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Abstract Myogenic Regulatory Factors (MRFs), a family

of basic helix-loop-helix (bHLH) transcription factors, play

important roles in regulating skeletal muscle development

and growth. Myf5, the primary factor of MRFs, initiates

myogenesis. Its expression pattern during somitomyogen-

esis in some fish has been revealed. To further study its

effect on fish muscle during postembryonic growth, char-

acterization and function analysis of myf5 cDNA were

carried out in largemouth bass. The 1,093 bp cDNA

sequence was identified by RT-PCR and 30RACE, then

the ORF of Myf5 cDNA was cloned into the expression

vector pcDNA3.1(-)/mycHisB. The recombinant plasmid

pcDNA3.1(-)/mycHisB-Myf5 was injected into the dorsal

muscle of tilapias. RT-PCR and histochemical results

showed that the exogenous gene was transcribed and

translated in vivo. Its effect on muscle growth focused on

myofiber hypertrophy in white muscle 60 days post injec-

tion. This indicated that overexpression of Myf5 can

promote myogenesis during the fish muscle postembryonic

growth period.
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Introduction

The cell fate of skeletal muscle precursor is determined by

the expression of myogenic regulatory factors (MRFs) that

include Myf5, MyoD, myogenin and MRF4. These nuclear

proteins all contain a basic helix-loop-helix (bHLH)

domain. By the bHLH domain, they can dimerize with

E-proteins to form protein dimmers [1–4] and bind to the

consensus DNA sequence (CANNTG) as an E-box to

activate the transcription of muscle-specific genes, such as

the muscle creatine kinase gene and myosin light chain

gene [5–7]. MRFs are expressed specifically in muscle

cells, and forced expression in other cell types could induce

the muscle differentiation programs in these cells [8, 9].

Myf5, as the first expressed MRF, plays an essential role in

the specification and proliferation of myoblasts [10–12].

Human Myf5 was discovered in 1989, and found to be

capable of converting mouse 10T1/2C3H fibroblasts into

myosin expressing myotubes [13]. Myf5 gene-knockout

mice exhibited delayed development of the epaxial muscu-

lature and died from severe rib abnormalities, suggesting that

Myf5 primarily regulates the epaxial musculature formation

[14–17]. In fish, several MRFs have been cloned and their

molecular mechanisms on muscle development and growth

have been partially revealed. For example, Myf5 expression

patterns during simitomyogenesis have been uncovered in

zebrafish [18], striped bass [19], flounder [20] and sea perch

[21]. In morpholino-injected zebrafish embryos, abnormal

muscle development and defective somite patterning have

been observed, suggesting that Myf5 plays a similar role in

zebrafish and mammals [22]. Its function on postembryonic

muscle growth was only reported in rainbow trout. During

rainbow trout postnatal development, the expression of

MRFs were revealed to be correlated with the muscle growth

pattern [23], but the concrete mechanism of the promotion of
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muscle fiber postembryonic growth is still unclear. Unlike

mammals, most of fish skeletal muscles grow dramatically

during the post-larval life, involving continuous myofiber

hyperplasia and hypertrophy processes [24]. The prolifera-

tion of a population of myogenic progenitor cells (MPCs)

showing varying degrees of commitment to terminal dif-

ferentiation to myoblasts contribute to these two processes

[25]. Thus, MRFs may also have an important role in regu-

lating muscle formation and growth during the postnatal

period in fish. Investigating the effect of Myf5 on postem-

bryonic fish muscle growth will be an important part of the

molecular basis of muscle development and growth.

Largemouth bass has become an important cultured

commercial freshwater species in China, and is a good

subject for the study of fish growth as it has rapid postnatal

growth. Here we report the isolation and characterization of

the largemouth bass Myf5 cDNA, and the effect of its

overexpression on postembryonic muscle growth in fish.

Materials and methods

Experimental fish

Largemouth bass and Nile tilapia were obtained from Pearl

River Fisheries Research Institute. Nile Tilapia, which also

belong to Perciformes, were used as the experimental

animals to evaluate the effect of largemouth bass Myf5 on

muscle growth for its close relationship to largemouth bass,

easier raising and handling, and fewer diseases usually

occur when kept in captivity than largemouth bass itself.

The total length of the Nile tilapia used in this study ranged

from 10 to 14 cm. The Nile tilapia during this period

showed the high growth rate. These Nile tilapia which all

came from the full-sibs family, were injected with plasmids

and further cultured for two months under controlled

conditions (temperature 24 ± 1�C; photoperiod 14:10

light:dark). All the fish were anaesthetized before handling.

Isolation of largemouth bass Myf5 cDNA

Total RNA was extracted from the trunk muscle of the

largemouth bass weighing 400 g, using the SV Total RNA

Isolation System (Promega). First-strand cDNA was syn-

thesized using the TaKaRa RNA PCR Kit (AMV) Ver. 3.0

(TaKaRa). Three primers were designed with reference to

the known nucleotide sequences of Myf5 from fish such as

zebrafish, carp, striped bass, flounder, and rainbow trout. The

sense primer F1 used was located at the initiation codon and

the nested sense primer F2 used was located at the down-

stream of F1; F1: ATGGA(T/C)GTCTTCTC(G/A/C)(A/C)

CATCCC and F2: CGCCATCCAGTACATCGAGAG. The

antisense primer used was R1: TCACAG(G/T)ACGTGG

TAGACGGG. The PCR was performed using F1 and oligo

dT adaptor primer (in kit, including dT and M13 Primer M4):

GTTTTCCCAGTCACGAC. The parameters were 28 cycles

of 94�C for 30 s, 54�C for 30 s, 72�C for 1 min, with an

additional initial 3-min denaturation at 94�C and a 5-min final

extension at 72�C. Then the nested PCR was performed using

F1 and R1. 30RACE was conducted using F2 and the M13

Primer M4 (obtained from the kit) according to the parameters

above. The PCR products were subsequently cloned into the

pMD19 T-vector (TaKaRa) and sequenced. The two frag-

ments were then spliced to obtain the ORF and the 30UTR.

Construction of the recombinant plasmid

pcDNA3.1(-)/mycHisB-Myf5

Two primers were designed to modify the Myf5 open read-

ing frame (ORF) of largemouth bass, including an extra ApaI

and XbaI adapter respectively. The sense primer F3: ATAG

GGCCCACCATGACGTCTTCTCACCATC, and antisense

primer R2: AGATCTAGAAACAGGACGTGGTAGAC,

were synthesized (Invitrogen). After PCR amplification with

PfuDNA polymerase, the product was digested with ApaI

and XbaI, and cloned into the same sites of the pcDNA3.1

(-)/mycHisB plasmid (Invitrogen) to generate the recom-

binant pcDNA3.1(-)/mycHisB-Myf5 expression plasmid

which was driven by the cytomegalovirus promoter (CMV).

Route of plasmid intramuscular injection

Tilapia were anaesthetized using 100 mg/l MS-222 (Sigma)

to avoid the fish struggling and the resulting muscle con-

tractions which lead to a decrease of DNA-expression in

mice [26]. About 40 lg pcDNA3.1(-)/mycHisB-Myf5 and

pcDNA3.1(-)/mycHisB plasmid were dissolved in 100 ll

0.75% NaCl respectively. The recombinant plasmid was

injected into the tilapia dorsal muscle at the fifth scale in the

lateral line of the right side to a depth of 5–7 mm at an angle

of 45�, and the same position of the opposite side with the

same depth was injected using the non-recombinant plasmid

as a control. 48 h post-injection, total RNA was extracted

from the muscle at the injected place using Trizol (Invitro-

gen), then was digested by RNase-Free DNase (Promega) to

confirm no plasmid in RNA sample. RT-PCR was then

conducted to examine the locally transcription of the exog-

enous gene using the sense primer F4: GCCATCCATTACA

TGAGAGTC located at nucleotide position 331 of the

largemouth bass Myf5 ORF and the antisense primer R3:

CCTCTTCTGAGATGAGTTTTTG located in the myc

tag of the recombinant plasmids. On the eighth day post-

injection, immunohistochemistry was used to examine the

translation of the exogenous gene. The recombinant plasmid

expresses the Myf5:mychis fused protein which can be

detected with the Anti-His Tag mouse monoclonal antibody.
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The muscle of the injection position was cut transversely

into 1 9 1 9 1 cm3 and sectioned using routine paraffin

sectioning. The Anti-His Tag mouse Monoclonal Antibody

(BOSTER, China) was used as the first antibody (diluted

1:100 in PBS). All steps were carried out according to the

SABC (Strept-Avidin Biotin Complex) kit protocol (BOS-

TER, China); the diaminobenzidine (DAB) substrate kit

(BOSTER, China) was used for visualization. Sections were

then rinsed and lightly stained with hematoxylin.

Evaluation of myofiber diameter and density

Sixty days post-injection, three individual tilapias were

analyzed. The muscles of the same injection places in two

sides was transversely cut into 0.5 9 0.5 9 1 cm3 tissue

small blocks and fixed with formalin for 24 h, and then

embedded in paraffin, sectioned and stained with hematox-

ylin/eosin. The same hemi-myotomes in experiment and

control sections from the same position of the two sides were

selected for the measurement of diameters and densities of

the muscle fibers (fibers were assumed to be roughly cylin-

drical). In one section, consecutive five different microscope

fields (10 9 10) from the outer myofiber layers to inner were

photographed, and these five fields almost covered the

hemi-myotome in the section. The five pictures were mea-

sured respectively, and added up to obtain the mean value of

the myofiber diameter and density. More than 500 white

muscle fibers were observed per fish. The red muscle fibers

are a thin layer on the body surface, and the cell numbers are

limited. Thus more than 150 red muscle fibers were analyzed.

A Student’s t-test was used to determine whether significant

differences existed between the recombinant plasmid injec-

tion sites and the non-recombinant plasmid injection sites.

Results

Sequences of nucleotide and deduced amino acid

of largemouth bass Myf5

The cDNA length of largemouth bass Myf5 was 1,093 bp and

contained a 723 bp ORF with a 370 bp flanking region at the

30-end (GenBank accession no. EU555403). The deduced

amino acid sequence of largemouth bass Myf5 revealed a 240

amino acid polypeptide that contained a bHLH domain

located at amino acid positions 56–124 (Fig. 1). No signal

peptide was found using the SignalP3.0 analysis software

on line (http://www.cbs.dtu.dk/service/SignalP).

Fig. 1 Nucleotide and deduced

amino acid sequences of

largemouth bass Myf5 cDNA.

The bHLH domain is

underlined; THA

polyadenylation signal

ATTAAA is shown in dark
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An alignment of the amino acid sequence of several Myf5

homologs reveals that the largemouth bass Myf5 shared

higher identity with fish Myf5 than other vertebrate species

(Fig. 2). For example, largemouth bass Myf5 exhibits 93%,

92%, 92%, 82%, 76% and 75% identity with sea perch [21],

striped bass [19], flounder [20], rainbow trout [27], carp [28]

and zebrafish [18]; and 56%, 56%, 57%, 57% and 57%

identity with chicken [29], bovine [30], mice [31], humans

[13], and the African clawed frog [32], respectively. The

alignment results showed that Myf5 polypeptide sequences

Fig. 2 Comparison of the

amino acid sequences and

domains of the Myf5 protein

among vertebrates. The

sequence of the bHLH domain

is underlined. The putative

amino acid sequence of

largemouth Myf5 (GenBank

accession no. EU555403) is

compared to the amino acid

sequences of Stripped bass

(Morone saxatilis, AF463525);

Sea perch (Lateolabrax
japonicus, DQ407725);

Flounder (Paralichthys
olivaceus, DQ872515);

Zebrafish (Danio rerio,

AF270789); Carp (Cyprinus
carpio, AB012883); Atlantic

salmon (Salmo salar,

DQ452070); Rainbow trout

(Oncorhynchus mykiss,

AY751283); Fugu rubripes

(Takifugu rubripes, AY445319);

Pufferfish (Tetraodon
nigroviridis, DQ453127);

Human (Homo sapiens,

X14894); Mouse (Mus
musculus, NM_008656); Cow

(Bos taurus, M95684); Chicken

(Gallus gallus, X73250) and

African clawed frog (Xenopus
laevis, X56738). The alignment

was generated using vector NTI

7.0 software. Identical and

similar residues are shaded

black and gray, respectively
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of largemouth bass, sea perch and striped bass, which all

belong to Perciformes, are highly conserved.

Identification of the recombinant plasmid pcDNA3.1(-)/

mycHisB-Myf5 for the intramuscular injection

When the 6,156-bp constructed recombinant plasmid was

double-digested with ApaI and XbaI, a 729 bp DNA frag-

ment was obtained as expected. Sequencing results

revealed that the ORF was complete and correct.

RT-PCR result to confirm transcription

of the exogenous gene

The recombinant plasmid pcDNA3.1(-)/mycHisB-Myf5

and non-recombinant plasmid pcDNA3.1(-)/mycHisB

were injected into trunk muscle of Nile Tilapia. RT-PCR

was used to detect the transcription of the exogenous gene.

The right side of the tilapia dorsal muscle injected with the

pcDNA3.1(-)/mycHisB-Myf5 plasmid was selected as the

experimental group, and the same position of the opposite

side of the fish that was injected with the pcDNA3.1(-)/

mycHisB plasmid was used as the control. On the third day

post-injection, RT-PCR was used to examine the exoge-

nous gene transcription with using the sense primer located

in the largemouth bass Myf5 ORF and the antisense primer

located in the myc tag of the recombinant plasmid. The

results demonstrated that the experimental side of the fish

where the pcDNA3.1(-)/mycHisB-Myf5 plasmid had been

injected showed myf5mycHis expression, while no tran-

scription was detected in the control side (Fig. 3).

Immunohistochemistry results to confirm translation

of the exogenous gene

Expression of myf5mycHis was confirmed by immunohis-

tochemical staining of the transfected muscle 7 days after

injection. The Anti-His Tag mouse Monoclonal Antibody

(BOSTER, China) was used as the first antibody and the

Biotin-Goat anti-mouse IgG (BOSTER, China) was used as

the second antibody. Immunohistochemical sections of

tilapia muscle are shown in Fig. 4. The transfected muscle

cells were strongly stained around the injection site in the

experimental side, but not stained on the control side.

Evaluations of muscle fiber change

Sixty days post-injection, the muscle around the injection

position from the three individual tilapias were fixed with

formalin for 24 h followed by routine paraffin sectioning

Fig. 3 RT-PCR to examine myf5mycHis transcription in vivo. Lane
1: beta-actin from the experimental side of the injected fish. Lane 2:

beta-actin from the control side of the injected fish. Lane 3: beta-actin

from non-injected fish. Lane 4: blank control. Lane 5: MarkerIII. Lane
6: myf5-mycHis from the experimental side of the injected fish. Lane
7: myf5-mycHis from the control side of the injected fish. Lane 8:

myf5-mycHis from non-injected fish. Lane 9: blank control. Lane 10:

the positive myf5-mycHis control (421 bp)

Fig. 4 Detection of myf5mycHis expression in vivo by immunohis-

tochemistry. (a) The positive sample, the fusion protein expressed has

been stained as shown by the brown spots, as the arrows indicate and

(b) the control sample
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and hematoxylin/eosin staining (Fig. 5). The myofiber

diameters of white and red muscle were evaluated

respectively from the two sides of each tilapia (Table 1).

The white muscle fiber diameters of fish 1, 2, and 3

increased 10% (5.2 lm), 9% (4.5 lm) and 7% (3.5 lm)

respectively compared with the control side; the average

increase was 9%. The size of the red fibers, however, had

no significant changes (P [ 0.05).

Discussions

Polypeptide structure analysis

The bHLH domain is present in some transcriptional reg-

ulators and is involved in DNA binding and protein

dimerization. This domain of largemouth bass Myf5 is

exactly identical to that of other vertebrates and exhibits

Fig. 5 Muscular paraffin

sections of experimental and

control injection sides in fish 1

(10 9 10), and the percentage

of myofiber cells with different

diameters shown in the

histogram

Table 1 Myofiber diameter

statistical analysis on day 60

post-injection

White muscle fiber diameter (lm) Red muscle fiber diameter (lm)

Experiment Control Experiment Control

Fish 1 57.5 ± 18.6 52.7 ± 12.1 39.7 ± 11.3 38.5 ± 8.0

N = 512 N = 528 N = 264 N = 232

P \ 0.01 P [ 0.05

Fish 2 54.1 ± 14.8 49.6 ± 12.3 29.6 ± 8.3 30.0 ± 8.4

N = 574 N = 589 N = 236 N = 241

P \ 0.01 P [ 0.05

Fish 3 56.7 ± 16.4 53.2 ± 17.1 35.2 ± 9.2 36.8 ± 8.7

N = 551 N = 557 N = 157 N = 163

P \ 0.01 P [ 0.05
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99%, 97%, 93%, 84% and 84% identity with sea perch,

striped bass, zebrafish, mice and humans, suggesting that

largemouth bass Myf5 probably acts as a transcriptional

factor to regulate muscle-specific genes, as its homologs do

in other species.

The effect of exogenous Myf5 on fish muscle fiber size

and density

Considered with the difficulty in the culture of fish muscle

cells and satellite cells, we tried the intramuscular injection

of plasmid pcDNA3.1(-)/mycHisB-Myf5 to study the

effect of Myf5 on fish muscle growth rather than the tran-

sient transfection of foreign gene Myf5 into muscle cells.

This strategy was demonstrated available by the RT-PCR

and immunohistochemistry results.

Fish postembryonic muscle growth is different from

mammals. In mammals, the number of muscle fibers is

determined at birth, and muscle fibers only increase in

diameter after birth [33]. The muscle fibers absorb addi-

tional nuclei derived from the proliferation of so-called

satellite cells located between the basal lamina and sarco-

lemma [34]. In fish, however, postnatal muscle growth is

characterized by continuous myofiber hyperplasia and

hypertrophy [24]. Fish myogenic progenitor cells (MPCs),

responsible for the postembryonic growth in teleosts, are

analogous to satellite cells in mammals, but not exactly the

same as they are not always located beneath the basal

lamina of muscle fibers [35, 36]. The model describing the

main events of myogenesis in teleost skeletal muscle is that

the pluripotent stem cells are specified to become myo-

genic progenitor cells (MPCs), and MPC progeny undergo

a proliferation phase, and ultimately differentiate into

myoblasts which have two cellular fates [25]. First, myo-

blasts can fuse into short myotubes that can be extended

through the absorption of additional myoblasts to form new

myofibers. Second, if the myoblasts were absorbed directly

by existing fibers, the fiber-myoblast fusion can result in

hypertrophy of the fibers [25]. In our experiment, the effect

of Myf5 overexpression mainly focused on muscle fiber

hypertrophy and the myofiber diameter was found to

increase by 9% on average. Myofiber density, however, did

not increase as expected and instead, all decreased (data

not shown), suggesting that Myf5 may be responsible for

the hypertrophy of muscle fiber predominantly during

the post-larval period of fish. There is a restriction to the

methodology used, however, in that an increase in the

cross-section area of myofibers can result in a decrease in

the number of myofibers fixed in a microscope field. The

effect of myf5 on the process of muscle hyperplasia during

the fish postnatal period needs to be further investigated. In

our experiment, no significant changes were found for the

red fibers. A determination for whether or not MPCs in red

muscle have a different signal regulating pathway during

fish postnatal muscle growth is worthy of further study.

In any case, it is likely that overexpression of exogenous

Myf5 activated the differentiation of quiescent MPCs into

myoblasts, myoblasts fused into the adjacent fibers and

ultimately might lead to the hypertrophy of the existed

fiber. In conclusion, this study indicated that the exogenous

Myf5 probably promoted myogenesis during the postem-

bryonic muscle growth period in fish.
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