Kawa-
guchi et al. 1995). In addition, striatal fast-spiking GABA 
interneurons (Kawaguchi et al. 1995), of which those con-
taining parvalbumin are the best characterised (Hu et al. 
2014), receive input via cortico-striatal afferents (Bennett 
and Bolam 1994) and synapse on medium spiny neurons, to 
regulate spike timing, and thus striatal output (Tepper et al. 
2008; Lee et al. 2017; Gritton et al. 2019). Modulation of 

the excitability of these GABAergic circuits thus represents 
a potential therapeutic target for treating reward processing 
deficits and negative symptoms in schizophrenia.

Kv3.1 and Kv3.2 potassium channels are highly expressed on 
fast-spiking GABA interneurons including those that express par-
valbumin in the striatum (Chow et al. 1999; Rudy and McBain 
2001), and Kv3 knockout mice show locomotor hyperactivity, a 
behavioural phenotype associated with preclinical models of schizo-
phrenia (Espinosa et al. 2004; Kokkinou et al. 2021). In view of 
this, Kv3.1 and Kv3.2 channels have been proposed as drug tar-
gets for modulating GABA neuron activity in schizophrenia (Gar-
gus et al. 1998; Volk & Lewis 2005). Modulation of Kv3.1 and 
Kv3.2 channels leads to increased firing frequency of fast-spiking 
GABAergic interneurons and improves gamma oscillation regu-
larity, which is thought to be a marker of the cortical excitation-
inhibition balance that is disrupted in schizophrenia (Boddum et al. 
2017; Andrade-Talavera et al. 2020). AUT00206 is a modulator of 
Kv3.1/3.2 channels that has been shown to both enhance whole-
cell currents and the power of fast network oscillations (Large et al. 
2016). In healthy subjects, it reduced BOLD signal changes in 
cortical and sub-cortical regions of the brain following ketamine; a 
psychomimetic agent that induces schizophreniform symptoms 
(Deakin et al. 2019; Beck et al. 2020), and, in rodents, it reversed the 
cognitive and behavioural effects of a phencyclidine (PCP) model 
of schizophrenia (Leger et al. 2014). A compound from the same 
series, AUT1, also modulates Kv3.1/3.2 channels and has been 
shown to block the effects of amphetamine induced hyperactivity 
and to increase inhibition of dopamine neuron firing in the mid-
brain, suggesting that modulating Kv3.1/3.2 channels could counter 
overactivity of mesostriatal dopamine neurons (Parekh et al. 2018). 
These findings, in both preclinical and human models relevant to 
the pathophysiology of schizophrenia, suggest that AUT00206 
could improve aberrant reward processing in the disorder.

To test this, we used fMRI to determine whether stri-
atal activation during reward anticipation is modulated by 
AUT00206 in patients with schizophrenia. We hypothesised 
that AUT00206 would increase striatal activation during the 
reward anticipation phase of the monetary incentive delay 
(MID) task (Knutson et al. 2000). Our primary regions of 
interest were the ventral striatum, given the meta-analytic 
evidence of hypoactivation during this task in schizophre-
nia as discussed above, and the associative striatum, as the 
major dopaminergic dysfunction in schizophrenia is local-
ised in this region (McCutcheon et al. 2018) and the evi-
dence discussed above that hypoactivation in this region is 
associated with symptoms in schizophrenia.

Materials and methods

We conducted a study using fMRI imaging during a reward 
anticipation task to provide an initial test of mechanism and 
address our hypothesis as part of a phase 1b study of the 
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safety and tolerability of AUT00206 in schizophrenia (Clini-
calTrials.gov Identifier: NCT03164876). This paper reports on 
the reward anticipation data only. The primary trial results of 
the safety and tolerability evaluations are reported elsewhere 
(ClinicalTrials.gov Identifier: NCT03164876). A placebo 
group was included for safety monitoring, not for a formal 
comparison of imaging biomarkers with placebo. However, we 
also report the results of the imaging in the placebo group for 
qualitative comparison. The study protocol was approved by 
the NHS research ethics committee (London Central Research 
Ethics Committee—17/LO/0066) and appropriate authorities 
for all sites involved. The study was performed in accordance 
with the principles stated in the Declaration of Helsinki and 
Good Clinical Practice guidelines, as applicable at the time. 
All patients provided written informed consent.

Participants and procedures

Patients were recruited to participate in the study from the 
South London and Maudsley NHS Foundation Trust and 
the Central and North West London NHS Foundation Trust, 
London, between April 2017 and April 2019 as part of a 
first in patient study exploring the safety and tolerability of 
(ClinicalTrials.gov Identifier: NCT03164876)); 24 patients 
with schizophrenia were randomised in a 2:1 ratio to receive 
repeated doses of AUT00206 (16 subjects) or matching pla-
cebo (PBO) (8 subjects).

Subjects who were randomised to active treatment 
received a loading dose of 2000 mg AUT00206 on Day 
1, followed by repeated twice daily-oral doses of 800 mg 
AUT00206 on days 2 – 27 and a single oral dose of 800 mg 
AUT00206 on Day 28. The initial loading dose was chosen 
to ensure blood levels of AUT00206 were within a target 
therapeutic range within the first 24 h, based on preclinical 
data (data on file, Autifony Therapeutics Ltd, Stevenage, 
UK). AUT00206 and antipsychotic levels were conducted 
throughout the study to monitor concordance. Subjects 
underwent functional magnetic resonance imaging (fMRI) 
on a 3 T (Siemens Verio) MRI scanner at baseline and dur-
ing treatment (between Day 14 and Day 28).

There was no difference between PBO and AUT groups 
in the mean duration separating baseline and start of dos-
ing (AUT = 7.93 [SD 6.60], PBO = 8.14 [SD 9.82] days, 
t = -0.06, p = 0.95, two sample t-test), or in the mean num-
ber of dosing days at time of follow-up scan (AUT = 17.86 
[SD 3.9], PBO = 16.43 [SD 2.63] days, t = 0.87, p = 0.39, 
two sample t-test).

The inclusion criteria were: male (due to a lack of safety 
data in females), outpatients, 18–50 years of age who met 
criteria for schizophrenia (confirmed using the Structured 
Clinical Interview for DSM-5 Disorders, Clinician Version 
(SCID-5-CV) (First 2015)), no more than 5 years to have 
passed since first diagnosis; one positive symptom item 

score > 3 or 2 or more positive symptoms = 3, and one 
negative symptom item score > 3 or 2 or more negative 
symptoms = 3 on the positive and negative syndrome scale 
(PANSS) (Kay et al. 1987); on a stable dose of 1 or 2 antip-
sychotic drugs (excluding clozapine) for at least 1 month 
before screening, and able to give fully informed written 
consent. No clinically relevant abnormalities in clinical 
examination or electrocardiography (ECG) findings were 
allowed.

Exclusion criteria were: severely underweight or mor-
bidly obese people, presence of an acute or chronic illness 
other than mild, well controlled illnesses, homicidal idea-
tion or intent, suicidal ideation with some intent to act in 
the last 6 months based on the Columbia-Suicide Severity 
Rating Scale (C-SSRS) (Posner et al. 2011), moderate or 
severe depressive or anxiety symptoms as indicated by a 
score of ≥ 11 on the Hospital Anxiety and Depression Scale 
(HADS) (Zigmond and Snaith 1983), presence or history 
of severe drug reaction, alcohol or drug dependence in the 
last 12 months before admission, or presence of a contradic-
tion to an MRI scan. Concomitant psychotropic medications 
were permitted unless contraindicated due to their action on 
the cytochrome p450 (CYP) system.

Monetary incentive delay (MID) task

All participants completed the MID task (Knutson et al. 2000) 
on both scanning sessions. The task included two trial types 
(win or neutral). Each trial began with a cue stimulus (an orange 
square before a win trial and a blue square before a neutral trial) 
that lasted 0.5 s. This cue was followed by a variable reward 
anticipation period (2, 3 or 4 s time interval occurring ran-
domly), after which a target stimulus (a white square) appeared. 
Participants were instructed to respond to the appearance of the 
target stimulus as quickly as possible using a button box in the 
scanner. The target stimulus presentation duration varied with 
each trial (further details below). Following the target stimulus, 
feedback on the outcome was presented. During a win trial the 
participant won £1 if their response to the target was within the 
allotted response time window. If this occurred, then the mes-
sage “Hit! You won £1” was shown on the subsequent feedback 
screen in green text for 1000 ms. On neutral trials, it was not 
possible to win money; however, if the participant’s response 
occurred during target presentation, the subsequent feedback 
screen displayed “Hit!” in green text for 1000 ms. If the par-
ticipant failed to respond to the target stimulus in time, then 
the feedback screen showed “Miss” in red text for 1000 ms. A 
second feedback screen always appeared after the first feedback 
was given, to inform the participant of the running total of win-
nings, e.g. “Current Total = £XX”. See Fig. 1 .

The target stimulus duration was dynamically adjusted to 
ensure all participants experienced a similar level of difficulty 
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and reward rate. Specifically, missed responses during target 
presentation led to an additional 16.66 ms of target duration 
on the subsequent trial. Correct responses led to the subtrac-
tion of 16.66 ms of target duration on the subsequent trial. The 
target stimulus duration began at 300 ms and could increase up 
to 400 ms and decrease down to 200 ms over the course of the 
task. The feedback stimulus duration also increased or decreased 
in proportion to the target stimulus duration change, such that the 
total duration of time including target stimulus and feedback was 
maintained at 1300 ms. The inter-trial interval which lasted from 
feedback to next cue stimulus onset consisted of a fixation point 
presentation and the duration was randomly manner varied using 
a Poisson distribution between 2.2 and 10.2 s in one second 
intervals (Hagberg et al. 2001). The task lasted for 12 min (with 
a 10 s buffer period at the end) in total, resulting in 608 scanning 
volumes. In total, there were 24 win trials and 48 neutral trials 
(mirroring the win–neutral asymmetry in earlier versions of the 
task (Knutson et al. 2000)).

fMRI acquisition

The T1-weighted anatomical scan used a Magnetisation Pre-
pared Rapid Gradient Echo (MPRAGE) sequence using param-
eters based on the Alzheimer's Disease Research Network 
sequence (ADNI-GO; 160 slices × 240 × 256, TR = 2300 ms, 
TE = 2.98 ms, flip angle 9°, 1 mm isotropic voxels, band- 
width = 240 Hz/pixel, parallel imaging factor = 2, inversion 
time = 900 ms) (Jack et al. 2008). The MID sequence was based 
on the multiband echo-planar imaging (Siemens WIP v012b) 

provided by the University of Minnesota (Setsompop et al. 2012) 
and used a multiband acceleration factor of 2, for simultaneous 
acquisition of 2 slices. Other characteristics of the sequences 
were as follows: TR = 1200 ms, TE = 30 ms, 42 axial slices, 
3 mm isotropic voxels, FOV = 192 mm, bandwidth = 1906 Hz/
pixel, parallel imaging factor = 2, flip angle = 62°, echo 
spacing = 0.61 ms.

Behavioural statistical analysis

To quantify motivational salience during task performance, we 
quantified (1) the difference between the percentage of hits dur-
ing win trials compared to neutral trials and (2) the difference in 
mean reaction time (RT) between win and neutral trials. A one-
sample t-test was performed to confirm that subjects showed a 
main behavioural effect of cue value at baseline and a paired 
t-test was used to compare the effects of treatment on behav-
ioural measures in the AUT00206 and PBO groups.

fMRI imaging and statistical analysis

Pre‑processing

We employed a standard fMRI spatial pre-processing pipe-
line implemented in the SPM toolbox (version 12–6906) 
for MATLAB (version 9.2.0). For each scanning session, 
this included motion correction by realignment of functional 
scans to the first volume, co-registration of functional to the 
T1 structural image, and normalisation of the images to the 

Fig. 1  MID task outline show-
ing the two trial types included 
in the task: win trials (top) and 
neutral trials (bottom)
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standard template provided by the Montreal Neurological 
Institute (MNI template) using the DARTEL routine (Ash-
burner 2007). The quality of the normalisation was manu-
ally checked for each subject. Normalised functional images 
were spatially smoothed using a 6 mm full width at half 
maximum Gaussian kernel. Functional images were resam-
pled to 1.5 mm isotropic voxels.

Analysis of reward anticipation fMRI activation

At the first (single subject) level, we implemented a stand-
ard mass-univariate general linear model (GLM) analysis 
approach for fMRI analysis, as implemented in SPM12 
(http:// www. fil. ion. ucl. ac. uk/ spm) (Penny et al. 2007). This 
GLM included stick regressors for cue onset and target 
onset. Cue onset was parametrically modulated according 
to whether the cue was predictive of a win (1) or neutral 
(0) outcome (equivalent to a contrast of reward predict-
ing vs. neutral cue). Regressors were convolved with the 
canonical haemodynamic response function. The first level 
GLM also included nuisance regressors for six head motion 
realignment parameters to minimise the influence of head 
movement on individual participant BOLD activation esti-
mates. Of note, a formal comparison of mean and maximum 
framewise displacement measures between groups and ses-
sions (i.e. group*session ANOVA) revealed no significant 
main effects of group, session, or group*session interac-
tion on head motion variables (all p > 0.05). We addition-
ally included temporal derivatives (first-order differences), 
applied an autoregressive model (to account for serial cor-
relations in the fMRI time series), and used a 128 s cut-off 
high-pass filter. The analysis was performed on each sepa-
rate scanning session for each subject. Within each scanning 
session, our contrast of interest was the voxel-wise beta esti-
mate associated with the parametric modulator at cue onset 
( �

rew
) , which indexes the degree to which a voxel’s BOLD 

response is higher for reward predicting vs neutral cues (i.e. 
‘reward anticipation’).

We first tested if the task resulted in significant ‘reward 
anticipation’ related activation (i.e. �

rew
 effect) in the whole 

sample (n = 21) at baseline using a one-sample t-test at the 
second (group) level. To test the relationship between reward 
anticipation activation and symptoms, we correlated the �

rew
 

effect with PANSS total symptom scores at baseline, in the 
whole sample (n = 21). Here, we extracted the mean ROI voxel 
parameter estimates for reward anticipation ( �

rew
) from pre-

defined anatomical regions of interest (ROI, see below) using 
the MarsBaR toolbox (http:// marsb ar. sourc eforge. net/) in SPM. 
We then used Pearson’s product moment correlation to test the 
correlation between �

rew
 and PANSS symptoms in each ROI.

Our primary hypothesis was that AUT00206 would 
increase reward anticipation-related ventral striatal activation 
(i.e. �

rew
) from session 1 (baseline) to session 2 (on drug). 

To test this, for each subject we calculated an ‘activation 
change’ statistical image, Δ�

rew
= �

rew
(scan2) − �

rew
(scan1), 

indexing the change in BOLD activation for reward antici-
pation from baseline to treatment scan at each voxel, with 
a positive value indicating a drug-related increase. In the 
second level (group) analysis, we then conducted a one-sam-
ple t-test of the activation change images in the AUT00206 
group with the ventral striatum as the a priori region of inter-
est (ROI), based on meta-analytic evidence that the ventral 
striatum is hypoactive in patients compared with controls 
during reward anticipation tasks (Radua et al. 2015). We 
defined left and right sided ventral striatal (VS) ROIs as 
8-mm radius spheres centred on the ventral striatal coordi-
nates of the peak activation reported in the meta-analysis 
(Knutson and Greer 2008) and converted them to MNI space 
using MNI2TAL software (BioImage Suite Web 2021). 
We used this meta-analysis to define the ROI because it is 
widely used in the field of schizophrenia research (Yip et al. 
2015; Kirschner et al. 2018; Hawkins et al. 2021), which 
aids the comparison of our findings to previous work. We 
also conducted an analysis using left and right sided asso-
ciative striatal ROIs, a region involved in reward anticipa-
tion (Oldham et al. 2018) and schizophrenia dopaminergic 
pathophysiology (McCutcheon et al. 2018), using the MNI 
coordinates for the associative striatum (AS) as used in the 
studies in schizophrenia (Martinez et al. 2003; Howes et al. 
2009, 2013; Kegeles et al. 2010; Mizrahi et al. 2012; Sorg 
et al. 2013) to create 8 mm radius sphere ROIs. The ROIs 
were used to restrict the analysis to the regions of interest 
(MNI coordinates: Left VS -12, 13, -6, Right VS 11, 11, 
-4, AS ± 24, 12, 0.) A one-sample t-test was used to deter-
mine if there were significant activation change images in 
the AUT00206 group. The same approach was repeated for 
the placebo group.

This study was not powered for between group analyses; 
however, in light of our findings in the AUT00206 group, we 
undertook an exploratory between treatment group analysis 
using mean voxel parameter estimates for the ROIs in the 
ventral and associative striatum at baseline and follow-up, to 
test whether change in activation during reward anticipation 
was significantly different between the AUT00206 and PBO 
treatment groups. We used an independent samples t-test on 
the change in activation between groups. Further ROI details 
are found in Table 1 of the supplementary information, and 
the extracted mean ROI voxel parameter estimates for each 
group (AUT00206 or PBO) in each ROI at baseline and on-
treatment are reported in supplementary table 3.

When reporting whole-brain activation contrasts, we use 
a cluster forming threshold set to p < 0.001 (uncorrected) 
and we report activations that surpass a whole-brain clus-
ter-corrected significance threshold p(FWE)cluster < 0.05 at 
whole-brain cluster level (Eklund et al. 2016). When report-
ing activations within a priori anatomical regions (ROIs), we 
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report activations that surpass small-volume-corrected peak 
level significance thresholds p(FWE)peak < 0.05.

Results

Clinical characteristics

Of the 24 patients with schizophrenia who were randomised 
to receive AUT00206 (n = 16) or placebo (n = 8), three were 
excluded due to claustrophobia leading them to withdraw 
from participating in subsequent scans. This left 21 patients 
with complete MID datasets (n = 14 patients who received 
AUT00206 and n = 7 who received placebo). All patients 
received their assigned treatment from Day 1 to Day 28, 
except one patient in the AUT00206 group, who received his 
treatment from Day 1 to Day 21 only and was scanned at this 
point before withdrawing from the study and stopping treat-
ment. On PK sampling, the median Cmax for AUT00206 
was 3745 ng/mL and the mean Ctrough (Cpre-dose) values 
were > 2300 ng/mL on Days 4–6, ~ 1800 ng/mL on Day 14 
and ~ 2200 ng/mL on Days 21 and 28. Target concentrations, 
based on preclinical models and the ketamine challenge 
study in HVs, were between 1500 and 4000 ng/mL. Table 1 
shows the baseline demographic and clinical characteristics 
of the patients (n = 21) who completed the MID fMRI task 
at baseline and on treatment.

Behavioural

In the whole group, percentage hit rate was higher for win 
trials than neutral trials at both baseline (mean %hit in 
win =  60.1, SD 1.7, neutral = 43.7, SD 10.4, t(20) = 4.1, 

p = 0.001, one-sample t-test) and follow-up (mean %hit in 
win = 60.1, SD 14.6, neutral = 40.7, SD = 14.4,  t(20) = 6.33, 
p = 0.001, one-sample t-test). Reaction time (RT) was 
shorter during win trials than neutral trials at both base-
line (mean RT win = 233.82 ms, SD 40.49 ms, neutral = 
240.46 ms, SD 47.43 ms, t(20) = -2.71, p = 0.013, one-sam-
ple t-test) and follow-up (mean RT win = 229.30 ms, SD 
49.69 ms, neutral = 235.07 ms, SD 51.14 ms, t(20) = -2.33, 
p = 0.03, one-sample t-test). There was no significant dif-
ference between baseline and follow-up performance in 
the AUT00206 group (n = 14, p > 0.48 for all measures) or 
the placebo group (n = 7, p > 0.8 for all measures). These 
results confirm a significant reward-related motivational 
salience effect during both scanning sessions in our sample.

fMRI

Baseline reward anticipation (win vs neutral)

We first confirmed in the whole sample (n = 21) at base-
line (scan 1) that the MID task was associated with 
reward anticipation-related BOLD activation ( �

rew
 ) in the 

striatum. We found significant peak level activation at 
p(FWE) < 0.05 following small volume correction in the 
bilateral ventral and associative striatum ROIs (t(20) = 3.94, 
p(FWE)peak = 0.027 [MNI 12,4, -2] and t(20) = 3.57, 
p(FWE)peak = 0.041 [MNI -28, 16,2], respectively). We 
additionally examined reward anticipation-related BOLD 
activation ( �

rew
 ) at baseline at whole-brain cluster-cor-

rected p(FWE)cluster < 0.05, finding widespread activation 
also encompassing striatal regions (see supplementary 
table 2 and Fig. 3a).

Table 1  Baseline demographic 
and clinical characteristics of 
the MID fMRI population. 
Significance of categorical 
variable group difference was 
measured using the Chi -square 
test (1) and for numerical 
variable group difference 
significance was assessed using 
an independent sample t-test (2)

AUT00206 PBO

n = 14 n = 7
Male n(%) 14 (100) 7 (100)
Ethnicity: black n(%) 10 (71) 5 (71)
Ethnicity: white n(%) 2 (14) 2(29)
Ethnicity: Asian n(%) 1 (7) 0
Ethnicity: other n(%) 1 (7) 0 p = 0.71

Age (mean(sd)) 28.4 (± 6.23) 29.1 (± 5.49) p = 0.92

Chlorpromazine (CPZ) equivalent dose/mg 
per day (mean(sd))

252.6 (± 148.6) 181.6 (± 40.0) p = 0.22

1st generation antipsychotic n(%) 2 (14.3) 0 (0)
2nd generation antipsychotic n(%) 7 (50.0) 5 (71.4)
3rd generation antipsychotic n(%) 4 (28.6) 2 (28.6)
Combination antipsychotics n(%) 1 (7.1) 0 (0) p = 0.61

Baseline PANSS total mean(sd) 79.6 (± 11.7) 76.4 (± 8.1) p = 0.52

Baseline PANSS positive mean(sd) 19.7 (± 4.6) 18.9 (± 1.9) p = 0.72

Baseline PANSS negative mean(sd) 20.4 (± 4.2) 20.4 (± 4.3) p = 0.92

CGI mean(sd) 3.5 (± 0.65) 3.6 (± 0.53) p = 0.82
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In addition, across all participants, there was a signifi-
cant negative correlation between PANSS total score and 
reward anticipation-related activation ( �

rew
 ) in the right 

associative striatum at baseline scan (n = 21, r = -0.461, 
p = 0.035, see Fig. 2) and a trend correlation in the left 
associative striatum (n = 21, r = -0.411, p = 0.064), but no 
significant relationship between positive or negative symp-
toms (PANSS positive or negative sub-scale scores) and 
right or left ventral striatal activation ( �

rew
 ) at baseline. 

These findings did not survive Bonferroni correction for 
multiple comparisons.

AUT00206‑related increase in reward‑related striatal 
activation

We next compared reward-related BOLD activa-
tion between baseline and on treatment scans in the 
AUT00206 group (i.e. the activation change measure, 
Δ�

rew
 = �

rew
(scan2) − �

rew
(scan1) ). There was no sig-

nificant difference in Δ�
rew

 in the striatum, either in 
a whole brain analysis (no clusters surpassing whole-
brain cluster-corrected significance threshold of 
p(FWE)cluster < 0.05) or in small volume correction analy-
ses using left or right ventral striatum ROIs (no voxels 
surpassing p(FWE)peak < 0.05). However, when conduct-
ing a small-volume correction analysis in the associative 
striatum, we found a significant increase in activation in 
the left associative striatum following AUT00206 treat-
ment (i.e. positive Δ�

rew
 )  (t(13) = 4.23, p(FWE)peak = 0.04, 

[MNI -20, 6, -2]) that was not present in the right asso-
ciative striatum (p(FWE)peak values > 0.05). No extra-
striatal brain regions showed significant changes with 
AUT00206 treatment in the whole brain analyses. There 
was no significant change in activation in the placebo 
group in either left or right associative or ventral striatum 
(all p(FWE) values > 0.05), and this was also the case 
on the whole brain analyses. See Fig. 3b and c for an 
illustration of the activation change following treatment 
in the AUT00206 and PBO groups.

Finally, we conducted an exploratory between-group 
analysis to examine whether Δ�

rew
 was significantly dif-

ferent under AUT00206 vs placebo in striatal ROIs (i.e. 
whether the change in �

rew
 from scan 1 to scan 2 was 

Fig. 2  Activation during reward anticipation ( �
rew

= win > neutral 
contrast) in the right associative striatum (ROI MNI coordinates: 24, 
12, 1) at baseline (n = 21), showed a significant negative correlation 
(n = 21 r = -0.461 p = 0.035) with baseline PANSS total score

Fig. 3  Activation during reward anticipation ( �
rew

= win > neutral 
contrast), and change in activation following treatment ( Δ�

rew
 ); 

3a: Whole brain analysis in the whole sample at baseline (n = 21), 
showing bilateral striatal activation for reward anticipation at cue 
onset ( �

rew
 regressor); 3b: AUT00206 group (n = 14) ( �

rew
(follow-

up) – �
rew

(baseline) activation whole brain change image) show-
ing increased activation in the striatum following treatment with 
AUT00206 (significant at P(FWE) < 0.05 voxel-level following 
small volume correction, see main text); and 3c: PBO group (n = 7) 

( �
rew

(follow-up) – �
rew

(baseline) activation whole brain change 
image). There was no significant change in striatal activation fol-
lowing treatment with placebo at  p(FWE) < 0.05 significance 
thresholds (see main text). All images threshold set at p = 0.01 
uncorrected with cluster defining size of 30 voxels, for illustration 
purposes only (see main text for family-wise error corrected sta-
tistical results). Section orientated to the left dorsal striatum (MNI 
coordinate -18,8,-2). The colour bar shows the t statistic
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significantly different between groups). For each partici-
pant, we extracted mean Δ�

rew
 values for voxels within 

pre-specified ROIs (Associative Striatum (AS) and Ven-
tral  Striatum (VS)) and compared treatment and pla-
cebo groups using two-sample t-tests. We found a trend 
group difference in Δ�

rew
 in the right associative stria-

tum (t(19) = 1.816, p = 0.085). In this ROI, the AUT00206 
group showed an increase in activation following treat-
ment (n = 14, mean change = 0.91, SEM = 0.387) which 
was not seen the PBO group (n = 7, mean change = -0.19, 
SEM = 0.357). We found no significant group differences 
in the other 3 ROIs (left AS and right/left VS). In a sup-
plementary analysis of covariance (ANCOVA), we found 
no evidence that the number of dosing days completed at 
the time of the follow-up scan predicts variance in right 
AS activation (p-value of covariate = 0.06). See supple-
mentary table 3 for the extracted mean beta values for each 
group in each ROI at baseline and following treatment.

Discussion

We found increased activation during reward anticipation 
in the left associative striatum in patients with schizophre-
nia receiving treatment with AUT00206. These findings 
extend previous preclinical and healthy volunteer evidence 
that AUT00206 engages striatal circuits relevant to the 
pathophysiology of schizophrenia (Deakin et al. 2019), to 
show this for the first time in patients with schizophrenia. 
Hypoactivation in the dorsal striatum, which contains the 
associative striatum, during reward anticipation has been 
found in people with chronic schizophrenia and to correlate 
with symptoms (Mucci et al. 2015; Stepien et al. 2018). Our 
findings add to these data by showing a correlation between 
greater hypoactivation in the right associative striatum dur-
ing reward anticipation and higher total PANSS symptoms 
in a sample of patients within five years of illness onset. 
This adds to evidence that altered dopamine function in the 
associative striatum is associated with symptoms early in 
the course of schizophrenia (Jauhar et al. 2019). Our results 
also extend prior findings by showing that treatment with a 
drug with no appreciable dopamine D2 receptor blockade, 
AUT00206, is associated with increases in striatal activa-
tion in the left associative striatum. In contrast, we did not 
find a significant effect of AUT00206 on ventral striatal 
activation. Longitudinal studies have found that treatment 
with antipsychotics can increase the attenuated activation 
in patients with schizophenia in the ventral striatum during 
reward anticipation fMRI tasks (Nielsen et al. 2012; Wulff 
et al. 2019). As patients in our study were receiving antip-
sychotic treatment, this may explain why we did not find a 
change in the ventral striatum in our sample, who were all 
taking antipsychotic medication, and highlights the need to 

test AUT00206 in unmedicated patients with schizophrenia 
to determine if this explains the absence of an effect of 
AUT00206 in this region.

Strengths and limitations

This is the first study in patients with schizophrenia to explore 
the effects of a Kv3.1/3.2 potassium channel modulator on 
neural activation during reward anticipation. The results dem-
onstrate good subject engagment with the task and activation 
of the striatum at baseline. A strength is that all patients were 
diagnosed with schizophrenia using the SCID and had no 
alcohol or drug dependence. A limitation is the modest sam-
ple size. The sample was limited because it was the first study 
of the drug in schizophrenia, and the study was an add-on to 
a study primarily aimed at safety assessment. As such, the 
study was not powered for AUT00206 vs placebo compari-
sons. Thus, although we did not observe striatal changes in 
the placebo group and found a trend for a signficant difference 
between placebo and AUT00206 effects, future studies with 
larger sample sizes are required to conclude that AUT00206 
alters striatal reward processing to a greater degree than pla-
cebo, with confidence. Moreover, as this was an initial explor-
atory study, we did not correct the statistical threshold for the 
number of primary regions of interest. A further consideration 
is that of BOLD signal drop out, which degrades signal-to-
noise ratio. We found no significant AUT00206 effects in the 
ventral striatum, which could be a consequence of low sta-
tistical power, stemming in part from low within-participant 
signal-to-noise ratio in this region. Additionally, we used a 
well cited meta-analysis (Knutson and Greer 2008) to define 
our ventral striatal ROI coordinates, which facilitates com-
parison with previous studies in schizophrenia. However, we 
recognise that these coordinates differ from those reported in 
a recent meta-analysis in schizophrenia (Jauhar et al. 2021). 
As such, the results should be considered preliminary. Patients 
were also already medicated with antipsychotics, which, given 
they may modulate striatal activity, could have reduced the 
capacity to detect effects of adjunctive AUT00206. These 
issues highlight the importance of carrying out a further study 
in a larger sample, ideally in patients who are medication-
naïve or medication-free.

Mode of action of AUT00206

AUT00206 is a positive modulator of Kv3.1 and Kv3.2 
channels (Rudy and McBain 2001). Kv3.1 channels are 
expressed by parvalbumin (PV)-positive GABA interneu-
rons that regulate striatal activation and striatal output neu-
rons (Lenz et al. 1994; Weiser et al. 1994, 1995; Chow et al. 
1999; Jinno and Kosaka 2004; Yanagi et al. 2014). Parvalbu-
min interneurons in the striatum synapse onto medium spiny 
neurons (Lee et al. 2017). Medium spiny neurons are the major 
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cell type in the striatum, and also receive inputs from dopa-
minergic projections from the midbrain (Tepper et al. 2018). 
Fast-spiking parvalbumin interneurons exhibit a pre-reward 
ramping increment in firing rate (Lansink et al. 2010) and are 
thought to exert inhibitory control over medium spiny projec-
tion neurons in the striatum (Koós and Tepper 1999; Assous 
et al. 2019). Lower levels of markers for PV interneurons 
are found in post-mortem brain samples from patients with 
schizophrenia, although this has not beenspecifically investi-
gated in the striatum (Curley & Lewis 2012; Kaar et al. 2019). 
AUT00206 enhances the activity of PV interneurons and res-
cues a range of behavioural deficits in rats previously treated 
with sub-chronic phencyclidine (Leger et al. 2014). Thus, one 
plausible explanation for our findings is that AUT00206 is act-
ing to increase PV interneuron activity in striatum to fine-tune 
the striatal response during reward anticipation.

In addition, Kv3.1 mRNA is found in the substantia nigra 
(SN) (Weiser et al. 1995) and Kv3.2 channels are thought 
to be expressed on SN dopaminergic neurons (Dufour et al. 
2014). AUT1, a K3.1/3.2 positive modulator from the same 
chemical series as AUT00206, modulated firing frequency 
and action potential properties of dopamine neurons in a 
ClockΔ19 mouse model of ventral tegmental area (VTA) 
driven mania (Parekh et al. 2018). This suggests that, in addi-
tion to effects on PV interneurons, AUT00206 could also act 
directly on cells within the SN and VTA to modulate the activ-
ity of dopamine projections to the striatum. AUT00206 may 
be acting through either, or a combination of both, of these 
two potential mechansims of action to underlie our findings.

Conclusions

This study provides the first evidence that AUT00206, a 
Kv3.1/3.2 channel modulator, can modulate striatal reward 
circuitry in patients with schizophrenia. These results sup-
port further evaluation of AUT00206 as a novel, non-dopa-
minergic treatment for schizohrenia.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00213- 022- 06216-3.
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