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Abstract

Understanding and identifying the markers and clinical information that are associated with

colorectal cancer (CRC) patient survival is needed for early detection and diagnosis. In this

work, we aimed to build a simple model using Cox proportional hazards (PH) and random

survival forest (RSF) and find a robust signature for predicting CRC overall survival. We

used stepwise regression to develop Cox PH model to analyse 54 common differentially

expressed genes from three mutations. RSF is applied using log-rank and log-rank-score

based on 5000 survival trees, and therefore, variables important obtained to find the genes

that are most influential for CRC survival. We compared the predictive performance of the

Cox PH model and RSF for early CRC detection and diagnosis. The results indicate that

SLC9A8, IER5, ARSJ, ANKRD27, and PIPOX genes were significantly associated with the

CRC overall survival. In addition, age, sex, and stages are also affecting the CRC overall

survival. The RSF model using log-rank is better than log-rank-score, while log-rank-score

needed more trees to stabilize. Overall, the imputation of missing values enhanced the mod-

el’s predictive performance. In addition, Cox PH predictive performance was better than

RSF.

Introduction

Colorectal cancer (CRC) is the second leading cause of mortality in women and third in men

[1]. The American cancer society estimate, about 1 in 23 men and 1 in 25 women develop colo-

rectal cancer in their lifetime [2]. Globally, there were about 19.3 million new cancer cases in

2020 alone, while close to 10 million deaths were recorded due to cancer [3]. CRC represents

9.4% of cancer deaths and 10% of newly diagnosed cancer cases [3]. The incidence and mortal-

ity in males are 10.6% and 9.3%, respectively, while the incidence and mortality in females are

9.4% and 9.5%, respectively [3]. Early detection of CRC can reduce mortality due improved
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chemotherapy regimens and surgical techniques [4–6]. The prognosis and survival of early

intervention with CRC patients are linked with tumor staging, where early diagnosis of the

tumor is more likely to be curable [7]. The 5-year relative survival rates for patients with local-

ized CRC was 91% in the USA between 2010 and 2016 [8]. However, the 5-year relative sur-

vival rates of CRC cases at regional and distant stages are 72% and 14%, respectively [8]. The

main characteristics of the CRC are that it has high inter-patient and intra-tumor heterogene-

ity. Other factors such as environment, lifestyle, and diet can lead to further heterogeneity in

the CRC occurrence and progression [9–11]. This heterogeneity leads to variations in response

to treatment between individuals. Determining the molecular markers is clinically essential to

help detect and precisely predict the prognosis of patients with CRC.

Researchers have developed many methods to determine the prognostic molecular markers

to early detect and predict the prognosis of patients with CRC. These methods include univari-

ate and multivariate Cox proportional hazard models, elastic net estimation, and random for-

ests for survival prediction [4, 7, 12–15]. Previous studies such as, Abdul Aziz et al. [12]

analyzed the CRC death using the Cox proportional hazard model, and they reported a 19

gene signature that could predict the survival of CRC patients with Dukes’ B and C stages. In

their work, Abdul Aziz et al. used SAM, limma, and t-test to identify the most significant genes

based on microarray gene expression data. Dai et al. [4] conducted a survival analysis using

univariate and multivariate Cox models based on three microarray datasets from GEO and

one dataset from the TCGA database. They used the DEGs from each of the three microarray

datasets, and they identified 105 mutual DEGs based on the intersection of the three DEGs

lists. They conducted a protein-protein interaction network (PPI) of the DEGs, and they iden-

tified hub genes. To investigate the 44 hub genes’ prognostic values in CRC, they conducted a

survival analysis using the sample splitting and Cox regression models based on the TCGA

dataset. Their results showed that two down-regulated and two up-regulated hub genes were

significantly associated with the CRC patients’ overall survival.

Bian et al. [7] analyzed data from four microarray datasets and identified DEGs from each

of them. They identified the common genes across the four datasets, and this way, they

obtained 53 genes. Then they utilized PPI, which identified ten essential genes according to

their degree value, betweenness centrality, and closeness centrality. They used gene expression

profiling interactive analysis (GEPIA) to apply survival analysis using the log-rank test based

on the expression levels. Their results showed that four low expressed genes out of the ten

genes were significantly related to unfavorable prognosis in the patients with CRC. Martinez-

Romero et al. [14] identified a new set of gene markers associated with CRC to predict tumor

progression and evolution towards inferior survival stages based on an integrated gene expres-

sion dataset of 1273 CRC samples. They compared the early and late stages of CRC using

limma to identify the genes (2707 DEGs) that had a significant effect on CRC tumor progres-

sion. Then, they applied Kaplan-Meier to rank the genes based on the non-parametric log-

rank test. Their results identified 429 essential genes in which overexpression is related to low

survival rate and 336 crucial genes in which repression is associated with inferior survival.

They validated the top 5 genes using an external cohort study and presented a good separation

of the CRC samples into two low and high-risk groups.

A study by Pan et al. [13] proposed a predictive model based on RNASeq gene expression

data. Their model uses the differentially expressed genes (DEGs) profiles. These profiles were

obtained using the univariates and multivariate Cox regression, which was used to compare

TNM stages to assess their predictive survival accuracy. Their results showed that 10 DEGs

had a significant effect on CRC survival. Yan et al. [15] implemented random forests to iden-

tify biomarkers associated with survival in CRC based on a set of oligonucleotide microarray

data. Their results showed that four genes had the potential to predict CRC survival.
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To the best of our knowledge, RSF has not been used with gene expression data in the previ-

ous studies to predict CRC survival. The gene expression data is characterized by the problem

of the curse of dimensionality and collinearity. To overcome this problem, the CRC survival is

predicted based on selecting the differentially expressed genes (DEGs) in colorectal cancer that

was based on the three-mutation status (KRAS, BRAF, and TP53) where they serve as a predic-

tive biomarker of response to treatment in CRC. We assume that complex interaction between

multiple DEGs contributes to prognostic survival differences between wild-type and mutant

patients with CRC.

We developed and compared Cox proportional hazard (Cox PH) model and random sur-

vival forests (RSF) in predicting CRC survival and associated biomarkers using a public

genome database from Gene Expression Omnibus (GEO). The aim was to assess the CRC sur-

vival predictors accounting for missing data based on the gene expression data. We selected 54

common differentially expressed genes from three mutations (KRAS, BRAF, and TP53), using

the complete case samples, and performed analysis using Cox PH and RSF models before and

after imputation.

Materials and methods

Dataset

The dataset with accession number GSE39582 [16], was downloaded from Gene Expression

Omnibus (GEO) public database (https://www.ncbi.nlm.nih.gov/geo/) using the BRB-Array-

Tools software (https://brb.nci.nih.gov/BRB-ArrayTools/). This dataset has 54675 probes

taken from 566 samples with colon cancer and 19 non-tumor samples. Usually, the gene

expression data includes noisy and or irrelevant genes. Therefore, performing data cleaning

and feature (genes) selection are essential steps that should be applied before modeling the

data. A pre-processing step was applied to prepare the dataset for modeling. These pre-pro-

cessing steps are log2 transformation, quantile normalization, gene filtration, and differentially

expressed genes analysis using a two samples t-test. Filtration is a process in data cleaning used

to eliminate insufficiently expressed probes and those with excessive missing expression levels

across the samples [17–20]. On the other hand, quantile normalization and log2-transformed

steps to eliminate the variation between samples. BRB-ArrayTools is used to implement the fil-

tration and normalization of the dataset. The two-sample t-test, with the 0.001 significance

level threshold, was used for gene selection to provide informative genes for building survival

models. The overall procedures that we followed in our analysis are summarized in Fig 1.

Statistical analysis

We analyzed the gene expression data using the R version (R-4.0.4). Summary statistics of the

gene expressions are depicted in the supplementary file (see S1 Appendix). These statistics

include the minimum, maximum, means, and standard deviations of the expression levels. We

used frequency and percentages for the categorical data representing the clinical information,

as shown in Table 1. The statistical analysis was conducted in three phases; the first phase is

the complete case analysis, followed by imputation of missing values in the outcome based on

the covariates and an appropriate imputation model. Then we applied survival analysis on the

complete case and imputed datasets. The survival analysis results on these two datasets were

compared to evaluate the precision of estimates. Two separate models were fitted before and

after imputations; the first is the Cox regression model, while the second is the random sur-

vival forests with log-rank and log-rank-score split rules. The missing values were assumed to

be missing at random (MAR), where the probability of data being missing does not depend on
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the unobserved data, conditional on the observed data [21–24]; consequently, the genes and

other covariates in the dataset were used to predict missingness.

Complete case analysis. The filtration step resulted in 18865 out of 54675 probes. These

18865 probes were used for further reduction analysis using a t-test. To find the differentially

expressed genes (DEGs) that discriminate between the mutant and wild-type mutation, we

used the three mutation types, KRAS, BRAF, and TP53. We created three different datasets

using the 18865 probes with each of the three mutation types based on these three mutation

types. First, we removed the samples with missing values for each of the three datasets accord-

ing to their clinical outcome. Then, we calculated the correlation matrix for the gene expres-

sion data and filtered out one gene from every two genes that show a correlation coefficient

greater than 0.6. Subsequently, we extracted three DEGs lists from all three datasets using a

two-sample t-test based on 0.001 thresholds. Ultimately, from the three lists of DEGs, there

were 54 common genes (see S1 Appendix). Also, we used the common samples across the

three datasets to produce the complete cases in one dataset. The samples with missing or zero

values in the event status and time variables were removed. We then converted the five TNM

stages into a new categorical variable with two stages (Early and Late), where stages four and

five were combined to give the late category. Finally, we used the obtained data for finding the

most significant gene markers that may predict survival for CRC patients. Table 2 provides a

concise summary of the pre-processed data.

Multiple imputations of the missing values. To compensate for the missing data, we

used the R package “mice (Multivariate Imputation by Chained Equations)”, which impute the

missing values in the covariates. The mice package takes care of uncertainty related to missing

Fig 1. Flow-chart of the procedure followed in the pre-processing and analysis of the dataset.

https://doi.org/10.1371/journal.pone.0261625.g001
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values [23–25]. It assumes that the missing values are missing at random (MAR) see (Fig 2),

where the probability of missing data does not depend on the unobserved data, conditional on

the observed data [21–24]. The mice package uses the genes and other covariates in the dataset

to predict missingness. The missingness pattern in the data is assumed to be non-monotone.

In this pattern, some subject values can be observed again after missing values happen [23–

25]. For this missing data pattern, it is recommended to use the chained equations (fully condi-

tional specification (FCS)) [26], or the Markov Chain Monte Carlo (MCMC) method to

impute missing values [25].

Table 1. Clinical characteristics of colorectal cancer patients (N = 307).

Variable Frequency (n) Percentage (%)

Age at diagnosis in years: Mean (SD�) 66.8 (13.2)

KRAS Mutation

Mutant 123 40

WildType 184 60

BRAF Mutation

Mutant 25 8

WildType 282 92

TP53 Mutation

Mutant 166 54

WildType 141 46

Tumor Location

Proximal 124 40

Distal 183 60

Cancer stage

Early 156 51

Late 151 49

Sex

Female 137 45

Male 170 55

Molecular subtype

C1 65 21

C2 49 16

C3 43 14

C4 29 9

C5 29 9

C6 36 12

�SD: Standard deviation

https://doi.org/10.1371/journal.pone.0261625.t001

Table 2. Summary of the filtered datasets and the pre-processing steps.

Dataset (GSE39582) � Number of

samples

Complete

cases

Common

samples

Total number of

genes

After

filtration

Uncorrelated

genes

DEGs (t-

test)

Common

genes

Clinical

outcomes

KRAS 585 545 307 54675 18865 13827 711 54

BRAF 512 2388

TP53 351 629

� Three datasets with the same covariates and different clinical outcome

https://doi.org/10.1371/journal.pone.0261625.t002
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We used FCS to handle the missing values in our dataset implemented in the mice package

in R using a random forest model. The FCS is considered a powerful and statistically valid

method for creating imputations in both categorical and continuous variables [26]. We gener-

ated 5 imputed datasets using random forest (rf) imputations after 100 iterations (imputation

cycles). We used 1051991 as a random seed to replicate imputation results each time a multiple

imputation analysis was performed. In addition, we followed the procedures indicated by the

work of Sterne et al. [27] for reporting and analysis of missing data. KRAS, BRAF, TP53, and

the event status were imputed as binary, while time and age imputed as numeric variables. The

rest of the variables did not contain any missing values, and were used as auxiliary variables in

the imputation model. Overall, firstly we performed a complete case analysis using Cox PH

and random survival forests models. Thereafter, we compared the final models from this anal-

ysis to those from the multiply imputed dataset.

Experimental setup. To evaluate the different methods, the resulting dataset was divided

into training set (80%) and testing set (20%). The training set was then divided into 10 subsets

to train the methods using 10-fold cross validation approach to avoid overfitting. In the

10-fold cross-validation approach the integrated brier scores (IBS) is calculated on each fold

left-out while the model is trained on the other 9 folds. Finally, the trained model is tested on

the testing set. The model performance was measured using prediction error curve (pec).

Statistical methods

Cox proportional hazard model (Cox PH). Cox proportional hazard model is the most

widely used statistical model for modeling time to event data [28]. The Cox PH evaluates the

association of the survival time of patients and one or more predictors/genes variables. The

Cox PH model relates the effect of predictors which include genes in our case to the rate or

Fig 2. Proportion and patterns of missing values in the clinical characteristics available in the GSE39582 dataset.

https://doi.org/10.1371/journal.pone.0261625.g002
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hazard of occurrence of an event such time to infection, death, recurrence of a condition at a

certain point of time, this rate is generally referred as the hazard rate [29, 30]. In order to esti-

mate the association of the gene expression levels and the survival time, consider n cancer sam-

ples say from sample i = 1,2,. . .,n and gi = (gi1, gi2, gi3,. . .,gip) is a vector of p genes expression

level. The ith patient survival data can be represented by (Ti, δi, gi1, gi2, gi3,. . .,gip), where

i = 1,2,. . .,n; Ti and δi indicate the survival time and the censor status respectively. The Cox PH

model is mathematically represented as follow

hiðtÞ ¼ h0ðtÞe
β0gi ð1Þ

where the parameters vector β0 is the regression coefficients and gi is the covariates (genes) vec-

tor. The baseline hazard function h0(t) is unspecified and non-parametric function of an indi-

vidual with all expression levels equal to zero [12, 31]. The model has a parametric part

specified by the linear predictor and assumed to be proportional to the non-parametric base-

line hazard. This means that for two individuals, i and j, the hazard ratio is

hiðtÞ
hjðtÞ

¼
eβ0gi

eβ0gj
ð2Þ

The hazard ratio is assumed to be independent of time t. The maximum partial likelihood

method used to estimate the Cox PH model parameters is given by

L bð Þ ¼
Y

r2E

eβTgr
P

j2Rr
eβTgj

ð3Þ

where E indicates the indices of the events (e.g., deaths) and Rr represents the vector of indices

of the individuals at risk at time tr - 0. The results of the Cox PH model are easy to interpret,

however, there are key assumptions needed such as linearity and proportional hazards. We

used survival and survminer packages to implement Cox PH model in R.

Moreover, we performed the stepwise regression for developing the Cox PH model at a 5%

threshold level to find a simple model that shows the essential genes (markers) and clinical

covariates correlated with the CRC. At each time, we removed the genes/ covariates that are

not significant at α = 0.05 level of significance. Thereafter, we tested for the Cox PH assump-

tion, and the integrative analysis of the CRC data showed five genes (markers) that passed the

Cox PH assumption test. Thereafter, we used the five genes and the other clinical information

to fit the Cox PH model.

Random survival forests (RSF). Random survival forests are an ensemble of trees and a

non-parametric method constructed by bagging of classification trees for right censored data

[32, 33]. The RSF are an extension of the random forests method proposed by Breiman [34]. It

works on high dimensional data where the number of covariates exceeds the number of the

observations. Also it can handle data that consist of complex and non-linear relationships

between the dependant and the independent variables and when the covariates violate the pro-

portional hazard assumption [35]. There are several advantageous of using the RSF method,

such as, it is not based on any model assumption compared to Cox PH model. It seeks to find

a model that best represent the data in the case of limited survival data. In addition, it can han-

dle high dimensional data unlike Cox PH, and it is robust to outliers in the explanatory vari-

ables [33]. RSF employs two steps of randomizations to grow the tree. These two steps are the

bootstrap sample to select cases randomly and random selection of subset of covariates for

splitting the nodes of the tree. These two steps help to decorrelate the tree [20, 33]. The RSF

was implemented using the randomForestSRC package in R [36].
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Random survival forests algorithm. We used the RSF algorithm that was introduced in

the work of Ishwaran et al. [32] as shown below:

For i in 1: ntrees

• Draw bootstrap samples from the original total number of samples. For each bootstrap

exclude approximately 37% of the samples as out-of-bag (OOB) samples.

• Build a survival tree for every bootstrap sample by recursively repeating the following steps

for each node in a tree

� Randomly select v genes at random from the p genes (v ¼
ffiffiffi
p
p

)

� To split the node, pick the best gene among the v genes, that maximizes survival differences

between daughter nodes. We used log-rank and log-rank-score splitting rules as measures

of survival differences.

� Produce the tree to full size under the constraint that a terminal node should have no less

than d0>0 unique deaths.

� Calculate a cumulative hazard function (CHF) for every tree. Average the CHF for all the

ntrees trees to find the ensemble CHF.

� Calculate the OOB prediction error for the ensemble CHF, using OOB samples.

Once the survival tree is built, the ends of the tree are called the terminal nodes. Assume,

the terminal node is h and tn,h is the individual’s death time at node h, dn,h is the number of

deaths, andMn,h is the number of individuals at risk at time tn,h. Therefore, the cumulative haz-

ard function (CHF) can be estimated using the Nelson-Aalen estimator [37] as follows

Ĥh tð Þ ¼
X

tn;h�t

dn;h
Mn;h

ð4Þ

The CHF was calculated for all the terminal nodes. The CHF for new observation i given a

vector of genes as a covariate gi, can be calculated for one tree as follows

ĤhðtjgiÞ ¼ ĤhðtÞ; for gi 2 h ð5Þ

To compute an ensemble CHF, the average of the ntrees trees is calculated, and the boot-

strap ensemble CHF for an observation i is

Ĥe tjgi
� �

¼
1

ntrees

Xntrees

b¼1
ĤbðtjgiÞ ð6Þ

let,

Ii;b ¼
1 if i is an OBB observation for ntrees training sample:

0 Otherwise:
ð7Þ

(

then the OOB ensemble CHF for an observation i is given by

Ĥ�e tjgi
� �

¼

Pntrees
b¼1

Ii;bĤ �bðtjgiÞ
Pntrees

b¼1
Ii;b

ð8Þ

therefore, Ĥ �eðtjgiÞ is an average over the training samples where i is an OOB observation.

Log-rank split rule. The log-rank split-rule is a measure of a node separation which helps

in determining the best split for that node [38]. Let h be a node of a tree and let there are n
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individuals with this node. Suppose (T1, σ1), (T2, σ2), . . ., (Tn, σn) are the survival outcomes

corresponding to the n individuals. Thus, the best split at node h on covariate x at split point c,
is the one that maximize the log-rank statistic between the two daughter nodes [32] given as

follow

L x; cð Þ ¼

PN
i¼1
ðdi1 � Yi1

di
Yi
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

Yi1
Yi
ð1 �

Yi1
Yi
Þð
Yi � di
Yi � 1
Þdi

q ð9Þ

The aim is to maximize the log-rank statistic by finding values of x and c that maximize L(x,

c). Specifically, we are looking to find a predictor x� and c� such that |L(x�, c�)|�|L(x, c)| for

every x and c. This process is repeated at every node until the terminal node is reach.

Log-rank-score split rule. The log-rank-score split rule is a version of the log-rank-score

split rule [39]. Consider r = (r1, r2,. . .,rn) as a vector that ranks the survival times (T, δ) = ((T1,

σ1), (T2, σ2),. . .,(Tn, δn)) [39, 40]. Assume a = a(T, δ) = (a1(r), a2(r),. . .,an(r)) indicates the

ranked score vector. Let the ranked vector r order the genes variables in such a way that g1 <

g2 < � � �< gn. Therefore, the log rank score for an observation at Ti is given by

ai ¼ ai T; dð Þ ¼ di �
XgiðTÞ

j¼1

dj

ðn � gjðTÞ þ 1Þ
; ð10Þ

where, gjðTÞ ¼
Pn

i¼1
wfTi � Tjg is the number of individuals who died or were censored

before or at time Tj.

Performance evaluation

We used integrated brier scores (IBS) measure [41] to assess and compare the accuracy of the

predictive performance of all the models in this study. The IBS represent the average squared

differences between the observed survival status and the predicted survival probability at time

t. However, the value of the IBS is always between 0 and 1, the value of 0 represent the best pos-

sible IBS value. We calculated the brier scores (BS) measure using the test sample of size ntest as

follows

BS tð Þ ¼
1

ntest

Xntest

i¼1
½0 � ŜðtjxÞ�2

Iðti � t; di ¼ 1Þ

ĜðtijxÞ
þ ½1 � ŜðtjxÞ�2

Iðti > tÞ
ĜðtjxÞ

( )

ð11Þ

where ĜðtjxÞ � PðC > tjX ¼ xÞ is the Kaplan-Meier estimate for the conditional survival

function of the censoring times. Therefore, the IBS is calculated as below

IBS ¼
Z maxðtÞ

0

BSðtÞ dt ð12Þ

Results

Cox proportional hazards analysis

The results of the survival problem based on gene expression data were obtained using R. We

used the Cox PH model based on the selected covariates that satisfy the Cox PH assumptions.

We tested the Cox PH assumptions using the Schoenfeld residual test implemented by the

function cox.zhp. The Cox PH model assumes the regression parameters are constant over

time. Therefore, the hazard ratios for any two individuals are constant over time. However, the

covariates that do not satisfy the Cox PH assumptions do not meet the criteria to be entered in

our final Cox PH model. As a first step, we fitted the Cox PH model for all the covariates
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(genes and clinical variables) in our dataset and then obtained the Cox PH assumption using

the Schoenfeld residuals Table 3. The genes and variables in violation of the Cox PH assump-

tion (p<0.05) were DUSP4, SYTL1, and molecular subtype.

From the Cox PH model in Table 3, three variables violated the Cox PH assumption, and

therefore, these genes and molecular subtype were not included in the final Cox PH model.

We fitted the Cox PH model on the genes and variables that did not violate the Cox PH

assumptions before and after imputation. The results from this analysis are shown in Table 4.

Results before imputation of missing values indicated that 218611_at (IER5) (HR = 9.51, 95%

CI 1.30, 69.58), 221522_at (ANKRD27) (HR = 34.89, 95%CI 1.91, 635.90), and late disease

Table 3. Testing the proportional hazard assumption using scaled Schoenfeld residuals.

Probeset ID (Symbol) χ2� (df) p-value

204014_at (DUSP4) 10.219 (1) 0.0014

212947_at (SLC9A8) 1.345 (1) 0.2462

218611_at (IER5) 2.045 (1) 0.1527

219973_at (ARSJ) 3.601 (1) 0.0577

221522_at (ANKRD27) 1.583 (1) 0.2083

221605_s_at (PIPOX) 1.651 (1) 0.1988

227134_at (SYTL1) 4.699 (1) 0.0302

Age at diagnosis (years) 2.589 (1) 0.1076

Molecular subtype 15.824 (5) 0.0074

Disease stages 1.173 (1) 0.2787

Sex 0.378 (1) 0.5388

Tumor location 0.951 (1) 0.3294

�Chi-square statistic

https://doi.org/10.1371/journal.pone.0261625.t003

Table 4. Multivariable Cox PH results for predictors of colorectal cancer survival among adults aged 24 years and above.

Probeset ID (Symbol) / Variables Before imputation (N = 307) After imputation (N = 566)

HR� (SE) 95%CI P-value HR� (SE) 95%CI P-value

212947_at (SLC9A8) 0.09 (0.84) (0.02, 0.49) 0.005�� 0.30 (0.66) (0.08, 1.07) 0.066

218611_at (IER5) 9.51 (1.02) (1.30, 69.58) 0.027� 6.48 (0.79) (1.37, 30.53) 0.019�

219973_at (ARSJ) 0.23 (0.48) (0.09, 0.58) 0.002�� 0.44 (0.36) (0.22, 0.89) 0.024�

221522_at (ANKRD27) 34.89 (1.48) (1.91, 635.90) 0.016� 2.49 (1.06) (0.31, 19.95) 0.393

221605_s_at (PIPOX) 0.43 (0.34) (0.22, 0.85) 0.014� 0.49 (0.27) (0.28, 0.83) 0.009��

Age diagnosis (years) 1.03 (0.01) (1.01, 1.05) 0.001��� 1.03 (0.01) (1.01, 1.04) <0.000���

Sex

Female 1.00 1.00

Male 1.23 (0.20) (0.84, 1.81) 0.281 1.40 (0.15) (1.05, 1.88) 0.024

Stages

Early 1.00 1.00

Late 1.97 (0.20) (1.33, 2.93) 0.001��� 1.96 (0.15) (1.47, 2.63) <0.000���

Tumor location

Proximal 1.00 1.00

Distal 1.06 (0.21) (0.71, 1.58) 0.783 0.86 (0.16) (0.63, 1.18) 0.356

HR: Hazard ratio, SE: Standard error, adjusted for 212947_at, 218611_at, 219973_at, 221522_at, 221605_s_at, age at first diagnosis, sex, disease stage, and tumor

location.

https://doi.org/10.1371/journal.pone.0261625.t004
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stage (HR = 1.97, 95%CI 1.33, 2.93) were associated with higher hazards of death. However,

we note that two confidence intervals for IER5 and ANKRD27 are quite wide; therefore, they

should be interpreted caution. For every year increase, the hazards of death increased by 1.03

(95%CI 1.01, 1.05). Significantly lower hazards were observed in 212947_at (SLC9A8)
(HR = 0.09, 95%CI 0.02, 0.49), 219973_at (ARSJ) (HR = 0.23, 95%CI 0.09, 0.58), and

221605_s_at (PIPOX) (HR = 0.43, 95%CI 0.22, 0.85) differentially expressed genes.

After imputation of missing values, the Cox PH model showed that sex was a significant

predictor of males having higher death hazards (HR = 1.40, 95%CI 1.05, 1.88) than females.

Also, the disease stage covariate was a significant predictor where those with late disease stage

had higher death hazards (HR = 1.96, 95%CI 1.47, 2.63) than early cases. Moreover, the results

illustrated that 219973_at (ARSJ) (HR = 0.44, 95%CI 0.22, 0.89), 221605_s_at (PIPOX)

(HR = 0.49, 95%CI 0.28, 0.83) were related with lower hazards of death. For every year

increase, the hazards of death increased by 1.03 (95%CI 1.01, 1.04). Significantly higher haz-

ards were detected with gene 218611_at (IER5) (HR = 6.48, 95%CI 1.37, 30.53) gene.

Random survival forests analysis

We fitted two random survival forests models, including survival trees built using log-rank

and the log-rank-score split rules on the datasets before and after imputation. These two mod-

els were built using the 54 genes and the other clinical information as covariates. The charac-

teristics of the two fitted models are summarized in Table 5 below.

Permutation importance measure used to identify the most important genes/ clinical vari-

ables associated with the survival of the colon patients [42–44]. We fitted a random survival

forest model before imputation and after imputation with 5000 survival trees built using log-

rank and log-rank-score and their results presented in Figs 3 and 4.

Table 5 and Fig 3 show that the log-rank split-rule is more stable than the log-rank-score

split-rule. Moreover, we fitted the model with 1000, 2000, and 3000 survival trees and noticed

that the log-rank-score spilt-rule needs more survival trees to stabilize. In addition, the error

rate for the forest built with survival trees based on the log-rank and log-rank-score split-rules

are 41.26 and 49.05, respectively. These error rates of the RSF before imputation are much

Table 5. Random survival forests results before and after imputation using log-rank and log-rank-score split rules.

Before imputation (N = 246)� After imputation (N = 453)�

Log-rank Log-rank-score Log-rank Log-rank-score

Number of deaths 88 88 157 157

Number of trees 5000 5000 5000 5000

Forest terminal node size 15 15 15 15

Average no. of terminal nodes 13.58 11.92 25.34 22.14

No. of variables tried at each split 8 8 8 8

Total no. of variables 62 62 62 62

Resampling used to grow trees swor swor swor swor

Resample size used to grow trees 155 155 286 286

Analysis RSF RSF RSF RSF

Family surv surv surv surv

Splitting rule log-rank log-rank-score log-rank log-rank-score

Number of random split points 10 10 10 10

Error rate 41.26% 49.05% 33.22% 43.01%

� Analysis performed using the 80% training set

https://doi.org/10.1371/journal.pone.0261625.t005
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higher than the error rates for RSF built after imputation, as shown in Table 5. This result indi-

cates that the imputation can improve the performance of RSF.

The genes/ covariates associated with CRC ranked using RSF according to their importance

before and after imputation based on the log-rank, and log-rank-score split-rules are presented

in Figs 5 and 6. Using RSF allows all 54 genes and other covariates regardless of their satisfying

the Cox PH assumption. However, this is a very important characteristic of the RSF, as

explained in the model building stage. The selection of the genes/ covariates in the model does

not need to satisfy the too restrictive Cox PH assumption. RSF is purely non-parametric;

hence there is no requirement of the Cox PH assumption being satisfied a prior.

We implemented RSF with 5000 survival trees built using two split-rules before and after

imputation. The RSF identified the most important genes/ covariates that explain the survival

of CRC patients by calculating the measure of the permutation importance as a variable’s

importance [32, 43]. For the RSF before imputation see (Fig 5), the top 20 genes/ covariates

that are most important and strongly associated with the CRC obtained using the log-rank

split-rule are age, SLC28A3, stages, TNFSF9, EGLN3, molecular subtype, CTSV, ANKRD27,

POLR3B, CTSA, SYTL1,MYRF, RPS27L, L3MBTL1, PIPOX, ADPRM, SLC6A4, LDLRAD3,

MSRA, and SCAND1. While the top 20 genes/ covariates that were identified by RSF using log-

rank-score are POLR3B, L3MBTL1, CTSV, EGLN3, SYTL1, age, molecular subtype, LDLRAD3,

MAP7D2, SLC28A3, ANKRD27, stages, SLC6A4, CTSA, CABLES2, TNFSF9, GIF, SCAND1,

PTP4A3, andMSRA.

Fig 3. The prediction error rate for the random survival forests of 5000 trees before imputation and the log-rank and log-rank-score in the left and right panel

used 80% training dataset.

https://doi.org/10.1371/journal.pone.0261625.g003
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However, for the RSF after imputation (Fig 6), the top 20 genes/ covariates strongly related

to CRC identified using RSF with log-rank split-rule are age, stages, molecular subtype,

PIPOX, ADPRM, CLCN2, RPS27L, IER5, POLR3B, SLC6A4, KRAS, SGMS2,DUSP4, SLC28A3,

SLC9A8, ACOT8, SYTL1, CABLES2, SCAND1, andMAP7D2. Although the RSF with log-

rank-score obtains a top 20 genes/ covariates strongly relevant to CRC, these genes/ covariates

are molecular subtypes, POLR3B, CLCN2, IER5, SLC9A8,MAP7D2, CABLES2, SYTL1, stages,

KRAS, SLC6A4, LDLRAD3, CTSA, SCAND1, PIPOX, ARSJ, PHACTR3, SLC28A3, SGMS2, and

CTSV.

The RSF with log-rank split-rule after imputation performed better in terms of the error

rate. Age and disease stage were the most important covariates that affecting CRC. However,

the PIPOX, IER5, and SLC9A8 were among the most important genes strongly associated with

CRC. These results agree with the results achieved from fitting the Cox PH model presented in

Table 4. As far as significant effects are concerned, the most striking result to emerge was that

the RSF model did pick other genes and covariates as substantial, e.g., molecular subtype and

DUSP4 which could not be included in the Cox PH model because of not satisfying the Cox

PH assumption.

Predictive performance

We assessed the predictive performance of the models using the integrated brier scores mea-

sure in R using the pec package [45, 46]. The model with lower prediction error rates is there-

fore considered useful [43, 47]. Figs 7 and 8 show the prediction error curve of the RSF (log-

Fig 4. The prediction error rate for random survival forests of 5000 trees after imputation and the log-rank and log-rank-score in the left and right

panel, respectively, using 80% training dataset.

https://doi.org/10.1371/journal.pone.0261625.g004
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rank and log-rank score) and Cox PH models before and after imputation. These prediction

curves show that Cox PH outperformed RSF with log-rank and log-rank score split rules. The

Cox PH model before and after imputation had similar prediction errors, while RSF models

under the two split-rules (log-rank and log-rank-score, respectively) after imputation had

lower prediction error rates compared to before imputation as can be seen (Fig 8). Their pre-

dictive performance exhibited that the log-rank split-rule is better than the log-rank-score

split-rule. Moreover, we noticed that the Cox PH model showed good predictive performance

compared to the two RSF under the two split-rules before and after imputation models. Thus

it is safer to say that if all covariates satisfy the Cox PH assumption, the Cox PH model can be

used [44].

Although the Cox PH model before and after imputation had better performance in terms

of the prediction error rate, we can still not use it in the event of a violation of the proportion-

ality of hazards assumption. Thus, in the presence of the non-proportional hazards genes/

covariates, using RSF is an appealing option in the analysis of survival data, especially for high

dimensional genomics data. Genomics data are usually presented in a matrix, with the col-

umns indicating the samples and the rows showing a genomic feature such as genes [48].

Table 6 shows a comparison of the model performance using the integrated brier scores.

We can notice that the prediction error estimates are lower for RSF, especially in the case of

using the log-rank as a split rule. In addition, RSF models perform substantially better than

Kaplan-Meier and Cox PH models.

Discussion

Cancer incidence and mortality are rapidly growing worldwide, exerting big physical, emotional,

and financial problems on individual, families, communities, and health systems levels. Cancer is

the first or second leading cause of death in 112 countries and is considered the third or fourth

in 23 countries [3]. According to estimates from the World Health Organization (WHO), cancer

is the leading cause of death around the world and accounting for nearly 10 million deaths in

2020. Moreover, WHO reported that CRC is the third common new cases, and it is also the sec-

ond leading cause of death worldwide since 2020 [49]. The study aimed to determine the associa-

tion between the genes and clinical covariates with CRC survival in the presence of missing

values data. We also compared the predictive performance of the Cox PH and RSF models. The

study provides essential information for CRC early detection and diagnosis.

The traditional regression-based methods to analyse survival data usually suffer from many

problems such as restrictive assumptions including the proportionality, multicollinearity,

curse of dimensionality, and lack of ability to rank the predictive performance. However, RSF

models are frequently becoming a successful alternative for the analysis of the time to event

data. In particular, the RSF is viewed as an appropriate analysing model for survival data, espe-

cially when the proportional hazards assumption is violated [39, 50]. When it comes to CRC

survival analysis the gene expression and clinical information are utilized as covariates. The

gene expression data contains many genes and most of these genes do not discriminate

between normal cells and tumors. Therefore, we select the genes in which the change or differ-

ence in read counts between two conditions of experiment is statistically significant and such

genes are known as the differentially expressed genes. In this study, the differentially expressed

genes were obtained using three mutations based on the complete cases. The preliminary

Fig 5. The rank of most predictive genes and clinical variables for colorectal cancer patients’ survival before the

imputation is based on how they influence the survival outcome. The variables importance is built using log-rank

and log-rank-score split-rules in the left and right panel, respectively.

https://doi.org/10.1371/journal.pone.0261625.g005
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analysis showed that 54 potentially differentially expressed genes could be correlated with

CRC survival and important for understanding the initiation and progression of CRC. The dif-

ferentially expressed genes together with the clinical data were used to compare the predictive

performance of the Cox PH model and RSF model before and after imputation on the CRC

gene expression data.

We used stepwise regression for developing the Cox PH model at a 5% threshold level to

get a simple model capturing the association between the top genes and CRC patient survival.

Only five genes did not violate the Cox PH assumption in the final Cox PH model. The results

show that the error rates of the RSF before imputation are much higher than the error rates for

RSF built after imputation. Thus, the imputation can improve the performance of RSF.

Although the Cox PH model had a better performance than RSF, the results from the current

study demonstrate that the random survival forests models are more flexible than the models

based on the Cox PH assumption as a prerequisite for variable inclusion in the model.

After imputation, the Cox PH model indicated SLC9A8 and ANKRD27 genes were no lon-

ger significant predictors of CRC survival. This because it is expected that the number of

observations to increase, hence, statistical power to detect an effect. The variables that were

not statistically significant before imputation may now be seen as statistically significant and

vice versa. Therefore, this might affect the statistical power of some variables after imputation.

Overall, the most prominent finding to emerge from the analysis based on Cox PH is that for

one year increase in age, the hazards of death increase by 1.03, also the males are the most

exposed to the hazards of death compared to females. Thus, this study supports evidence from

previous observations [51–55].

The results of the RSF using both split-rules before and after imputation identified other

genes/ covariates such as molecular subtype, SLC6A4, KRAS, SGMS2, DUSP4, and SLC28A3.

These genes/ covariates show up as important in explaining CRC survival rates. However,

these genes/ covariates did not appear very strongly associated with CRC survival in the Cox

PH model. Thus, one interesting finding to note is that RSF models give additional informa-

tion about variable importance.

Furthermore, the results from the two RSF models before and after imputation show that

age, stages, molecular subtype, SLC9A8, IER5, ARSJ, ANKRD27, and PIPOX greatly affected

Fig 6. The rank of most predictive genes and clinical variables for colorectal cancer patients’ survival after the

imputation is based on how they influence the survival outcome. The variables importance is built using log-rank

and log-rank-score split-rules in the left and right panel, respectively.

https://doi.org/10.1371/journal.pone.0261625.g006

Fig 7. RSF with (log-rank and log-rank score) and Cox PH prediction error curve using 20% test set. The complete

case and imputed dataset plots are in the left and right panel, respectively.

https://doi.org/10.1371/journal.pone.0261625.g007
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the CRC mortality rates. These are ranked in the top 20 variables important in the two RSF

models and agree with the Cox PH model results. Contrary to expectations, the RSF model did

not pick sex as an important variable, while it is significant in the Cox PH model.

The Cox PH model had a better predictive performance in the presence of only those covar-

iates that satisfy the Cox PH assumption compared to the RSF models. This result provides fur-

ther support for the hypothesis that the Cox PH model works best under this assumption. In

contrast, the out-of-bag error rate for the RSF with (log-rank and log-rank-score) before impu-

tation is higher than that after imputation. This result implies that the imputation of missing

values is a critical step and enormously improves the model’s performance.

The most striking result to emerge from the analysis of the RSF is that log-rank has a better

performance compared to the log-rank-score split-rule [44]. However, with more survival

trees the log-rank-score seems to be stabilize compared to a smaller number of survival trees.

Fig 8. RSF with (log-rank and log-rank score) and Cox PH boxplot prediction error using 20% testing set together with the complete case dataset and the

imputed data.

https://doi.org/10.1371/journal.pone.0261625.g008

Table 6. Comparison of the models using the integrated brier scores.

Methods Before Imputation After Imputation

Kaplan Meier 0.199 0.201

RSF (Log-rank) 0.192 0.198

RSF (Log-rank score) 0.198 0.202

Cox PH 0.228 0.212

https://doi.org/10.1371/journal.pone.0261625.t006
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We presented the development and validation of a robust five-gene signature (SLC9A8,

IER5, ARSJ, ANKRD27, and PIPOX), which predicted overall survival (OS) for CRC patients.

This gene signature was captured using Cox PH and RSF models based on two different sce-

narios. However, our study results successfully confirmed genes (markers) associated with

CRC directly and identified new markers to enrich the field’s literature further. Furthermore,

the results support previous studies such as Mohammed et al. [56], where age, sex, and stages

were also shown to be related to CRC survival.

Conclusion

Colorectal cancer (CRC) is a major cause of morbidity and mortality worldwide annually,

making CRC the fourth common cause of death from cancer. However, the incidence of CRC

has been steadily growing around the world, especially in developing countries. Therefore, the

recent advances in technologies such as microarrays allowed for early detection screening

using the individual’s gene expression profiles.

The present study was designed to identify the genes prognosis of CRC. We developed a

robust gene marker associated with the CRC overall survival based on gene expression data

generated from microarray, using Cox PH and RSF models before and after missing data

imputation. The most prominent finding to emerge from this study is that the Cox PH model

identified five genes (SLC9A8, IER5, ARSJ, ANKRD27, and PIPOX) related to CRC overall sur-

vival in addition to age, sex (after imputation), and clinical stages. The RSF model further con-

firmed these results and had five additional gene markers predicting CRC survival. In

addition, imputation improved the model’s performance, and the current findings support the

relevance of the missing data imputation. In summary, we recommend using a random sur-

vival forests model for survival data, especially in the high dimensional data where many genes

might violate the Cox PH assumption.
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