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Follicular fluid (FF) protects the oocyte against proteolysis and extrusion during 
ovulation, providing an appropriate microenvironment that favors proper embryonic 
development; thereby, FF plays a key role in embryo quality. Being directly related to 
cattle breeding, studying FF is extremely important in livestock science to measure 
cattle fertility. This may eventually help to assess the quality of both meat and milk, 
products widely consumed worldwide. There is an important commercial interest in 
the evaluation and characterization of compounds present in the FF of livestock that 
present greater likelihood of pregnancy. Mass spectrometry is a great ally for this 
type of analysis and can provide quick and efficient screening for molecular markers 
in biological samples. The present study demonstrated the potential of high-resolu-
tion mass spectrometry in analyzing FF samples from two distinct groups of Nellore 
cows (Bos indicus): high and low fertility, as determined by the number of oocytes 
produced. We were able to delineate markers of interest for each group, which may 
ultimately be related to biochemical pathways that lead to higher or lower reproduc-
tive performance.

Keywords: follicular fluid, fertility, molecular markers, cows, oocyte quality

inTrODUcTiOn

In the past 40 years, beef and dairy cattle were subject to intense selection, especially in terms of 
genetic engineering, primarily focusing on the improvement of milk and meat production (1). 
More recently, due to technological advances, it was observed that the infertility in dairy cows has 
decreased in the last few years (2, 3); nonetheless, despite optimistic numbers, infertility in cows 
is still a subject of great economic interest (4, 5). Hence, there is great demand to investigate the 
physiology and pathogenesis that are the triggering factors for infertility. It is currently known that 
this is a condition associated with both genetic and environmental elements, and the role of oocyte 
and embryo quality in the final fertility is the most noteworthy feature discussed in recent literature 
(6, 7). Newer platforms, such as transcriptomics, proteomics, and metabolomics, have been increas-
ingly assisting researchers and clinicians in investigating and selecting oocytes and embryos using 
sophisticated methods. Follicular fluid (FF), follicular cells, and cumulus cells are fluids and tissues 
previously considered superfluous for analyses associated with oocyte quality. However, the trend of 
performing noninvasive sampling and evaluations has been increasing recently, giving a whole new 
relevance for the use of these samples (8).
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Follicular fluid is responsible for providing oocyte protection 
against proteolysis, as well as aiding in the extrusion process 
during ovulation (9), acting as a buffer against adverse blood 
influences (10). Researchers have proposed and demonstrated 
in postpartum cows that there is a close correlation between the 
levels of certain metabolites in both: FF and blood serum. Thus, 
potential variations in serum concentrations of metabolites may 
affect FF, which may lead to changes in the quality of granulosa 
and oocyte cells (11). Therefore, since FF provides an appropriate 
microenvironment for the oocyte that leads to proper embryonic 
development, it is partly responsible for embryo quality (12, 13).

Currently, FF has been used for conservation and maturation 
of oocytes, with the purpose of performing in vitro fertilization 
in cattle (14). This use is justified due to the high protein content 
found in its constitution, even greater than that presented by fetal 
bovine serum, commonly used for this purpose (15). In addition, 
FF has been extensively explored in several works: biochemical 
constitution (13, 16, 17), factors that may influence or modify 
their production, such as climate (18) or nutrition (19), as well 
as its interference in the process of maturation of bovine embryo 
(14, 20).

Follicular fluid is formed through the transudation of the 
fluid produced by the theca and granulosa cells in the follicular 
antrum. This phenomenon occurs during the growth phase of 
the follicles, which increases the pressure inside the follicular 
antrum, expelling the fluid present there. Its composition and 
quantity can be modified during the development of the follicle 
(21, 22). Among its components, steroids and glycoproteins are 
found, which are synthesized by dominant follicular cells, and 
are part of the specific constituents of FF, as well as other factors 
or substances that are synthesized by ovarian somatic cells; these 
compounds contribute to the metabolism of cells and follicular 
oocyte (16, 23, 24). Also in the composition, there is a variety 
of polyunsaturated fatty acids, with linoleic acid found in larger 
quantities in small follicles. It is hypothesized that this may be 
one of the molecules responsible for inhibition of meiosis in 
bovine oocytes (25). More recently, studies related to estrogen 
activity with the composition of the fatty acids present in the FF 
of dairy cows, remaining different from the composition found 
in plasma (26).

Studying the composition of FF is of great importance, since it 
may be used as an evaluation parameter of oocyte quality, which 
can be directly related to fertility (27). In this way, FF analysis 
can be employed in livestock breeding strategies with the aim 
of improving milk and meat production. Commercial interest, 
therefore, implies the development of analytical techniques that 
provide fast and reliable results that are cost-effective at the same 
time to evaluate and characterize target compounds in FF (13, 27, 
28). For this type of analysis, liquid chromatography techniques 
are commonly used, for example, LC-MS or HPLC-MS. For 
untargeted metabolomics screenings, however, LC-MS based 
systems are a considerably demanding alternative in terms of 
time and costs to identify unknown compounds in complex 
samples (29, 30). This is intimately related to the need of isolating 
compounds of interest first, and then performing characteriza-
tion through comparison with certified standards (30), which 
makes it a much more suitable technique to be used in target 

analysis (31). In comparison to chromatography techniques, 
direct-infusion mass spectrometry (DIMS) with mass-selective 
detection is capable of providing high specificity chemical infor-
mation, which includes molecular mass and/or characteristic 
information of the fragmented ions. This information can be 
used to identify compounds by matching the spectrum obtained 
with the data collected in databases of authentic compounds or 
to be used for de novo structural elucidation (31).

There is still little knowledge on the metabolomic profile of FF 
and, given the versatility of DIMS in providing fingerprints and 
selecting markers in biological samples (32–35), high-resolution 
mass spectrometry (HRMS) is ideal for fast screening, with 
minimal sample preparation and a high-throughput analytical 
process in shotgun lipidomic approach (36). The present study 
demonstrates the potential of HRMS to provide biomarkers 
for high and low fertility in cows (Bos indicus) from samples of 
FF, where it was possible to assign molecular markers to each 
group within a biochemical context, thereby demonstrating the 
sensitivity of this new methodology.

MaTerials anD MeThODs

animals
The Institutional Committee for Ethics in Animal Research of the 
University of Campinas (UNICAMP) is the body responsible for 
approving the handling of cattle used in this study. This academic 
institution follows the Ethical Principles of Animal Research, as 
established by the Brazilian College for Animal Experimentation 
(COBEA). Protocol number 2819-1 refers to this process and 
the research was executed strictly in accordance with the Public 
Health Service Policy.

The animals (n = 29) were bred in a tropical climate region 
(CwA Köppen classification), characterized by a rainy, hot sum-
mer, and a dry winter. The criteria used to select the animals 
in the study were: non-lactating mature Nellore (Bos indicus); 
age = 4–7 years old; body weight = 439 ± 20 kg. All cows were 
maintained on pasture (Brachiaria decumbens and Brachiaria 
brizantha) with mineral supplementation and water available 
ad libitum.

Follicular Fluid
Samples of FF were obtained from all cows by follicular aspiration 
from ovaries with presence of corpora lutea and follicle diameter 
ranged 10–14 mm. FF was centrifuged at 1,000 x g for 1 min, and 
the supernatant was stored for analysis at −80°C. Samples were 
divided in three groups after FF aspiration, using the following 
the criteria: 12 animals that produced a higher number of oocytes 
(considered as n > 15), 9 animals that produced a lower number 
of oocytes <5, and 8 for control group, i.e., those producing an 
intermediate number of oocytes (considered as 5 < n < 15).

For analysis, samples were prepared by dilution (10:990 v/v) 
of FF in a solution of methanol and water (50:50 v/v). This first 
solution was filtered through 0.22-µm polyvinylidene difluoride 
membranes and resuspended (10:990  v/v) in a solution of 
methanol and water (50:50 v/v), resulting in a second solution. 
The second solution was divided in two vials (500 µL each) and 
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FigUre 1 | Clustering graphs of partial least squares discriminant analysis analysis for all groups (Ctrl, control; Fert+, higher number of oocytes; Fert−, lower 
number of oocytes) at positive (a) and negative (B) ion mode.
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either formic acid or ammonium hydroxide was added to a 
0.1% concentration for analysis in positive and negative mode, 
respectively. All samples were prepared in triplicates. Methanol, 
ammonium hydroxide, and formic acid were purchased from J. T. 
Baker (Xalostoc, Mexico) and used with no further purification. 
Deionized water was obtained from a Milli-Q system (Millipore, 
USA).

high-resolution Mass spectrometry
After preparation, all samples were injected for fingerprint analy-
sis on an Orbitrap Discovery ESI-LTQ-XL instrument (Thermo 
Fisher Scientific, Bremen, Germany) with a nominal resolution 
of 30,000 (FWHM). Analyses were carried out in the mass range 
of 200–800 m/z. The instrument run was configured according 
to the following parameters: flow rate of 10 µL min−1, capillary 
temperature of 280°C, 5 kV of spray voltage, and sheath gas in 10 
arbitrary units. HRMS acquisitions were performed in quintupli-
cates, and in both modes, positive and negative.

statistical analysis and Biomarker 
identification
The method of choice to evaluate the association between 
the groups was the partial least squares discriminant analysis 
(PLS-DA) with the variable importance in projection (VIP) 
score. This is a supervised method that uses multivariate regres-
sion techniques to extract features from each group and show the 
existence or not of differences and similarities between the ana-
lyzed samples. The statistical significance of the model obtained 
by PLS-DA was assessed by the application of two permutation 

tests: 10-fold cross validation and leave-one-out cross validation. 
Establishing a VIP score threshold greater than 3.0 was possible to 
perform the selection of characteristic biomarkers for each group. 
VIP score consists of the weighted average of squares of PLS loads 
and takes into account the amount of variance explained in each 
dimension used in the model. All chosen markers from the VIP 
scores list were submitted to receiver operating characteristics 
(ROC) curve analyses in order to verify the probability that each 
molecule had of belonging to their specific group. A heatmap of 
the markers elected was built using the Euclidean distance meas-
urement and Ward clustering algorithms. All statistical analyses 
were performed using the online platform MetaboAnalyst 3.0 
(37). For the structural elucidation of the markers, mass accuracy 
was the main parameter, by comparing the mass values obtained 
experimentally and those available in online databases, such as 
METLIN (Scripps Center for Metabolomics, La Jolla, CA, USA), 
in order to guide the choice of potential markers for the quality 
of bovine oocytes. A molecule was deemed characterized when 
presented an identification error value of less than 2 ppm.

resUlTs

Figure 1 shows the clustering graphs of PLS-DA analysis, where 
it was possible to assess separation among all groups, in both ion 
modes: positive (Figure 1A) and negative (Figure 1B). Statistical 
and chemical analyses combined provided all markers, as follows: 
7 candidates for the group with a higher number of oocytes, split 
into three markers for the positive ion mode and four for the 
negative ion mode, and two candidate markers selected for the 
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FigUre 2 | Receiver operating characteristics curve for the group with higher number of oocytes at positive (a) and negative (B) ion mode.

TaBle 1 | Biomarkers of the groups of high and low number of oocytes in the positive and negative modes of analysis.

experimental 
mass

Theoretical 
mass

error (ppm) adduct compound MiD*

Higher number of oocytes 429.0954 429.0946 1.8644 [M + K]+ Resveratrol 4′-glucoside 87064
455.1715 455.1706 1.9773 [M + H-H2O]+ Lupinisoflavone N 47791
667.1881 667.1869 1.7986 [M + H]+ Peonidin acetyl 3,5-diglucoside 47015
243.0659 243.0663 1.6539 [M-H]− 3,3′,4,5′-Tetrahydroxy-trans-stilbene 7029
319.1328 319.1334 1.9114 [M-H2O-H]− 5,7-dihydroxy-6-methyl-8-prenylflavanone 52673
335.1277 335.1283 1.8202 [M-H]− Xanthohumol 52097
363.1223 363.1216 1.9277 [M + Cl]− Prostaglandin M 45949

Lower number of oocytes 476.3168 476.3159 1.8895 [M + H]+ N-docosahexaenoyl phenylalanine 75476
336.3260 336.3266 1.8137 [M-H2O-H]− N-Eicosanoyl-ethanolamine 3724

*METLIN ID.
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group with a lower number of oocytes, split as one in the negative 
and one in the positive ion mode. The compounds are organized 
in Table 1.

According to the ROC curve analysis, the group with higher 
number of oocytes achieved satisfactory results on both negative 
and positive ion modes. The three markers for the high number 
of oocytes group in the positive ion mode presented an area under 
the curve (AUC) value of 0.996 (0.978–1.00), with a sensitivity and 
specificity values of 0.950 (0.851–0.987) and 0.992 (0.950–1.000), 
respectively (Figure 2A). In addition, the four markers obtained 
in the negative ion mode for the same group achieved an AUC of 
0.999 (0.996–1.000) with sensitivity and specificity values of 0.932 
(0.827–0.978) and 1.000 (0.961–1.000), respectively (Figure 2B). 
A similar behavior was observed with the markers selected for the 
group with lower number of oocytes; the marker selected from 
the positive ion mode presented an AUC of 0.968 (0.954–0.985) 

with values of sensitivity and specificity of 0.978 (0.868–0.999) 
and 0.864 (0.794–0.914), respectively (Figure  3A). Finally, the 
marker from the negative ion mode in the same group was 
achieved an AUC of 0.861 (0.756–0.930) with values of sensitivity 
and specificity of 0.733 (0.578–0.849) and 0.887 (0.817–0.933), 
respectively (Figure 3B). The selected and characterized markers 
are presented in the Heatmap (Figure 4), showing the presence 
or absence of these markers among the groups.

DiscUssiOn

Results indicated a remarkable possibility of employing FF 
analysis as a reliable test to predict whether a particular animal 
will present a higher or lower number of oocyte production 
rate. This information is important, as the number of oocytes 
was directly related to the increased fertility in cows; hence, the 
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FigUre 3 | Receiver operating characteristics curve for the group with lower number of oocytes at positive (a) and negative (B) ion mode.

FigUre 4 | Heatmap (distance measured by Euclidean and Ward clustering algorithms), with a color-coded thermometer (right) indicating the expression of each 
biomarker on each respective group. Fert+, higher number of oocytes; Fert−, lower number of oocytes; Ctrl, control.
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higher the number, the greater will be the chance of reproduction 
(38). From the results in Table 1, it is possible to infer two main 
differences: in the group of animals with low oocyte number, the 
statistical model elected compounds that are directly related to 
an inflammatory state that, consequently, increases oxidative 
stress and, even more interestingly, may also be involved with 

negative hormonal feedback. On the other hand, for the high 
oocyte number group, compounds were mostly phenolics and 
flavonoids, i.e., species that are probably incorporated from feed, 
given their non-endogenous character, and are closely related 
to protection against oxidative stress in the embryo-developing 
environment.
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In the low oocyte production group, N-docosahexaenoyl phe-
nylalanine was elucidated in the positive mode, and N-eicosanoyl 
ethanolamine in the negative mode. N-docosahexaenoyl pheny-
lalanine is part of the group of N-acyl amides and N-eicosanoyl 
ethanolamine is part of the group of N-acyl ethanolamines. These 
compounds constitute a general class of endogenous simple fatty 
amides, characterized by an acyl group bonded to a nitrogenated 
moiety, i.e., a conjugated system that comprises putative signal-
ing molecules with a wide range of biological activity (39). The 
best-known subgroup of this classification would be the endo-
cannabinoids, which are endogenously produced lipids capable 
of binding to cannabinoid receptors. In addition, other types of 
endogenous lipids, similar to endocannabinoids in structure, are 
not capable to bind with cannabinoid receptors. Despite that, 
they demonstrate cannabimimetic effects, similar to the markers 
found in this work (39).

Cannabinoid receptors 1 and 2 (CB1 and CB2) have been 
described in human endometrium (40), where CB1 signalizes 
for the transport of embryos through the oviduct (41) as well as 
for embryo establishment in the womb (42). Recent contribu-
tions have shown that the endocannabinoid anandamide plays 
an important role during the fertilization process in humans 
(43), as well as the influence of anandamide in the estrous cycle 
in bovines has been also reported (44). Given that the ovulation 
process is quite similar in mammalians, it was shown in both 
studies that high concentrations of anandamide are related to 
the hormonal peak of estradiol during ovulation, responsible 
for the release of the ovule. In addition, it has been reported 
that high levels of anandamide in humans are related to early 
pregnancy loss (45) and reduction in levels of progesterone 
(40), a key hormone for both implantation of the ovum and 
maintenance of pregnancy (43, 46, 47). As N-docosahexaenoyl 
phenylalanine has cannabimimetic effects, its presence in the FF 
of cows from the lower oocyte number group could be related 
to this hormonal regulation presented by anandamide. In the 
case of N-eicosanoyl ethanolamine, its presence might be related 
to the “entourage effect,” in which these N-acyl ethanolamines 
inhibit anandamide degradation through their ability to com-
pete for fatty acid amide hydrolase, since both compounds are 
hydrolyzed by the same enzymatic reaction. With increasing 
levels of anandamide, progesterone remains low; this condition 
does not allow the occurrence of positive pregnancy, as the high 
concentration of progesterone in FF is related to the increase of 
fertility in cattle (46, 47).

Moreover, eicosanoids and docosanoids are extensively 
described in literature as key intermediates in the inflammation 
cascade, and their presence is often regarded as associated with 
an existing condition that may be associated to an inflammatory 
process (48). The influence of inflammation and the underlying 
oxidative environment caused by this process are also widely 
discussed regarding their negative influence over reproduction 
(49). Therefore, the election of N-docosahexaenoyl phenylala nine 
and N-eicosanoyl ethanolamine as markers for the low oocyte 
number group also make sense considering the potential oxida-
tive stress existing in animals from these groups.

Regarding the high oocyte number group, by observing 
Table 1, we find Resveratrol 4′-glucoside, Lupinisoflavone N, and 

Peonidin acetyl 3,5-diglucoside in the positive ion mode; on the 
other hand, in the negative mode, we find 3,3′,4,5′-tetrahydroxy-
trans-stilbene, 5,7-dihydroxy-6-methyl-8-prenylflavanone, xantho-
humol, and prostaglandin M. The main characteristic that is 
common to great majority of these species is the antioxidant char-
acter associated with these compounds, as oocytes and embryos 
are highly vulnerable to oxidative stress and other conditions 
when cultured in vitro (50).

Resveratrol 4′-glucoside and 3,3′,4,5′-tetrahydroxy-trans-
stilbene, or piceatannol, are compounds that belong to the 
class of stilbenes. Piceatannol is a metabolite of resveratrol that 
has greater antioxidant potential than its precursor due to the 
position of its hydroxyl groups, which favors the capture of free 
radicals (51). Some contributions in the literature have discussed 
the benefits of resveratrol during mammalian reproduction, 
including the improvement on the quality of bovine embryos 
when added during oocyte maturation, making these embryos 
more resistant during cryopreservation (52). In addition, when 
resveratrol was consumed for a longer period, it improved and 
increased the number of oocytes produced by female mice (52). 
Since the cows in this study were fed green pasture, it is plausible 
to have Resveratrol 4′-glucoside elected as a marker for the group 
of cows with high oocyte number production, as its high antioxi-
dant potential (53) favors both the oocyte maturation process and 
the future development of new embryos in cattle.

The other elected markers may also be attributed to come from 
the diet and belong to the family of flavonoids, which are com-
pounds characterized by the presence of interconnected phenolic 
rings, directly related to the antioxidant potential presented by 
its members (54). This family has several subclassifications of its 
components, according to specific characteristics of the chemi-
cal structure they present, being able to comprise isoflavones, 
anthocyanidins, and prenylflavonoids, which have, respectively, 
the markers Lupinisoflavone N, peonidin acetyl 3,5-diglucoside, 
5,7-dihydroxy-6-methyl-8-prenylflavanone, and xanthohumol. 
Lupinisoflavone N, which is an isoflavone found in plants of the 
genus Lupine, from the family Leguminosae (55). Isoflavones are 
phenolic compounds and have a well-known antioxidant charac-
ter (56, 57); studies have shown that supplementation of animal 
feeding with lupines is related to increased ovulation rate in sheep 
(58) and also to improved reproductive efficiency in the case of 
ruminants (59). Peonidin acetyl 3,5-diglucoside belongs to the 
class of anthocyanins, a class of flavonoids with high antioxidant 
potential (60–62). With respect to these characteristic, we have 
another marker that could be collaborating for the development 
of embryos due to its ability to protect oocytes from free radicals 
or reactive oxygen species (ROS) (62).

Regarding the subclass of prenylflavonoids, we have 5,7- 
dihydroxy-6-methyl-8-prenylflavanone and xanthohumol. This 
class of bioactive compounds are prenylated phenylalanine deriva-
tives formed in the plant secondary metabolism and may be found 
in several species. The activity of this class relies on phytoestro-
genic and antioxidant properties (63), and studies have shown 
that xanthohumol has anticancer, antidiabetic, antibacterial, and 
anti-inflammatory activities (64, 65). These characteristics may 
be related to its antioxidant capacity, since xanthohumol can act 
directly reducing the formation of ROS, or indirectly through the 
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induction of cellular defense mechanisms against oxidative stress, 
thus contributing to the improvement of several diseases related to 
ROS (65–68). The presence of compounds such as xanthohumol 
in the FF may be traced back directly to the animal’s feed, since 
flavonoids and its derivatives are ubiquitous to the metabolism 
of several plant species, especially grasses such as B. decumbens 
and B. brizantha (69, 70), which were used in the pastures of the 
animals in this study.

Finally, the last marker found in the negative mode for the 
high fertility group was Prostaglandin M. Prostaglandins (PGE) 
are a group of physiologically active lipids due to their ability to 
generate hormonal responses in animals. PGE-M is a metabolite 
of PGE-2 (71), which in turn is directly linked to ovulation as 
it increases its levels when there is an increase in luteinizing 
hormone (72). PGE-2 is one of several signaling molecules that, 
together with the follicle, are able to coordinate oocyte matura-
tion, and enhanced expression of proteases associated with follicle 
rupture, which ensures the release of an optimally mature oocyte 
during ovulation (73–75). Hence, the presence of PGE-M as a 
marker of the high oocyte number group is indicative of a higher 
performance of PGE-2 in the animals of this group.

Through our findings, it was possible to establish a link between 
markers found in bovine FF and oocyte quality/production rate. 
Incidentally, we expected that the relevant compounds were sim-
ply derived from feed and that are also potentially related to the 
increase of fertility in cows, since they were the chosen markers 
for the group of animals with higher production of oocytes. As 
we observed, however, the inflammatory status of the animals 
is what indeed plays a key role in the oocyte production and, 
ultimately survival; docosanoids and eicosanoids, the molecular 
classes observed in the low oocyte group, are well-known players 
involved in reactions that lead to inflammatory state in organ-
isms. This provides evidence that, even though the feed is the 
same for both animal groups, there is an important depletion of 

antioxidants in the low oocyte group due to a potentially high 
oxidative stress to which these animals are subjected. Hence, 
antioxidants are in high levels for the high-oocyte animals and, 
therefore, were elected as markers, as opposed to the low-oocyte, 
which present an inflammatory picture, traced back from the 
molecular classes elected by PLS-DA.
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