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Abstract: Stress uniformity within the gauge zone of a cruciform specimen significantly affects
materials’ in-plane biaxial mechanical properties in material testing. The stress uniformity depends
on the load transmission of the cruciform specimen from the fixtures to the gauge zone. Previous
studies failed to alter the nature of the load transmission of the geometric features using parametric
optimisations. To improve stress uniformity in the gauge zone, we optimised the cross-arms to
design a centre-reduced cruciform specimen with topology and shape optimisations. The simulations
show that the optimised specimen obtains significantly less stress variation and range in the gauge
zone than the optimised specimen under different observed areas, directions, and load ratios of
von Mises, S11, S22, and S12. In the quantified gauge zone, a more uniform stress distribution could
be generated by optimizing specimen geometry, whose value should be estimated indirectly each
time through simulations. We found that topology and shape optimisations could markedly improve
stress uniformity in the gauge zone, and stress concentration at the cross-arms intersection. We
first optimised the cruciform specimen structure by combining topology and shape optimisations,
which provided a cost-effective way to improve stress uniformity in the gauge zone and reduce stress
concentration at the cross-arms intersection, helping obtain reliable data to perform large strains in
the in-plane biaxial tensile test.

Keywords: cruciform specimen; optimisation; topology; shape; finite element method; biaxial tensile test;
material test

1. Introduction

Cruciform specimens are widely used to evaluate materials’ in-plane biaxial mechan-
ical properties, such as metals, ceramics, composites, and biomaterials. The structure of
a cruciform specimen significantly affects stress uniformity in the gauge zone and the
stress concentration at the intersection of the cross-arms. However, scholars failed to reach
a consensus on the specimen’s structure [1]. Currently, only ISO 16842: 2021 regulates the
structural form of metal cruciform specimens; the insufficient design standards of cruciform
specimens lead to empirical designs of cruciform specimens, resulting in extensive data
scatter in the in-plane biaxial tests. Therefore, we aimed to design an optimal structure of
cruciform specimens to improve the reliability of the results in the in-plane biaxial testing.

The stress uniformity in the gauge zone of the cruciform specimen correlates with its
structure [2–9]. The uneven stress distribution on the boundary of the gauge zone, and the
stress concentration at the intersection of the cross-arms, deteriorate the stress uniformity
in the gauge zone. The stress distribution of the boundary rests on the material distribution
of the cross-arms. Therefore, different specimen forms have distinct stress distributions in
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the gauge zone, leading test data to vary from specimen to specimen. Improving the stress
uniformity in the gauge zone reduces the test results’ dispersion. To obtain reliable test
results, scholars devoted themselves to improving the stress uniformity in the gauge zone
by optimising the structure of the cruciform specimen [10,11].

The finite element method (FEM) is a powerful tool for optimising cruciform speci-
mens [12,13]. Studies prove that the structural design of the cruciform specimen structure
using finite elements is cost-effective: the stress uniformity can be improved [8,14], and
the boundary stress concentration can be reduced [15–17]. Before the experimental veri-
fication, most scholars determined the optimal design of the cruciform specimen via the
finite element method combined with parameter optimisation methods [18–20]. Struc-
tural optimisation problems can be solved using either a parametric or non-parametric
approach [21]. The parametric optimisation method can realise the optimal design of engi-
neering structures by changing the parameterised structural elements, such as fillet and
thickness, without changing the connectivity of the design domain. Although parameter
optimisation can improve the stress uniformity and the stress concentration of the cruciform
specimen, the sole change of parameters failed to alter the nature of the load transfer of
geometric features [22,23].

The stress distribution in the gauge zone of the cruciform specimen rests on the nature
of load transfer [11]. Many cruciform specimen structures were classified into three distinct
types [24]: (i) inner concave fillets at the intersection of cross-arms, (ii) slots on the cross-
arms, and (iii) reduced regions in the centre. All three specimens have stress concentrations
at the cross-arm intersection, preventing large-strain plane biaxial testing [12]. Different
test purposes should have different optimisation objectives, and different optimisation
objectives produce different optimisation outcomes. The difficulties encountered in the
design of cruciform specimens led us to identify two common problems that influence the
design of cruciform specimens: the boundary form at the intersection of the cross-arms
and the material distribution on the cross-arms. Only optimising the geometric features of
cruciform specimens cannot provide the optimal design, since the parameter varies without
changing the geometric features’ nature of load transfer [25,26]. To optimise the nature
of load transfer, non-parametric optimisations should be used in the design of cruciform
specimens. However, the optimal distribution of materials on the cruciform arms, and the
optimal boundary shape at the intersection of the cross-arms, remain unclear.

To improve stress uniformity in the gauge zone, we redistributed the material on the
four cruciform arms via topology optimisation, while optimising the cross-arms boundary
via shape optimisation. Due to the two optimisations mentioned above, we designed
a novel specimen with uniform stress distribution in the gauge zone of the specimen.
Compared with the original specimen, the standard deviation of von Mises stress decreases
from 6.91 MPa to 1.88 MPa when the ratio of the measurement area side length to gauge
zone is 0.9; the stress range decreases from 20 MPa to 8 MPa at normalised distances of
0.1 or 0.9. We found that topology and shape optimisations improve stress uniformity in
gauge zones, and reduce stress concentrations at intersections. The proposed method for
optimising the cruciform specimen may help yield reliable biaxial test results in the plane
by improving the uniformity of the stresses in the gauge zone, and reducing the probability
of pre-failures caused by stress concentration at the intersection of the cross-arms.

2. Materials and Methods

Using finite element modelling (FEM), a centre-reduced cruciform specimen was
constructed to improve the stress uniformity in the gauge zone for better characterising the
nominal stress, and to reduce the stress concentration at the cross-arms to prevent failure
first at the cross-arm intersection. Here outlines the original specimen, the optimisation
process, topology optimisation, and shape optimisation.
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2.1. Original Reduced Cruciform Specimen

The centre-reduced cruciform specimen (Figure 1) was constructed according to the in-
plane biaxial testing system (Figure 2). Primary cruciform specimen dimensions considered
the clamping part, specimen geometry, and centre-reduced area of the specimen. The
clamping part has the dimensions of a clamping length of 40 mm, a clamping width of
40 mm, and a clamping thickness of 6 mm; the cruciform specimen has the following
six primary dimensions: the overall length is 220 mm, the overall width is 220 mm, the
rounded corners are 10 mm, the thickness is 6 mm, and the lengths of cross-arms are 90 mm.
The reduced area has two primary dimensions: the centre-reduced zone is a square with
a side length of 35 mm, and a reduced thickness of 1.5 mm on each side.

Figure 1. The geometry of the original cruciform specimen.

Figure 2. Schematic diagram of the equal biaxial tensile test.
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The specimen was optimised under equiaxial tensile conditions (Fx/Fy = 1). Four
actuators (X1, X2, Y1, and Y2) perpendicularly stretched the original cruciform specimen
(Figure 2). The clamping ends of the cruciform specimens resisted the distributed shear
forces generated by the hydraulic fixtures used during equiaxial tensile tests. Throughout
the topology and shape optimisation process, a constant loading and clamping force was
applied to the clamping end of the cruciform specimen. Our strategy was to optimise the
topology and shape of the specimen sequentially, ensuring that the optimised specimen
results from topology and shape optimisation. The geometric model for shape optimisation
was derived from topology optimisation.

The specimen’s topology optimisation results in irregular boundary shapes, concen-
trating stress along the cross-arms. Due to the potential impact of stress concentration
on the stress uniformity of the gauge zone, shape optimisation was used to improve the
stress distribution on the boundary. As a result, we used shape optimisation following
topology optimisation.

Figure 3 illustrates the application scenarios for topology and shape optimisations.
Material distribution along the cross-arm was the object of the topology optimisation, in
order to minimise strain energy in the design area. Four boundary areas were the object of
shape optimisation, in order to reduce the maximum stress along the boundary area.

Figure 3. The design area optimised with topology optimisation and shape optimisation.

2.2. Optimisation Processes of Cruciform Specimen

Optimisations of the topology and shape were performed sequentially (Figure 4). Be-
fore performing topology optimisation, we established the cruciform specimen’s geometry,
physical model, and finite element model sequentially, based on the primary geometric
parameters of the classical cruciform specimen (Figure 1) and the requirements for the
specimen’s in-plane biaxial tensile testing (Figure 2). We built the topology optimisation
model based on the verified finite element model. We set the maximum number of optimi-
sation iterations to 100 during the execution phase, performed topology optimisation, and
extracted the topology-optimised model. Additionally, we developed original geometric,
physical, and finite models for shape optimisation. The geometry model used in shape
optimisation differed from the model used in topology optimisation. We set the maximum
number of iterations to 100 during the execution phase of the optimisation process, per-
formed shape optimisation, and extracted the shape-optimised model. Finally, we verified
the stress uniformity of the optimised specimen, by using different areas and directions in
the gauge zone, and the stress concentration at the intersection of the cross-arms.
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Figure 4. The optimised processes for a classic cruciform specimen.

2.3. Model of Topology Optimisation

Starting with the design area, which represents the maximum allowed area for the
component, and with the boundary conditions, such as loads, fixtures, and manufacturing
conditions, the optimisation system determines a new material distribution by removing
and adding material in the design area [27].

Topology optimisation could enhance stress uniformity in the gauge zone by redis-
tributing the material on the cross arms. Figure 5 shows a physical topology optimisation
model comprising the clamping ends, the design area, and the gauge zone. The clamping
ends withstand loads of hydraulic fixtures.

Figure 5. Quarter physical model for topology optimisation.
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A quarter model of the classic structure was adopted, based on the symmetries of
the geometry and force boundary conditions about the X and Y axes (Figure 5). The finite
element model consists of the following (Figure 6):

1. Parts: the model consists of a single part built according to Figures 1 and 5;
2. Mesh: the type of hexahedral element is C3D8R, and the total number of nodes and

elements is 26,456 and 20,925, respectively (Figure 6). The five-element layers were
arranged along the Z-axis (the thickness direction);

3. Materials: the Young’s modulus, yield strength, and Poisson’s ratio of HC1200 are
210 GPa, 1200 MPa, and 0.3, respectively;

4. Steps: only one step is specified. Nonlinear geometric effects are considered;
5. Loads: we rigidly coupled the clamping parts X1 and X2 with two reference points,

RP1 and RP2 (Figure 5), respectively, to apply distributed force on the clamping
parts with the concentrated forces on RP1 and RP2. One load of magnitude 40 kN is
specified in RP1 and RP2;

6. Boundary conditions: symmetry boundary conditions are applied to specified regions
(Figure 6). In addition, only the degrees of freedom U1 of RP1 and U2 of RP2 are
released, and all the other degrees of freedom are fixed.

Figure 6. The finite element model for topology optimisation.

Configuring a topology optimisation analysis using Abaqus (Figure 4):

1. Creating an optimisation task: switch to the optimisation module. In the create
optimization task dialogue box: Set the type of optimisation to topology and select
the set DESIGN area, as shown in Figure 6;

2. In the basic tabbed page, select freeze boundary condition regions: the nodes clamped
by the X1 fixture and X2 fixture; the nodes on the symmetry edges to the symmetrical
planes (Figure 6);

3. Select specify smoothing region, and select the whole model;
4. Select fix all as the number of node layers adjoining the task region to remain free;
5. In the mesh smoothing quality tabbed page, set the target mesh quality to medium;
6. Creating design responses: design responses are parameters that are used to define

the objective function or the constraints. In the create design response dialogue box:
accept single-term as the type, and select whole model as the design response region;
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7. In the edit design response dialogue box, select stress and Mises hypothesis (the field
operator on values across steps and load cases is set to maximum value by default);

8. Creating an objective function: in the edit objective function dialogue box, add all
design responses eligible to participate in an objective function, and change the target
to minimise the maximum design response values (Equation (1));

9. Creating a constraint: select volume for the design response, toggle on A fraction of
the initial value, and enter 0.9 (Equation (2));

10. Create the stamping geometric restriction: creating a demold control geometric re-
striction with the stamping technique to ensure that the final design proposal can be
manufactured by removing material completely in a specified direction; we define
a demold control geometric restriction using the stamping technique:

• In the create geometric restriction dialogue box, select the whole model as the
demold control region;

• Change the demold technique to stamping and define the pull direction via the
vector (0,0,1), which defines the global Z-axis as the pull direction.

11. Submit an optimisation process for the optimisation task optimise-shape. Note that
the maximum cycles field is set to 100 by default for topology optimisation.

Topology optimisation is a procedure that yields an optimal material layout given
a constraint while minimising/maximising an objective. Specifically, optimisation produces
the stiffest possible material layout given a volume constraint. Thus, we set up a topology
optimisation task that minimises the sum of strain energies over all elements in the cru-
ciform specimen (equivalent to maximising the stiffness) (Equation (1)), given a relative
volume constraint of 0.9 (Equation (2)).

The following is the objective of topology optimisation:

min
{
∑ E(ρe, ue)

}
, (1)

where E is the strain energy of each element in the design area; ρe is the reduction factor of
the material density of each element in the design area; and ue is the displacement of each
element in the design area.

The following are the constraints of topology optimisation:

n

∑
e=1

νeρe ≤ αVinitial , 0 ≤ ρe ≤ 1, (2)

where νe is the volume of each element in the design area; α is the friction coefficient of
the design area’s initial volume; and Vinitial is the displacement of each element in the
design area.

2.4. Model of Shape Optimisation

Shape optimisation allows automatisation of this improvement process. The surface
geometry of a given FE model is modified iteratively based on the FE results, such that the
required optimisation target is reached. The start model is taken from an existing design,
which should be improved, or from a previous topology optimisation [28,29].

The position of the nodes in the design area can be fine-tuned using shape optimisa-
tion to improve stress uniformity in the gauge area. The clamping ends, the cross arms,
the boundaries, and the gauge zone comprise the physical model of shape optimisation
(Figure 7). The optimal results from the topology optimisation determine the geometry of
the cross arms (Figure 7). The following are the three components of shape optimisation:
the objective is to minimise the maximum von Mises stress within the optimisation region,
the variable is the shape of the boundary, and the constraint is to maintain the volume of
the optimisation region.
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Figure 7. A physical model for shape optimisation.

We developed the shape optimisation model based on the above finite element model
(Figure 8). In Abaqus’ shape optimisation module, we specified an optimisation region,
an objective, and a constraint to optimise. The design region consists of the nodes at the
boundary of the optimisation region; the optimisation objective is to reduce the maximum
Mises stress at the nodes of the optimisation region, and the optimisation constraint is
the constant volume of the cross-arm. To prevent mesh distortion, the mesh co-ordinately
deforms with the boundary. Other settings include: freezing the elements of clamping ends;
and orienting the Z-axis in the direction of element removal.

Figure 8. The finite element model for shape optimisation.
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The finite element model consists of the following (Figure 7):

1. Parts: the model consists of a single part, built according to Figures 4 and 5;
2. Mesh: the type of hexahedral element is C3D10, and the total number of nodes and

elements is 532,733 and 778,503, respectively (Figure 6). The five-element layers are
arranged along the Z-axis (the thickness direction);

3. Materials: the Young’s modulus, yield strength, and Poisson’s ratio of HC1200 are
210 GPa, 1200 MPa, and 0.3, respectively;

4. Steps: only one step is specified. Nonlinear geometric effects are considered;
5. Loads: we rigidly coupled the clamping parts X1, X2, X3, and X4 with four reference

points, RP1, RP2, RP3, and RP4 (Figure 8), respectively, to apply distributed force on
the clamping parts with the concentrated forces on four reference points. One load of
magnitude 40 kN is specified;

6. Boundary conditions: only the degrees of freedom U1 of RP1 and RP2, and U2 of RP3
and RP4, are released, and the other degrees of freedom are fixed.

Configuring a shape optimisation analysis using Abaqus (Figure 4):

1. Creating a shape optimisation task: switch to the optimisation module. In the create
optimization task dialogue box, set the type of optimisation to shape and select the
set DESIGN AREA: 1–4, as shown in Figure 8;

2. Select freeze boundary condition regions in the basic tabbed page: the nodes clamped
by the X1, X2, Y1, and Y2 fixtures (Figure 8);

3. Select specify smoothing region, and select the whole model;
4. Select fix all as the number of node layers adjoining the task region to remain free;
5. In the mesh smoothing quality tabbed page, set the target mesh quality to medium;
6. Creating design responses: in the create design response dialogue box, accept single-

term as the type, and select whole model as the design response region;
7. In the edit design response dialogue box, select stress and Mises hypothesis (the field

operator on values across steps and load cases is set to maximum value by default);
8. Creating an objective function: in the edit objective function dialogue box, add all

design responses eligible to participate in an objective function and change the target
to minimise the maximum design response values (Equation (3));

9. Creating a constraint: select volume for the design response, toggle on A fraction of
the initial value and enter 1 (Equation (4));

10. Create the stamping geometric restriction:

• Choose the entire model as the demold control region in the dialogue box for
creating geometric restrictions;

• Assign the demold technique to stamping, and define the pull direction via the
vector (0,0,1), which identifies the global Z-axis as the pull axis.

11. Submit an optimisation process for the optimisation task optimise-shape. Note that
the maximum cycle field is set to 100 for shape optimisation.

Typically, in shape optimisation, the goal is to homogenise the stress on the surface of
a component by adjusting the surface nodes (moving them inward or outward). Thus, min-
imisation is achieved by homogenisation. Shape optimisation is not limited to minimising
stresses; it may be extended to plastic strains, natural frequencies, etc. This research will
homogenise the Mises stress on the cross-arms intersection. The following is the objective
of the shape optimisation:

Min : σvon_mises, (3)

where σvon_mises is the von Mises stress of each node in the DESIGN AREA (Figure 8).
The purpose of creating volume constraints in shape optimisation is to ensure that

the overall volume of the component remains the same. In some cases, adding material
to reduce stress might be undesirable. In such cases, we can redistribute the material
to minimise the stress. Volume constraints ensure that either no material is added, or
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very little material is added, due to the shape optimisation. The following is the volume
constraints of the shape optimisation:

Vfinal = Vinitial, (4)

where Vinitial is the initial volume of all elements, and Vfinal is the final volume of all elements.

3. Results

Original, topology-optimised, and topology-optimised specimens combined with
shape-optimised specimens were designated type A, type B, and type C, respectively.
The three specimens subjected to equal biaxial tensile stress exhibit significantly different
stress distributions in the gauge zone. Compared with the stress distributions in the
specimens’ areas, directions, and loads above, we demonstrate that the optimised specimen
effectively improves the stress uniformity in the gauge zone and stress concentrations at
cross-arm intersections.

3.1. Von Mises Stress Distribution of the Specimen

Compared with type A (Figure 9a), the material of type B is redistributed in the cross-
arms and boundaries (Figure 9b). Type C further reduces the stress concentrations at the
intersection of the cross-arms (Figure 9c).

Figure 9. Stress distribution of the three specimens. (a) Type A: optimised specimen; (b) type B: specimen
with only topology optimization; (c) type C: specimen with topology combined with shape optimisations.
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Although type B maintains the stress concentration at the cross-arms intersection
(1050.0 MPa) in a similar way to type A (1035.0 MPa), the stress distribution in the gauge
zone is redistributed due to the material redistribution. Additionally, we performed shape
optimisations based on type B, such that the maximum von Mises stress of type C at the
cross-arms intersection decreases from 1050.0 MPa to 770.8 MPa.

Type C exhibits von Mises stress’s lowest standard deviation (10.9 MPa) in the entire
gauge zone, followed by type B (13.9 MPa). Compared with the above two optimised
specimens (type B and type C), type A exhibits a significantly higher standard deviation
(17.1 MPa).

3.2. Stress in Gauge Zone

To assess the stress uniformity in the gauge zone, we calculated the average and
standard deviation of the stresses (von Mises, S11, S22, and S12) within a square area centred
on the origin (Figure 10). A length ratio of 0.9 (a/A) was used as the quantified area to
mitigate the effects of stress concentration along the gauge zone boundary.

Figure 10. Quantified area of average and standard variation of stresses in the gauge zone.

The contour diagram of von Mises has 1 MPa spacing between consecutive contour
lines (Figure 11). Due to the slightest standard variation in the gauge zone, type C has
the best stress homogeneity for von Mises stress, followed by type B. Type A specimens
demonstrate significantly higher stress standard variation than the optimised specimens
(type B and type C).

Figure 11. Cont.
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Figure 11. von Mises stress of the three specimens. (a) Type A: optimised specimen; (b) type B:
specimen with topology-only optimization; (c) type C: specimen with topology combined with
shape optimisations.

As the straight lines of S22 and S11 are symmetrical in the 45◦ direction across the
origin, we list only the isoline of S11. Since the stress range of the original specimen S11
is too large compared to the optimised specimen, drawing with the same isoline interval
results in an isoline interval that is too near. Thus, the distance between the two contours
in the original S11 isoline map is 2 MPa, whereas the distance between the two isolines in
the S11 isoline of type B and type C is 1 MPa (Figure 12).



Materials 2022, 15, 5001 13 of 25

Figure 12. S11 of the three specimens in the gauge zone. (a) Type A: unoptimised specimen; (b) type B:
specimen with topology-only optimization; (c) type C: specimen with topology combined with
shape optimisations.
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The original specimen’s distribution of S11 is in the shape of a waist drum. The
optimised specimen’s distribution is in the shape of a strip. The optimised specimen’s
distribution is a combination of waist drum and strip. Even though the interval of the
original specimen’s isoline is twice that of the two isolines in the S11 isoline of topology
optimisation and topology optimisation combined with shape optimisation, the stress
gradient of the original specimen’s isoline is also significantly greater than the stress
gradient of the isoline of topology optimisation and topology optimisation combined with
shape optimisation.

The topology-optimised specimen has the lowest standard deviation (5.8 MPa) in the
observation area, followed by the sample optimised by topology combined with shape
(6.8 MPa). The original specimen’s standard deviation (14.9 MPa) is greater than the
two optimised specimens mentioned above.

Since the original specimen in S12 has an excessive variation range, drawing the same
isoline interval results in a dense isoline interval. Thus, the distance between two contours
in the original S11 isoline map is 8 MPa, whereas the distance between two isolines in
the S11 isoline of topology optimisation and topology optimisation combined with shape
optimisation is 5 MPa.

Type B has the slightest standard deviation (7.8 MPa), followed by type C (11.7 MPa).
Type A (25.5 MPa) has a more significant standard deviation than the optimised specimens
above (Figure 13).

Figure 13. Cont.
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Figure 13. S12 of the three specimens in the gauge zone. (a) Type A: unoptimised specimen; (b) type B:
specimen with topology-only optimization; (c) type C: specimen with topology combined with
shape optimisations.
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The results show that the standard deviation of the stress of the three specimens
decreases in turn in the same area (Table 1). Hence, the stress uniformity in the distance zone
of the specimens optimised by topological shape gradually increases. Notably, the average
stress values of the three specimens are different. The average stress after topological
optimisation is higher than that of the original specimens, and the original specimens of
the arm after shape optimisation are lower. The change in geometric parameters causes this
change. Different structural loads of the cruciform specimens have different efficiencies in
transferring from the clamp to the distance.

Table 1. The average and variance of stress in different regions.

Stress a/A
Type A Type B Type C

Average/MPa Std/MPa Average/MPa Std/MPa Average/MPa Std/MPa

von Mises

0.1 396.39 0.01 417.63 0.00 390.72 0.00
0.2 396.40 0.02 417.64 0.01 390.72 0.00
0.3 396.44 0.07 417.66 0.06 390.73 0.01
0.4 396.52 0.21 417.71 0.18 390.74 0.04
0.5 396.73 0.56 417.82 0.44 390.77 0.11
0.6 397.15 1.26 418.00 0.92 390.85 0.26
0.7 397.81 2.41 418.27 1.63 390.96 0.49
0.8 398.89 4.20 418.64 2.77 391.18 1.04
0.9 400.36 6.96 418.99 4.73 391.23 1.88
1.0 406.55 19.71 424.90 20.58 396.82 18.18

S11 or S22

0.1 396.40 0.11 417.63 0.07 390.69 0.04
0.2 396.39 0.55 417.63 0.29 390.69 0.20
0.3 396.41 1.37 417.66 0.66 390.68 0.49
0.4 396.45 2.24 417.70 1.00 390.70 0.79
0.5 396.51 3.79 417.80 1.50 390.72 1.36
0.6 396.66 5.89 417.97 2.04 390.75 2.17
0.7 396.91 7.87 418.22 2.70 390.79 3.02
0.8 397.16 11.12 418.58 3.78 390.82 4.61
0.9 397.06 14.87 418.61 5.78 390.35 6.79
1.0 400.87 25.18 423.88 23.10 394.67 22.26

S12

0.1 0.00 0.18 −0.02 0.12 0.08 0.06
0.2 −0.01 0.91 0.00 0.45 0.07 0.28
0.3 0.01 2.15 0.00 0.99 0.07 0.66
0.4 0.00 3.74 0.01 1.48 0.07 1.16
0.5 0.03 6.23 0.01 1.98 0.07 2.00
0.6 0.03 9.61 0.01 2.23 0.06 3.26
0.7 0.02 13.43 0.00 2.45 0.04 4.71
0.8 −0.01 18.59 −0.03 3.83 0.10 7.66
0.9 0.01 25.50 0.02 7.84 0.22 11.73
1.0 0.09 33.10 −0.01 12.50 0.10 15.83

3.3. Stress along Directions

The von Mises, S11, S22, and S12 values were retrieved to examine how the gauge zone’s
stress distribution varies with direction (Figure 14). We choose the von Mises, S11, and S22
distributions along a line segment whose normalised distance varies from 0.5 to 0.95 as the
observation object, because of the distribution symmetry and the stress concentration near
the gauge zone boundary.
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Figure 14. von Mises of the three specimens in four directions. (a) Type A: unoptimised specimen;
(b) type B: specimen with topology-only optimization; (c) type C: specimen with topology combined
with shape optimisations.
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The von Mises distributions at 0–45◦ and 45–90◦ about the 45◦ axis through the origin
are symmetric, so we calculate only the von Mises stress in the 0–45◦ direction.

While all three specimens have a comparable von Mises distribution from 0 to 45 de-
grees, their stress ranges vary considerably. Type C has the narrowest stress range, followed
by type B; type A has a more comprehensive stress range than the optimum specimens.

As the straight lines of S11 and S22 are symmetrical in the 45 degree direction across
the origin under equiaxial tension, we sketch the stress distribution of S11 along 0◦and 90◦

(Figure 15).

Figure 15. Cont.
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Figure 15. S11 of the three specimens in nine directions. (a) Type A: unoptimised specimen; (b) type B:
specimen with topology-only optimization; (c) type C: specimen with topology combined with
shape optimisations.

Compared with the distribution of von Mises in different directions, the distribution
of S11 in the marking distance area of three different specimens is different in different
directions: the original specimen’s maximum stress change direction is 0 and 90 degrees,
topology optimisation is 45 degrees, and topology optimisation combined with shape
optimisation is 30 and 60 degrees. The specimen optimised for topology and form has the
shortest range in all directions, followed by the specimen optimised for topology alone. The
original specimen’s range in all directions is greater than the ranges of the two optimised
specimens mentioned above.

The topology-optimised specimen has the lowest stress range for S12, followed by the
topology and shape-optimised specimen (Figure 16). Stress distributions in all directions
for topology-optimised specimen S12 and topology optimisation combined with shape
optimisation differ from those observed for the original specimen, particularly those in
the 45 degree direction: S12 from the centre to the boundary, where the original specimen
and the specimen of topology optimisation combined with shape optimisation decrease,
whereas the specimen of topology optimisation increases first and then decreases, which
makes the stress distribution of the specimen optimised for topology and shape similar to
that of the original specimen in different directions, but the former exhibits more minor
stress change than the latter.
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Figure 16. S12 of the three specimens in nine directions. (a) Type-A: unoptimised specimen; (b) type B:
specimen with topology-only optimization; (c) type C: specimen with topology combined with
shape optimisations.
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We calculated the average and variation of stresses in three distinct directions on three
types of specimens to assess the stress homogeneity in all directions (Table 2). For von Mises
stress, the uniformity of the specimen with topology optimisation and topology optimi-
sation combined with shape optimisation is significantly better than that of the original
specimen in the 30 and 45 degree directions, whereas, for S11, S22, and S12, the uniformity
of the specimen with topology optimisation and topology optimisation combined with
shape optimisation is significantly lower in all directions than that of the original specimen.

Table 2. Stress distribution in different directions in the gauge area.

Stress Direction
Type A Type B Type C

Average/MPa Std/MPa Average/MPa Std/MPa Average/MPa Std/MPa

von
Mises

0◦ 395.90 1.04 416.10 2.37 390.24 0.98
15◦ 396.50 0.47 416.68 1.67 390.35 0.96
30◦ 398.90 3.37 418.70 1.27 391.03 0.38
45◦ 402.80 8.87 421.53 5.10 392.19 2.08
60◦ 399.02 3.52 418.72 1.27 391.10 0.58
75◦ 396.60 0.34 416.69 1.63 390.49 0.66
90◦ 395.97 0.83 416.13 2.31 390.22 1.12

S11

0◦ 406.04 8.61 416.10 2.37 392.71 1.81
15◦ 405.66 8.36 416.68 1.67 393.43 2.34
30◦ 404.29 7.51 418.70 1.27 394.68 4.66
45◦ 399.40 3.75 421.53 5.10 391.10 0.76
60◦ 389.87 6.22 417.42 2.84 385.89 5.99
75◦ 385.21 11.38 418.52 1.88 386.56 4.44
90◦ 383.91 12.85 419.48 1.21 387.52 2.77

S22

0◦ 383.91 12.85 419.48 1.21 387.52 2.77
15◦ 385.21 11.38 418.52 1.88 386.56 4.44
30◦ 389.87 6.22 417.42 2.84 385.89 5.99
45◦ 399.40 3.75 421.53 5.10 391.10 0.76
60◦ 404.29 7.51 418.70 1.27 394.68 4.66
75◦ 405.66 8.36 416.68 1.67 393.43 2.34
90◦ 406.04 8.61 416.10 2.37 392.71 1.81

S12

0◦ 0.01 0.03 −0.12 0.09 −0.28 0.34
15◦ −6.51 6.45 2.28 2.19 −1.23 0.90
30◦ −14.11 14.06 1.24 2.10 −5.09 5.12
45◦ −21.68 21.73 −3.36 9.94 −11.20 13.34
60◦ −14.13 14.10 1.45 2.04 −4.65 4.72
75◦ −6.52 6.46 2.54 2.40 −1.83 1.36
90◦ 0.01 1.40 0.13 0.68 0.28 0.33

3.4. Stress with Load Ratios

For the same observation area and load ratio, the von Mises, S11, S22, and S12 variances
of type B and type C are significantly smaller than those of type A (Table 3). Furthermore,
the stress uniformity of the type C (further shape-optimised) specimen decreases compared
to that of the type B (topology-only) specimen.
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Table 3. Stress uniformity in the gage zone under different load ratios.

a/A Stress Ratio
Average/MPa Std/MPa

Type A Type B Type C Type A Type B Type C

0.9

von
Mises

1:4 451.00 445.10 416.00 28.43 17.36 16.76
1:2 390.60 395.40 369.50 21.76 11.33 11.67
3:4 371.90 385.70 360.20 13.02 6.54 6.21
1:1 400.30 418.90 391.20 6.96 4.73 1.88

S11

1:4 31.60 54.20 49.60 15.50 14.21 10.09
1:2 153.40 175.60 163.20 9.44 9.44 6.06
3:4 275.20 297.10 276.80 9.10 5.74 4.27
1:1 397.00 418.60 390.30 14.87 5.78 6.79

S22

1:4 464.70 469.00 438.10 28.72 16.66 15.79
1:2 442.10 452.20 422.20 23.59 12.24 12.45
3:4 419.60 435.40 406.30 18.85 8.27 9.34
1:1 397.00 418.60 390.30 14.87 5.78 6.79

S12

1:4 0.02 −0.15 0.28 16.73 11.65 12.35
1:2 0.02 −0.10 0.25 19.43 9.18 11.53
3:4 0.01 −0.04 0.22 22.38 7.71 11.73
1:1 0.01 0.02 0.22 25.50 7.84 11.73

0.6

von
Mises

1:4 468.13 451.97 421.74 13.11 5.23 5.80
1:2 398.40 398.43 372.11 9.82 2.94 4.21
3:4 371.83 385.86 360.70 5.50 1.32 2.26
1:1 397.15 418.00 390.85 1.26 0.92 0.26

S11

1:4 18.80 48.34 45.80 7.75 6.70 3.79
1:2 144.75 171.55 160.78 4.67 4.98 2.15
3:4 270.71 294.76 275.77 3.65 3.35 1.19
1:1 396.66 417.97 390.75 5.89 2.04 2.17

S22

1:4 477.08 474.13 442.72 12.77 5.19 5.88
1:2 450.28 455.41 425.42 10.21 3.22 4.56
3:4 423.48 436.69 408.12 7.84 1.67 3.29
1:1 396.66 417.97 390.75 5.89 2.04 2.17

S12

1:4 0.03 −0.18 0.19 6.11 3.06 3.31
1:2 0.03 −0.12 0.13 7.24 2.47 3.15
3:4 0.03 −0.06 0.06 8.41 2.15 3.26
1:1 0.03 0.01 0.06 9.61 2.23 3.26

0.3

von
Mises

1:4 480.01 457.61 426.15 3.50 1.41 1.49
1:2 404.39 401.13 374.30 2.56 0.71 1.06
3:4 372.98 386.33 361.19 1.40 0.18 0.56
1:1 396.44 417.66 390.73 0.07 0.06 0.01

S11

1:4 10.41 44.07 42.61 2.12 1.91 1.04
1:2 139.08 168.60 158.64 1.26 1.47 0.60
3:4 267.74 293.13 274.67 0.84 1.04 0.29
1:1 396.41 417.66 390.68 1.37 0.66 0.49

S22

1:4 485.13 478.04 445.86 3.32 1.24 1.49
1:2 455.56 457.91 427.49 2.60 0.71 1.13
3:4 425.99 437.78 409.13 1.93 0.36 0.79
1:1 396.41 417.66 390.68 1.37 0.66 0.49

S12

1:4 0.02 −0.18 0.22 1.35 0.66 0.50
1:2 0.02 −0.12 0.14 1.61 0.76 0.57
3:4 0.01 −0.06 0.07 1.88 0.87 0.66
1:1 0.01 0.00 0.07 2.15 0.99 0.66

4. Discussion

We found that topology and shape optimisations could improve the stress uniformity
of the original specimen in the gauge zone. In the quantified section of the gauge area, the
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optimised specimen geometry produces a more uniform stress distribution, whose value is
determined indirectly by simulations each time. Type C has the lowest standard deviation
in von Mises stress for equal biaxial tensile stress, while type B has the lowest standard
deviation in S11, S22, and S12. Type B and type C have markedly smaller von Mises, S11,
S22, and S12 standard deviations than type A for the four load ratios. The above results
show significantly improved stress uniformity of type B and type C in the gauge zone.
A slight difference in the distribution of von Mises, S11, S22, and S12 could be attributed to
the differences in the forms of type B and type C boundaries. With type C and type B both
having the advantages of topology optimisation, the uniformity of von Mises, S11, S22, and
S12 distributions are significantly improved compared to type A. In addition, the optimised
specimens under biaxial tensile loading are suitable for different load ratios.

Shape optimisation of the specimen reduces the stress concentration at the intersection
of the cross-arms, which is beneficial for preventing pre-failure outside of the gauge zone.
Stress uniformity in the gauge zone is affected by the concentration of stresses at the cross-
arm intersection [2–6,11]. Type C is slightly less uniform than type B in terms of the S11,
S22, and S12 distributions because the changes in boundary shape hinder the load transfer
improved by topology optimisation. However, to avoid pre-failure at the position of stress
concentration, the boundary shape of the cross-arm intersection should be enhanced by
employing shape optimisation. While we only optimised centre-reduced specimens, the
shape optimisation method can also be applied to other forms of cruciform specimens, for
example, inside concave fillets at the cross-arm intersection and slots on the cross-arms.

The stress distribution of the cruciform specimen in the gauge zone primarily rests
on its structure [12,14,26]. According to optimization results from S. Demmerle, stress uni-
formity in the gauge area is markedly affected by the geometric structure of the cruciform
specimen [8]. The specimen’s structure determines its force transmission characteristics,
which remain stable with minor strains. Materials’ constitutive model and test objectives
can be changed to optimised cruciform specimens that could adapt to different working
conditions and research purposes. Specific materials are solely correlated with measur-
ing strain rather than affecting the stress distribution for the same structure. Therefore,
although we only discussed the stress uniformity in the gauge zone within the linear elastic
material, we could apply the method to design cruciform specimens with various materials
for minor strain, or even large strain, measurement by changing optimisation objectives
through specific test requirements.

As a result of extending the fillet radius and optimizing the transition form, Gozzi
reduces the stress concentration at the intersection of the cross-arm, but the stress distri-
bution along the boundary of the cruciform specimen remains uneven [7]. Increasing the
radius of the fillet could not solve the problem of stress concentration at the intersection
of the cross-arms. In this research, shape optimization was accomplished by using the
fillet radius as the starting point for constructing a new boundary that distributes stress
at the lowest level possible. Further, slotting the cross arm changes the material distribu-
tion to enhance stress distribution in the gauge area, which is consistent with topology
optimization [9]. After topology and shape optimization, the cruciform specimen’s gauge
zone stress uniformity considerably improved, supporting the hypothesis that at least one
material distribution (the optimised specimen in this study) can improve gauge zone stress
uniformity in addition to slotting.

Unlike parameter optimisations [8–11,15–18], topology and shape optimisations im-
prove stress uniformity by enhancing load transmission. Both of the above non-parametric
optimisation methods are not bound by geometric parameters, increasing the chance of
an optimal solution. As a result, non-parametric optimisation may be more effective than
parametric optimisation for optimising cruciform specimens. Although we only carried
out the numerical verification of the optimised specimen, the verified results demonstrate
that the method improves the stress uniformity in the gauge zone, and reduces the stress
concentration at the cross-arms intersection.
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Using topology and shape optimisations, we designed a new cruciform specimen
with significantly improved stress uniformity in the gauge zone. This method helps obtain
reliable in-plan biaxial test results, by optimising the stress uniformity in the gauge zone,
reducing the pre-failure caused by stress concentration.

5. Conclusions

We developed a novel centre-reduced cruciform specimen by optimising the topology
and shape of the specimen using the finite element method. The results demonstrate
a marked increase in stress uniformity compared to the original cruciform specimen.
Additionally, the stress concentration at the intersection of the cross-arms is diminished.
By improving the load path from the clamping end to the gauge zone, we improved the
stress uniformity of the gauge zone, which may ensure the quality of the in-plane biaxial
test results, and enable extensive strain tests.

Further research should be conducted to develop non-parametric optimisation meth-
ods coupled with specific working conditions to improve the stress uniformity of the gauge
zone, and reduce the stress concentration at the cross-arm interface. As it stands, various
optimisation techniques should be incorporated into the design of the cruciform specimen
to address functional design issues, such as how to eliminate pre-failures at cross-arm
intersections and determine nominal stress related to the applied load.
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