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ABSTRACT

To find signature features shared by various ncRNA
sub-types and characterize novel ncRNAs, we have
developed a method, RNAfeature, to investigate >600
sets of genomic and epigenomic data with various
evolutionary and biophysical scores. RNAfeature uti-
lizes a fine-tuned intra-species wrapper algorithm
that is followed by a novel feature selection strat-
egy across species. It considers long distance effect
of certain features (e.g. histone modification at the
promoter region). We finally narrow down on 10 in-
formative features (including sequences, structures,
expression profiles and epigenetic signals). These
features are complementary to each other and as a
whole can accurately distinguish canonical ncRNAs
from CDSs and UTRs (accuracies: >92% in human,
mouse, worm and fly). Moreover, the feature pattern
is conserved across multiple species. For instance,
the supervised 10-feature model derived from animal
species can predict ncRNAs in Arabidopsis (accu-
racy: 82%). Subsequently, we integrate the 10 fea-
tures to define a set of noncoding potential scores,
which can identify, evaluate and characterize novel
noncoding RNAs. The score covers all transcribed
regions (including unconserved ncRNAs), without
requiring assembly of the full-length transcripts. Im-
portantly, the noncoding potential allows us to iden-
tify and characterize potential functional domains
with feature patterns similar to canonical ncRNAs
(e.g. tRNA, snRNA, miRNA, etc) on ∼70% of human
long ncRNAs (lncRNAs).

INTRODUCTION

The advent of high-throughput sequencing technologies has
facilitated the identification of a large number of previ-
ously unannotated transcripts, many of which correspond
to novel noncoding RNAs (ncRNAs). But only ∼1% of the
human genome have been annotated as canonical ncRNAs
(e.g. rRNA, tRNA, miRNA, snoRNA, etc.) and long ncR-
NAs (lncRNAs) by ENCODE (1). It has been difficult to
comprehensively identify all noncoding transcripts from a
species since there are many ncRNA sub-types, some ncR-
NAs are expressed only in particular cell types or condi-
tions, and some have properties similar to messenger RNAs
(mRNAs). Among the novel ncRNAs, lncRNAs with >200
nucleotides each represent a large class of ncRNAs that have
attracted a lot of attention due to their diverse functional
roles recently discovered (2,3). However, only a small por-
tion of the lncRNAs has been well validated and charac-
terized. Many transcripts detected by RNA-seq and array
data were directly annotated as lncRNAs based on coding
potential filters (4–6).

To evaluate and characterize novel ncRNAs, it is cru-
cial to comprehensively understand the signature features
shared by various known ncRNA types. Unlike coding
genes with clear organizational structures utilized by the
transcriptional and translational machineries, ncRNAs in
general have less obvious sequence characteristics. Some
ncRNAs, lncRNAs in particular, are not strongly conserved
evolutionarily, and do not have clear secondary structures.
Many ncRNAs express only in certain cell types or condi-
tions, and would thus be missed if expression data of these
cell types or conditions are not available. Some lncRNAs
also share common properties with mRNAs, containing in-
trons and poly-A tails. Due to all these reasons, it is dif-
ficult to identify and characterize novel ncRNAs compre-
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hensively using any single type of information alone (7,8).
Consequently, the idea of combining multiple lines of evi-
dence for novel ncRNA identification has been proposed.
By combining features derived from sequences, structures,
evolutionary conservation and expression profiles, the mod-
els produced by these integrative methods were shown to
have much higher sensitivity and specificity than methods
based on single features (1,9–12).

Having high accuracy notwithstanding, these models are
in general hard to interpret due to the large number (tens
or even hundreds) of features involved. In addition, most of
these previous studies focused on ncRNAs from one partic-
ular species. It is not clear whether the features useful for
identifying ncRNAs from these species are generally useful
in identifying ncRNAs from other species. These complex
models also suffer from the drawback that they cannot be
applied to a certain species if some of the involved features
are not available in this species.

Here, we propose a new strategy called RNAfeature for
determining a succinct set of essential and informative fea-
tures that can accurately identify various ncRNA types
from multiple species. It involves an intra-species part for
identifying characteristic ncRNA features from each species
by combining existing biophysical knowledge of ncRNAs
with high-throughput experimental data, and an inter-
species part for forming a common set of general ncRNA
features across different species. The method used in the
intra-species part of RNAfeature is improved upon our pre-
vious supervised model (incRNA) for identifying ncRNAs
from a single species (1,9), with new feature types and sub-
stantially more data supplied as inputs. The inter-species
part of RNAfeature is a novel component newly introduced
in this work. In addition, we also introduce a context in-
fluence score (CIS) to consider the long distance effect of
certain features (e.g. some histone modification signals are
enriched at the promoter region).

RNAfeature investigated >600 sets of genomic and epige-
nomic data with various evolutionary and biophysical
scores to look for conserved signature features of ncRNAs
in multiple species. It narrowed down on 10 essential fea-
tures (including sequences, structures, expression profiles
and histone modification signals) that are sufficient for iden-
tifying all known types of canonical ncRNAs (miRNA,
rRNA, snRNA, Y RNA, etc.) and accurately distinguish
them from other genomic elements such as CDSs and UTRs
in human, mouse, fly and worm (accuracies: >92%). Fur-
thermore, the 10-feature model derived from animal species
is conserved and predicts ncRNAs in Arabidopsis (accu-
racy: 82%). We also show that this feature set is robust in
that even when we omit some canonical ncRNA types from
the input of RNAfeature, the resulting model can still accu-
rately identify ncRNAs of the omitted types. This indicates
the generality of the identified features and the ability of
RNAfeature in finding novel ncRNA types.

Finally, we used the 10 features to define a set of noncod-
ing potential scores, which can identify, evaluate and char-
acterize novel noncoding RNAs. The potential score cov-
ers all transcribed regions (including unconserved ncRNAs)
without the full-length transcripts being assembled, because
it is derived from complementary features at bin level (100
nt). The noncoding potential has identified the potential

Figure 1. Workflow of RNAfeature: an inter-species feature selection
method. We collected high-throughput datasets, sequence and structural
features from four species and classified them according to the feature type
as indicated by f1, f2, . . . , f10, and others. Features from different species
are color-coded by red for human, green for mouse, purple for fly and blue
for worm. We used all those features to classify the four genomic elements,
i.e. coding sequence (CDS), untranslated region (UTR), noncoding RNA
(ncRNA), and the negative control. The feature selection process includes
intra-species feature selection part that eliminates features with low predic-
tion power for genomic regions within the same species, and inter-species
feature selection part that checks the remaining features shared by mul-
tiple species. After obtaining the four sets of candidate features from the
intra-species feature selection, we took the intersection of them to obtain a
common set which was then combined with three selected features that are
important in at least three species. The final feature set contains 10 features
that are listed with toy data in the right panel.

functional regions with feature patterns similar to canon-
ical ncRNAs on ∼70% of human long ncRNAs (lncR-
NAs). For instance, ∼10% of the human lncRNAs (e.g.
MALAT1) contain local domains with canonical struc-
tures (e.g. tRNA-like). Overall, our work provides a whole-
genome resource to support further biological discoveries
and mechanism studies of novel ncRNAs in model organ-
isms.

MATERIALS AND METHODS

Overview of RNAfeature

RNAfeature has two pre-process parts (assigning feature
values and assigning annotations to genomic regions) and
two feature selection parts (intra-species and inter-species
feature selection) (Figure 1).

In the first pre-processing part of RNAfeature, we curated
622 high-throughput data sets in five species, i.e. Homo
sapiens, Mus musculus, Caenorhabditis elegans, Drosophila
melanogaster and Arabidopsis thaliana. For every 100nt,
called genomic bin, in the genome, we calculated not only
the expression, histone modifications and TRF (transcrip-
tion and regulation factors) binding signals from high-
throughput data, but also various sequence and structural
features. We further considered the upstream and down-
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stream signals of genomic bins for each features, especially
the histone modifications and TRF binding.

The second pre-processing part is to label genomic bins
by their genomic elements (i.e. CDS, UTR, rRNA, miRNA,
lncRNA, etc.) based on the gold standard annotations. In
each species, we carefully prepared a gold-standard set of
annotations for four types of genomic locations: canonical
ncRNAs, confirmed coding sequences (CDSs), 5′ and 3′ un-
translated regions (UTRs) and negative controls (defined as
intergenic regions with weak expression signals). The bins
overlapped with these annotations were selected as the gold-
standard bins for training and testing.

The accuracies of classifying these four types of genomic
regions were used for feature selection. We utilized a super-
vised machine-learning framework with cross-validations.
When constructing the training and test sets, we optimized
the sampling method. Different machine learning classifiers
were also compared and optimized for the feature selection.

The intra-species feature selection had a pre-filter step
and a rigorous search step. In the pre-filter step, we used
a recursive feature elimination (RFE) algorithm (13) to fil-
ter inessential features. Then, we used a greedy hill climbing
method, called greedy backward algorithm (GBA) (14), to
rigorously eliminate features.

Subsequently, the inter-species feature selection had two
steps to optimize the feature set shared by multiple species.
We first intersected the feature sets from different species
and retained other features in the union set as remaining
features. To save essential features incorrectly filtered at pre-
vious steps, we added an optimized subset of the remaining
features into the intersected set to obtain the final set.

The common features were selected from four animal
species (i.e. human, mouse, fly and worm) and validated in
a plant species, Arabidopsis.

Feature scores from high-throughput data

In total, we curated and processed 622 high-throughput
datasets in five species: H. sapiens, M. musculus, C. ele-
gans, D. melanogaster and A. thaliana (Supplemental Table
S1 and Supplemental Dataset 1). The data sets belong to
three types that are expression levels (16 billion RNA-seq
reads and 400 million array probes), histone modifications
(18 types of histone modifications) and TRF binding (two
TRFs). The reference genome sequence of each species was
split into 100nt bins, with a step size of 50nt. The feature
values were calculated at bin level.

Expression data. Various expression values were ob-
tained from raw data, including 98 poly(A)+ RNA, 41
poly(A)− RNA, 48 total RNA, 70 small RNA sequenc-
ing data sets, and 101 poly(A)+ or total RNA tiling ar-
ray data sets (see details in Supplemental Notes, Sup-
plemental Table S1 and Supplemental Dataset 1). We
analyzed approximately 16 billion mapped reads from
RNA-seq data and 400 million probes from tiling ar-
ray data. For RNA-seq, we calculated the reads per kilo-
base per million (RPKM) of each bin using the DEGseq
software package (http://www.bioconductor.org/packages/
release/bioc/html/DEGseq.html). For tiling array data, the
expression values were calculated using an R package

AffyTiling (http://www.bioconductor.org/packages/release/
bioc/html/AffyTiling.html), and the maximum intensity of
overlapped probes was assigned to each bin. The signals
from different replicates were averaged. Recent studies have
shown that many novel ncRNAs tend to be specifically ex-
pressed in certain conditions or tissues (sometimes only
up-regulated in one specific condition) (15,16). In order
to make our model more sensitive to novel ncRNA detec-
tion, we used the maximum expression values (of RPKM or
the probe intensity) among different conditions (i.e. tissues,
cell lines, etc.) for each type of expression feature such as
poly(A)+, poly(A)− and small RNA.

Histone modification and transcriptional regulatory factor
binding data. We curated ChIP-seq data from 18 types of
histone modifications and two TRFs (see details in Sup-
plemental Note and Supplemental Table S1). The peaks
from the human ChIP-seq data were downloaded from En-
code (Supplemental Dataset 1). For other ChIP-seq data,
we used MACS14 (17) to convert raw reads. The values of
each sample were transformed into Z-score by smoothing
0.01% of the outlier values. The Z-scores from different con-
ditions (i.e. tissues, developing time, cell lines, etc.) were av-
eraged to produce a single value for each type of data.

Sequence and structural scores

We curated and calculated various computational scores for
each bin of 100nt in genomes of five species (Supplemental
Table S2).

GC content was calculated by counting the proportion of
G and C bases in the sequence.

DNA sequence conservation was measured using BLASTn
with default parameters for worm, fly and Arabidopsis. The
library databases for worm, fly and Arabidopsis were down-
loaded from Wormbase (with 19 other nematode species),
Flybase (with 11 other Drosophila species) and Ensem-
blePlants (with 31 other plant species), respectively. The
PhastCons scores for humans are phastCons46way, and the
scores for mice are phastCons30way as provided by the
UCSC genome browser.

Protein conservation was measured by BLAST based on
the same library sources as the DNA sequence conserva-
tion, except that we extracted all the vertebrate protein se-
quences from NCBI nr database to build the BLAST li-
brary for human and mouse. We used tBLASTx for worm,
and BLASTx for other species to calculate the conservation
scores.

RNA secondary structure stability was represented by the
p-value of the free energy calculated by the Randfold pro-
gram (18). The dinucleotide frequency was retained and
1000 shuffles were used to generate a random background
of RNA structures.

RNA secondary structure homologs were searched by the
INFERNAL program with default parameters (19).

RNA secondary structure conservation was denoted by
structure conservation index (SCI) scores calculated using
RNAz (20) based on multiple sequence alignments with de-
fault parameters.

http://www.bioconductor.org/packages/release/bioc/html/DEGseq.html
http://www.bioconductor.org/packages/release/bioc/html/AffyTiling.html
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Figure 2. Details of intra-species feature selection and context influence
score. The whole genome is split into 100-nt bins. Then, the bins are classi-
fied by genomic annotations (i.e. CDS, UTR, negative control and canoni-
cal ncRNA). Multiple feature values are calculated for each bin, consider-
ing both local score and a CIS. Subsequently, the features are pre-filtered
using RFE algorithm and rigorously searched with a GBA. They are evalu-
ated by a 5-fold cross validation inside the training set. Finally, the selected
features are further validated with an independent test set. The accuracy of
classifying the four genomic elements (CDS, canonical ncRNA, UTR and
negative control) is the criteria of evaluating the selection performance.

ORF property was measured by RNAcode using the same
multiple sequence alignments. It was also called coding po-
tential in RNAcode paper (6).

Multiple species alignments. We downloaded 46-way
alignments for human, 30-way alignments for mouse, 7-
way alignments for worm and 15-way alignments for fly
from the UCSC Genome Browser (http://hgdownload.soe.
ucsc.edu/goldenPath). The 5-way alignments for Arabidop-
sis were downloaded from VISTA (http://pipeline.lbl.gov/
downloads.shtml).

Definition of context influence score––downstream and up-
stream influence

Because of the long distance effects of features (e.g. some
histone modification signals enriched at the promoter re-
gion), we considered the upstream and downstream values
for each local bin (upper panel in Figure 2). Considering
that the influence of context declines with distance, we cal-
culated a CIS of a feature in a bin using an exponential
weight function (21):

CI S = ∑

k
hke

−dk
d0

hk = feature score
dk = distance to the current bin

d0 = context range(assigned by species and feature type)

The up-stream CIS, local value, and down-stream CIS
were always considered as a group when providing the fea-

ture for each bin. The distance parameter d0 was optimized
in each species (Supplemental Note). For histone modifica-
tion and TRF features, we used aggregating plots of the sig-
nals around TSS (transcription start site) regions to deter-
mine the d0 (Supplemental Figures S1 and S2). It is 2000nt
for fly, worm and Arabidopsis genomes, and 5000nt for hu-
man and mouse genomes. For expression, sequence, and
structural features, d0 was determined by the exon size (Sup-
plemental Figure S3), as these features might be highly cor-
related for bins within the same exon. It is 1500nt for fly,
worm and Arabidopsis genomes, and 3000nt for human and
mouse genomes. For each species, we compared model per-
formances with and without CIS. Overall, considering the
long distance effect has improved our model (Supplemental
Figure S4).

Feature score normalization

Initially, the feature values have very diverse range since
they were derived from genomic loci of multiple species. To
reduce the data heterogeneity, we first smoothed the top and
bottom 0.005% values of each feature. Then, the features
with large range (>1000) in value were log-transformed by
y = log10(x − minimum + 1). Subsequently, all the feature
values were scaled between 0 and 1 with the linear transfor-
mation:

y = x − minimum
maximum − minimum

.

Gold standard annotations

We used the genome annotations downloaded from Gen-
code (version 10), MGI (version GRCm38), Wormbase
(version ws220), Flybase (version r5.45), and TAIR (ver-
sion 10) to annotate each genomic bin. The summary of
the annotations is shown in Supplemental Table S3. In all
five species, four basic genomic elements were used as gold
standard annotations for the feature selection calculations:
CDSs, untranslated regions (5′ and 3′ UTRs), canonical
ncRNA and negative controls. The canonical ncRNAs are
well-classified ncRNAs, including rRNA, tRNA, snoRNA,
snRNA, miRNA, Y RNA and 7SK RNA. The negative
controls were obtained using three criteria: (1) bins located
in the intergenic regions (Supplemental Figure S5), (2) with
expression levels lower than the average values of all inter-
genic bins across all expression data, (3) containing no am-
biguous nucleotides (i.e. N). The intergenic regions were de-
fined as regions located at least N-nt away from any anno-
tated elements (i.e. coding genes, ncRNAs, TEs and pseudo-
genes). N is 2000 for human and mouse, and 500 for worm,
fly and Arabidopsis.

Each genomic bin (100nt) is annotated by the following
order (Supplemental Figure S6): (1) if 50% of a bin over-
laps with a known ncRNA region (such as canonical ncR-
NAs and long ncRNAs), it is labeled as the correspond-
ing ncRNA type; (2) if 90% of a bin overlaps with a CDS,
UTR, ancestral repeat or intergenic region, it is labeled cor-
respondingly; (3) if 50% of a bin overlaps with a pseudo-
gene, intronic, TE or ambiguous region, it is labeled corre-
spondingly. The summary of the annotated bins is shown in
Supplemental Table S4.

http://hgdownload.soe.ucsc.edu/goldenPath
http://pipeline.lbl.gov/downloads.shtml
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Construction of training and test sets

We tested various methods and strategies to determine the
appropriate training and test sets. When optimizing the clas-
sifier and feature selection algorithm, we adapted the train-
ing strategy from our previous study (9), used 5-fold cross-
validation in the training set (2/3 of the entire data), fol-
lowed by further validation in an independent test set (1/3
of the data) (Figure 2).

Genomic distance. Because the feature values (e.g. expres-
sion level) of close bins are highly correlated, we need to en-
sure that bins sampled in the test set are distant from those
used in the training set. Thus, nearby bins were packed into
one block, and the bins from the same block were put in the
same set. The minimum genomic distance between adjacent
blocks was chosen for each genome (Supplemental Figures
S7 and S8). To avoid exons from the same gene being packed
into two blocks, we used a distance that was longer than
90% of introns, which was 15 000nt for human and mouse,
and 5000nt for worm, fly and Arabidopsis (Supplemental
Table S5).

Balanced classes. In most genomes, the CDS bins out-
number the ncRNA bins. To prevent the prediction bias
(Supplemental Figure S9), we sampled same numbers of
bins from each genomic class (Supplemental Figures S10
and S11) for the following feature selection steps.

Classifier optimization

We tested various machine-learning classifiers to optimize
the classification performance, including the Naı̈ve Bayes,
Logistic Regression, Support Vector Machine (SVM) and
Random Forest (Supplemental Note). We compared their
performances for the 4-class prediction (CDS, UTR, canon-
ical ncRNA and negative control) in human. The Random
Forest method was finally chosen for the downstream anal-
ysis because it had the best performance (Supplemental Fig-
ure S12).

Construction of the initial feature set

We curated 25 types of expression, histone and TRF fea-
tures (Supplemental Table S1). We selected 15 features that
were available in at least three species as the initial set for
feature selection. Previously studies have shown that gene-
rich regions tend to be more conserved and have higher
GC content (22,23). It was also suggested that many ncR-
NAs have conserved and stable secondary structures (9,24).
Therefore, we also added seven sequence and structure
scores (GC content, DNA sequence conservation, protein
conservation, RNA secondary structure stability, RNA sec-
ondary structure homologs, RNA secondary structure con-
servation and ORF property).

Intra-species feature selection

The accuracy (ACC) of classifying four genomic elements
(CDS, canonical ncRNA, UTR and negative control) was
used as the criteria to select the best feature set within each
species (Figure 2). The accuracy, called ACC in statistics, is

the ratio of correctly predicted instances over all instances
belonging to the four genomic elements. Here, the correctly
predicted instances are calculated from four classes: cor-
rectly predicted CDS bins + correctly predicted UTR bins +
correctly predicted ncRNA bins + correctly predicted nega-
tive control bins. We started from the feature set mentioned
above, followed by a two-step wrapper method to remove
the worst features. One was a pre-filtering step that used the
RFE method (13). The other was a rigorous search step us-
ing the GBA (14).

Performance variance. We first estimated the performance
variance of a classifier (i.e. Random Forest) when the same
training set was used repeatedly (Supplemental Figure S13).
The distribution of classifier accuracies for 100 repeats was
approximately a normal distribution (Supplemental Figure
S13A). And, the randomness was quantified as 4-fold of the
standard deviation of the accuracy. Thus, during the pre-
filtering step, a smaller set was selected by sacrificing the
accuracy within the randomness allowance, instead of a fea-
ture set with the highest accuracy value (Supplemental Fig-
ure S13B and C).

Pre-filtering step used the RFE method. RFE irreversibly
eliminated the feature with the lowest rank one by one, until
finding the smallest feature set (Supplemental Figure S14).
We tested two ranking criteria for RFE: Spearman’s cor-
relation coefficient and Random Forest Importance Score.
We then chose the latter one because fewer features were
selected with a higher accuracy (Supplemental Table S6A).

Rigorous search step used the GBA. It iteratively evalu-
ated a subset of features and removes useless ones (Supple-
mental Figure S15).

Other selection strategies such as embedded method were
also tested and compared (Supplemental Note and Supple-
mental Table S6B).

We summarized the features used and selected by intra-
species feature selection in Supplemental Figure S16.

Inter-species feature selection. Inter-species feature selec-
tion chose features with balanced performances among
multiple species. After the intra-species feature selection,
seven features shared by all four species were retained and
called the intersecting feature set: I = (I1, ..., I7). The re-
maining 15 features were called the remaining feature set:
L = (L1, ..., L15) (Supplemental Figure S17).

Because some essential features shared by multiple
species could be filtered out during the intra-species fea-
ture selection, we tried to add some features from the re-
maining set L back to the intersecting set I. Picking n fea-
tures from the remaining feature set has m(m = Cn

15) dif-
ferent possibilities. G represents a subset of L. It can be
denoted as Gn, j , where j = 1, ..., m (Supplemental Figure
S18). We ranked the classifier accuracies for different com-
bination set (Cn, j = Gn, j + I) within every species, s(s =
human, mouse, worm or fly) (Supplemental Figure S19A).
We found that DNA sequence conservation, H3K36me3,
and H3K4me3 were frequently selected in highly ranked
combinations in at least three species.

To test the robustness of the selection method, we tried
different combination sizes, n, from 2 to 4, and it always out-
putted the three features from the remaining set, L (Supple-
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mental Figure S19B). Therefore, ten features (I1−7 + L1−3)
were selected as the final feature set (Supplemental Figure
S20).

Feature weights in multiple species

To compare models across species, we did quantile normal-
ization for the feature values.

Feature weights using Softmax. The Softmax algorithm
(http://cs229.stanford.edu), a multinomial logistic regres-
sion algorithm, was used to evaluate the weights of the 10
selected features for CDS, ncRNA, UTR, and negative con-
trol.

ncRNA types used for cross-type validations

The performance of ten-feature model for the 4-class (CDS,
UTR, negative control and canonical ncRNA) prediction
was validated on different types of canonical ncRNAs
(i.e. transfer RNA, tRNA; ribosomal RNA, rRNA, mi-
croRNA, miRNA; small nuclear RNA, snRNA; small nu-
cleolar RNA, snoRNA; Y RNA; 7SK RNA). For instance,
when predicting a specific type of ncRNA (e.g. rRNA in hu-
man), we used 1202 CDS bins, 1202 UTR bins, 1202 nega-
tive control bins and 1202 rRNA bins in the test set. In the
training set, we used 10 000 CDS bins, 10 000 UTR bins, 10
000 negative control bins and 10 000 all other six types of
ncRNAs bins.

In addition, we also treated different ncRNA subtypes
as different classes and trained multi-class models using the
selected 10 features (Supplemental Figure S21). Some sub-
types (e.g. rRNA and miRNA) could be better separated
from other ncRNAs. In general, different subtypes of ncR-
NAs share similar feature patterns for the selected com-
mon features, which make it hard to separate them from
each other. The common properties and feature patterns
would enable the model to have the potential of finding
novel ncRNA types.

Noncoding potential calculation

We calculated noncoding potential as the probability of
being canonical ncRNAs for every bin (100nt) of human
genome. We built models based on the selected 10 features
and four classes (canonical ncRNA, CDS, UTR and nega-
tive control). The training set contains all bins in the gold
standard set, i.e. 349 390 CDS bins, 617 150 UTR bins,
15 784 canonical ncRNA bins and 260 054 negative con-
trol bins. We used the following bagging method to build
the models. Every time, 10 000 CDS bins, 10 000 canonical
ncRNA bins, 10 000 UTR bins and 10 000 negative con-
trol bins were randomly sampled from the training set to
build a model. Then the sampling method was repeated 100
times and 100 models were built. On average, every bin in
the training set was used for approximately two times. The
predicted values to be ncRNA of the 100 models were aver-
aged as the noncoding potential score for each bin.

We calculate the noncoding potential scores for the other
species (mouse, worm and fly) as well, using the same strat-
egy.

RESULTS

Identifying common features of canonical ncRNAs across
multiple species using RNAfeature

We developed an integrated feature selection method,
RNAfeature (Figure 1, see ‘Materials and Methods’ sec-
tion), to identify the essential features of various ncRNA
types across multiple species, from >600 sets of high-
throughput experimental data and various computational
scores (Supplemental Table S1 and Supplemental Dataset
1). These datasets and computational scores constitute the
raw features, and they were chosen based on their poten-
tial capability of distinguishing ncRNAs from three other
types of genomic elements, namely CDSs, UTRs and in-
active intergenic regions (negative control). Because most
of the novel long ncRNAs are not well confirmed, we only
used the well-classified ncRNAs (called canonical ncRNAs,
including rRNA, tRNA, snRNA, miRNA, Y RNA, etc;
see ‘Materials and Methods’ section) in the training set for
the feature selection calculations. We supplied as inputs of
RNAfeature the annotated sequence elements at each ge-
nomic locus, and the values of the raw features at each locus
and its flanking upstream and downstream regions, which
are useful in defining the genomic context of the locus (up-
per panel in Figure 2). RNAfeature then performed an intra-
species round of feature selection to identify key features
that distinguish ncRNAs from other sequence elements in
each species (Figure 2), followed by an inter-species round
to determine features generally useful in identifying ncR-
NAs in human, mouse, worm and fly.

Based on the accuracy of classifying the four types of ge-
nomic elements, 10 common features were finally selected
for the four animal species, namely GC content, DNA se-
quence conservation, protein sequence conservation, RNA
secondary structure homologs, reading frame property,
small RNA-seq, poly(A)+ RNA-seq and poly(A)− RNA-
seq signals, and the histone modification signals H3K36me3
and H3K4me3 (Figure 1, Supplemental Figure S20).

Canonical ncRNAs exhibit conserved patterns of the selected
features across different species

To understand the significance of the 10 common features in
identifying the different types of sequence elements, we used
the multinomial logistic regression algorithm Softmax to il-
lustrate their feature weights for the four genomic classes
in each species (Figure 3A). The averaged feature values
for the four classes are also shown in Supplemental Figures
S22 and S23. In all four species, CDSs were generally more
conserved and highly expressed, and the canonical ncR-
NAs tended to be more structured and had the strongest
signals in the small RNA-seq data. H3K4me3 was more
highly weighted in the UTRs, which could be caused by
their enrichment in promoter regions (25). The inclusion of
upstream and downstream features of each locus might help
separate ncRNAs from UTRs, in that if a locus was close to
a CDS, it would be more likely to be a UTR. We then mixed
the data from all four species to build a single cross-species
model. This model displays similar feature patterns as the
four species-specific models (Figure 3A), further confirm-

http://cs229.stanford.edu
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Figure 3. Conserved feature pattern of canonical ncRNAs in multiple
species. (A) Weights of the 10 features in multinomial logistic regression
models in distinguishing four kinds of genomic regions: coding sequence
(CDS, red), canonical noncoding RNAs (ncRNAs, green), negative con-
trols (Neg.Ctrl, blue) and untranslated regions (UTR, purple). In each
plot, the weights learned from human data are marked by square, and sim-
ilarly mouse by round, fly by triangle and worm by diamond. The plot at
the bottom shows the weights from a mixed case that treats the genomic
regions from four species the same. Quantile normalization was applied to
compare and utilize data across species. Explanations on the feature labels
are: DNA Cons for DNA sequence conservation; protein Cons for protein
sequence conservation; GC% for GC content; RNA structure for RNA
secondary structure homologs searched by INFERNAL (19); open read-
ing frame (ORF) property for scores calculated by RNAcode (6). (B) The
classification accuracies (i.e. ACC of distinguishing the four kinds of ge-
nomic regions) are measured across multiple species, which uses the data
from one species as the training set and the data from a different species
as the test set. The short names for the four cases are H for human, M
for mouse, F for fly and W for worm. The mixed case trained the model
on data from all four animal species, and tested on data for a plant, Ara-
bidopsis, with results shown as a scatter plot at the right side in the same
color code for the four kinds of genomic regions.

ing the consistency of the selected features across the four
species.

For each of the four species, the 10 features consistently
separated the four sequence element classes with above 90%
accuracy (Figure 3B, diagonal cells). To test the robust-
ness of the feature patterns, we then applied the model (a
mathematical function that predicts the element class of a
given locus based on its 10 features) obtained from each
species to the other three species (data from different species
were quantile normalized). The resulting accuracies were
fairly high (70–90%, Figure 3B, off-diagonal cells), show-
ing the generality of these models across the four species.
We also applied the mixed model derived from the four an-
imal species to the plant species A. thaliana. The accuracy
(ACC) of classifying four genomic elements (CDS, canoni-
cal ncRNA, UTR and negative control) was 82% (Figure
3B, Supplemental Figure S24). We also calculated other
statistics using canonical ncRNAs as positives and the other
three classes as negatives (precision: 0.84, sensitivity: 0.85,
specificity: 0.95). This high accuracy illustrates the poten-
tial of extending the use of the 10 common features beyond
animal species, although in this work we focus on the four
animal species.

The selected common features identify ncRNAs better than
having all raw features of any single type

We next investigated whether the 10 features in the selected
set were necessary and sufficient, by asking (i) whether these
10 diverse features could identify ncRNAs better than only
one type of (expression, epigenomics or structural features)
and (ii) whether having more features of these single types
could improve their ability in identifying ncRNAs. Specif-
ically, we compared the model constructed from the 10 se-
lected features with models constructed from all raw fea-
tures of any one of the three types. The results show that the
10 features identified ncRNAs better than these single-type
features in terms of both sensitivity and specificity in all four
species (Figure 4, Supplemental Table S7 and Supplemental
Figure S25), even the single-type feature sets contained sub-
stantially larger number of raw features. These results show
that it was the diversity and specific choices of the features,
rather than the number of features, that contributed most to
the ability of the 10 selected features in identifying ncRNAs.

The selected common features are capable of finding novel
ncRNA types

Since most of the annotated ncRNAs supplied as inputs
to RNAfeature were canonical ncRNAs, it is important to
assess the robustness of the selected features against find-
ing novel ncRNA types. We first performed this assess-
ment using human data by omitting one type of canonical
ncRNAs from the inputs of RNAfeatue (miRNA, rRNA,
snRNA, snoRNA, tRNA, Y RNA or 7SK RNA), and
asked RNAfeature to model feature patterns that can distin-
guish the remaining six ncRNA types from the other three
element classes (CDS, UTR and negative control) (Supple-
mental Figure S26). The resulting models were able to sep-
arate the ncRNAs of the omitted sub-type from the other
three element classes (average sensitivity: ∼0.89), even when
the omitted ncRNA type was markedly different from the
others (e.g. the sensitivity was ∼0.88 when rRNAs were the
omitted sub-type) (Figure 5A).

We then performed this cross-type assessment in the
other three species based on the annotated ncRNA types
available in these species. Good accuracies were again ob-
served (Figure 5B and Supplemental Figure S27). Compar-
ing the four species, the accuracies of these cross-type as-
sessments were slightly better in human and mouse, proba-
bly due to the larger number of annotated ncRNAs in these
two species. In general, however, the accuracies in all four
species were much higher than would be expected by ran-
dom chance.

We also repeated these cross-type assessments by
using SCI calculated by RNAz (20) to compute the
RNA secondary structural feature instead of using
Rfam/INFERNAL (26,27), to avoid having any of the 10
selected features also involving in the ncRNA annotations.
The resulting accuracies were only slightly affected (aver-
age sensitivity ∼0.86 with SCI as compared to ∼0.89 with
Rfam/INFERNAL) (Supplemental Table S8), showing
that the models worked well with different definitions of
structural scores.

Taken together, all these results show that the common
features selected by RNAfeature capture general properties
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Figure 4. Performance of predicting canonical nRNAs based on different
feature sets. (A) The performance of RNAfeature is evaluated by predict-
ing known genomic regions with 100nt in size to belong to four classes
(CDS, UTR, negative control, and canonical ncRNAs). After the 4-class
prediction, ROC curve are drawn using canonical ncRNAs as positives,
and the union of other three classes as negatives. We compared four cases
of feature sets. Selected features refer to the 10 features chosen by RNAfea-
ture. The epigenetic features include all histone modifications and TRF
binding signatures. Expression features contain all expression profiles.
Structural feature is the RNA secondary structure homologs searched by
Rfam/INFERNAL. The number after each feature set gives the area under
the corresponding ROC curve (AUC). (B) The performance of RNAfea-
ture is showed by the sensitivity-precision curves.

of diverse ncRNA types even if some types are absent in its
input data. The integrative model has the potential to find
novel ncRNA types.

The selected common features define a noncoding potential
score to identity confident regions on lncRNAs

Although the genomic regions are pervasively transcribed,
only small portions (e.g. ∼1% in human) are annotated as
canonical ncRNAs and long ncRNAs (lncRNAs) (1). Even
for the annotated lncRNAs, most of them are not well con-
firmed. Many of them are simply filtered from the newly as-
sembled transcripts based on coding potential scores (4–6).
Moreover, because a lncRNA transcript tends to be flexi-
ble and long, its local motifs and structure may be essen-

Figure 5. Performance of cross-type validations. (A) Boxplots show the
probabilities (in y-axis, range: 0–1) of a certain type of genomic bins (as
shown in the title of each window) being predicted to be CDS, UTR,
ncRNA, or negative control (labeled in x-axis) in human genome using
RNAfeature. For each specific type of ncRNA (e.g. rRNA) panel, we used
different ncRNAs in training and test sets. The test set consists of one spe-
cific nRNA type (e.g. rRNA), and the training set consists of all other types
of canonical ncRNAs (e.g. tRNA, miRNA, snRNA, etc.). The other three
classes are the same (i.e. CDS, UTR and negative control) in each panel.
(B) The accuracies (ACC) of cross-type predictions for the four classes are
calculated for all four species.

tial for its biological and biophysical roles in a cell (28).
Cases have been found in which a single transcript contains
multiple domains that function differently (e.g. MALAT1)
(29). While the 10 common features were identified based
on canonical ncRNAs most of which are short (expect for
rRNAs), we argued that that they could also help identify
local regions on lncRNAs that share similar properties as
the canonical ncRNAs such as secondary structures. These
regions should have better confidence and have the poten-
tial possessing a noncoding function.

We took all bins (100nt) annotated in the genome, built
4-class models (canonical ncRNA, CDS, UTR and nega-
tive control) based on the selected 10 features, and predicted
the probability of a bin to be canonical ncRNA in human,
mouse, worm and fly. We call this probability noncoding
potential. By integrating complementary features, the po-
tential score is able to cover all transcribed regions (includ-
ing unconserved genomic regions). Since the calculation of
noncoding potential score is based on local bins, it does
not require accurate assembly of the full-length transcripts,
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Figure 6. Noncoding potential defines confident regions in human lncR-
NAs. (A) Noncoding potential scores are calculated for each type of ge-
nomic element at bin level (100nt), their densities are plotted. For each
lncRNA bin, we predict its probabilities to be canonical ncRNA, CDS,
UTR or negative control. If a bin has higher probability to be canonical
ncRNA than other three classes, it is defined as positive (confident bin).
(B) The feature values are averaged from all the lncRNA bins with dif-
ferent noncoding potential scores. Each expression score is the maximum
RPKM across five cell-lines (GM12878, K562, H1-hESC, HeLa-S3 and
HepG2). The other feature values are normalized from 0 to 1. We use the
upstream CIS for H3K4me3 because it known as a promoter marker.

thereby avoiding the need for very deep RNA-seq, CAGE
(30) or TIF-seq (31).

We then applied the noncoding potential on the anno-
tated human lncRNAs (Gencode V10). A local region (100-
nt bin) will be called confident region (positive) if its canon-
ical ncRNA probability is higher than the probabilities of
the other three classes. We found ∼70% of the lncRNAs
contains at least one confident bin having properties sim-
ilar to canonical ncRNAs (Supplemental Table S9). The
noncoding potential scores of confident lncRNA bins (pos-
itives) are usually between those of CDSs and canonical
ncRNAs (Figure 6A), suggesting that these novel lncRNA
regions have unique feature patterns that are different from
any known genomic elements (e.g. CDS, UTR and canoni-
cal ncRNAs).

We further investigated the feature patterns of all the hu-
man lncRNA bins with different levels of noncoding po-
tential (Figure 6B, Supplemental Figure S28). As expected,
the lncRNA bins have lower conservation scores than CDSs
(Supplemental Figures S22–S23). The high noncoding po-
tential is mainly contributed by structural feature and/or
small RNA signals. For instance, two lncRNAs with high
noncoding potential scores (MALAT1 and NEAT1/Men β)
contain nonpoly(A) rich tract at their 3′-ends (29,32). They
were processed into structured RNAs that generate small
RNAs. This is also consistent with previous studies show-

Figure 7. A lncRNA example showing the usage of 10 features, coding
and noncoding potential. (A) The noncoding potential score, 10 features’
signals/scores are displayed for a lncRNA (3′ end), MATAT1. (B) A struc-
tural domain, mascRNA, with high noncoding potential score is high-
lighted at the right panel. Argonaute proteins bind its small RNA product
(yellow nucleotides). (C) The DNA sequence and RNA secondary struc-
ture of mascRNA are conserved across multiple species.

ing that some lncRNAs may be post-processed into smaller
RNAs (28,33). In total, we identified 735 lncRNA tran-
scripts (∼10% of the total) containing conserved canonical
structures (e.g. tRNA-like). These regions may function as
regulatory structural motifs. The ratio of Poly(A)− RNA
signal over Poly(A)+ RNA signal also tend to be higher
when the noncoding potential increases. This is supported
by a previous study showing that many lncRNAs (>24%)
might lack poly(A) tails (34).

Application of the 10 selected features and noncoding poten-
tial scores

We use a well-studied lncRNA, MALAT1 (metastasis as-
sociated lung adenocarcinoma transcript 1), to illustrate
the biological and biophysical significance of the 10 fea-
tures and noncoding potential scores (Figure 7). We first
observe a strong H3K4me3 signal at 5′ end of MALAT1.
This indicates that it is potentially regulated by certain hi-
stone modifications (Supplemental Figure S29). We fur-
ther identify some locations with high noncoding potential
scores at its 3′ end (Figure 7A). The 3′ end of MALAT1
has been reported to be essential for promoting cell prolif-
eration and invasion (35), and contains a functional mo-
tif, mascRNA (29). Notably, the mascRNA was reported
broadly expressed in both human and mouse cell lines and
normal tissues. Here, we rediscovered the mascRNA region
in human MALAT1 with a high noncoding potential score.
The structural motif is a tRNA-like 61-nt cytoplasmic RNA
(Figure 7B), which is conserved at both the DNA sequence
and RNA secondary structure levels (Figure 7C). We also
detected strong small RNA signals from this structural mo-
tif. Based on eight published CLIP-seq datasets, we found
that the small RNAs were bound by the Argonaute proteins
(AGO2 and AGO3) (36,37), which suggests that tRNA-like
cytoplasmic mascRNA may generate some microRNA-like
small RNAs. More supportively, tRNAs has been reported
to be cleaved into small RNAs (tRNA-derived small RNAs,
tsRNAs) by Dicer in cytoplasm (38), confirming the biolog-
ical functions of Argonaute protein footprint on the small
RNA derived from mascRNA.



Nucleic Acids Research, 2015, Vol. 43, No. 1 113

This example illustrates that the classical structural con-
formation of canonical ncRNAs could be adopted by the
novel long ncRNAs (e.g. MALAT1) to define novel func-
tional domains. It is consistent with our RNAfeature model
including RNA secondary structure conservation and ho-
mologous score.

DISCUSSION

We have developed a comprehensive computational
method, RNAfeature, to evaluate and characterize novel
ncRNAs with high resolution at the whole genome level.
It revealed a set of distinct features commonly shared by
different types of canonical ncRNAs in multiple species.
This set includes 10 features from the sequence, structure,
genome and epigenome merged from data obtained in
various tissues, cell lines and development stages.

RNAfeature is an integrative method that is capable of
distinguishing diverse ncRNA types from protein coding se-
quences and UTRs. The rigorous feature selection strategy
of RNAfeature enabled us to select from >600 datasets a
succinct set of informative features with clear evolutionary,
biophysical and biological meanings. By integrating com-
plementary features together and considering context in-
fluence (CIS), RNAfeature showed better sensitivity than
ncRNA prediction methods based on single feature types
(e.g. expression level and structure conservation; Figure 3
and Supplemental Figure S25). The patterns of these fea-
tures are conserved in multiple species. We could use a
model derived from animal species to predict plant ncR-
NAs. And the resulting ncRNA models are robust against
missing ncRNA sub-types in the input data.

We further provided a set of noncoding potential scores,
which can be used to identify, evaluate and characterize
novel ncRNAs. By integrating complementary features, our
method is able to cover all transcribed regions (including
unconserved genomic regions). It also does not require the
full-length transcripts being assembled, because the score
calculation is based on bin level (100nt) (Supplemental Fig-
ure S30 and Supplemental Table S10). We used only the
well-classified ncRNAs (canonical ncRNAs) to define the
noncoding potential, because many annotated lncRNAs
are not well validated. Ribosome was also observed on
many lncRNAs (39), which indicates that some lncRNA re-
gions may have coding potential. Therefore, our noncod-
ing potential score might not predict some novel types of
ncRNAs, because it was trained on the feature pattern of
certain types of ncRNAs. Still, we have demonstrated that
we could identify local regions with certain noncoding po-
tential scores on ∼70% of the annotated human lncRNA
transcripts (Figure 6, Supplemental Table S9).

One drawback of RNAfeature is that it takes a large
amount of input data, which require a fairly large amount
of pre-processing work. We therefore provide the 10 selected
features and their computed values along the 4 transcrip-
tomes (human, mouse, worm and fly) as a resource for fu-
ture studies of lncRNAs, eliminating the need for repeating
all the data processing work we have performed.

Based on our results in model organisms, we also sug-
gest the 10-feature data to be curated and sequenced for the
novel ncRNA identification, evaluation and characteriza-

tion in other species. In the future, as more data that provide
novel information about ncRNAs are produced, such as ri-
bosome profiling (39) and whole genome structure profiling
(40,41), we will keep updating the set of common features
accordingly and explore other potential use of them.
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